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I. INTRODUCTION

Recently, there have been many novel approaches to
understanding physical systems driven away from equilibrium.
Among such approaches we emphasize the work theorems of
Jarzynski [1] and Crooks [2], steady-state thermodynamics
[3,4], and stochastic thermodynamics [5–8]. In this very same
context, a new and profound understanding of the second law
of thermodynamics has been possible through its relation to
the dissipation in phase space [9–11], the relation between
dissipation and lag in irreversible processes [12], the Landauer
principle and the second law [13], and generalized fluctuation
relations [14].

Important progress concerning the second law has recently
been made by Esposito and Van den Broeck [15–17], where
they have shown that the total entropy production stems from
adiabatic and nonadiabatic contributions. Although both of
these entropy productions are non-negative, they are very dif-
ferent in nature since these two distinct contributions represent
two different manners of driving a system out of equilibrium.
The adiabatic entropy production in a physical system occurs
when the system is driven through nonequilibrium boundary
conditions. It should be noted that this use of the term adiabatic
does not refer to the absence of heat exchange but to the
instantaneous relaxation to the steady state as remarked in
[16]. On the other hand, the nonadiabatic entropy production
stems from the external driving with non-energy-conserving
dynamics. Esposito and Van den Broeck have further shown
that the system entropy production is the nonadiabatic entropy
production minus the excess term for the transitions between
the nonequilibrium steady states [16].

In a related context, Speck and Seifert [18] have recently
shown that the equilibrium form of the fluctuation-dissipation
theorem (FDT) can be used for a colloidal particle in a
periodic potential if one measures the velocity with respect
to the local mean velocity. We also note that a modified
fluctuation-dissipation relation for a nonequilibrium steady
state has recently been experimentally verified [19]. Speck
and Seifert end their discussion by asking whether some other
non-velocity-like concepts can be used in their equilibrium
form when one studies nonequilibrium steady states.
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Considering the colloidal particle in a periodic potential
studied by Speck and Seifert [18], we note that this model is
particular in that its average excess heat is zero. Motivated
by this observation, we aim to show that in this contribution
the equilibrium form of the second law can be used for the
transitions between the nonequilibrium steady states as Speck
and Seifert have shown the restoration of the equilibrium
FDT for the same class of transitions. However, it is worth
remarking that our treatment is general and not limited only to
the Brownian particles in periodic potential.

This paper is organized as follows: In the next section, we
derive the formula for the entropy change associated with the
transitions between nonequilibrium steady states arbitrarily far
from equilibrium. Next, examples are provided to clarify the
use of the previously derived main equation. The relation of the
present work to the entropy change for the transitions between
the equilibrium states and to the previous works derived in the
case of energy-conserving dynamics is then discussed. Finally,
concluding remarks are presented.

II. THEORY

In stochastic thermodynamics, the entropy of a physical
system is given by its time-dependent Shannon entropy,

S(t) = −
∑
m

pm(t) ln pm(t), (1)

where we set the Boltzmann constant equal to unity. The
probability to find the system in a state m at time t is denoted
by pm(t), and its time evolution is governed by the following
Markovian master equation:

.
pm(t) =

∑
n

Wmnpn(t), (2)

where the rate matrix Wmn is responsible for the transitions
between the states as a result of different mechanisms ν and
time-dependent driving of the control parameter, i.e., Wmn =
Wmn(λt ) = ∑

ν W (ν)
mn(λt ). The rate matrix has the following

property: ∑
m

Wmn(λt ) = 0. (3)

Taking the time derivative of the system entropy in Eq. (1)
together with the Markovian master equation (2), one can show
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that the following equation holds:
.

S(t) +
.

Sr (t) =
.

S tot(t), (4)

where the change in total entropy
.

S tot(t) reads

.

S tot(t) =
∑
m,n,ν

W (ν)
mn(λt )pn(t) ln

W (ν)
mn(λt )pn(t)

W
(ν)
nm(λt )pm(t)

, (5)

while the entropy change in the reservoirs
.

Sr (t) can be given
by

.

Sr (t) =
∑
m,n,ν

W (ν)
mn(λt )pn(t) ln

W (ν)
mn(λt )

W
(ν)
nm(λt )

. (6)

In order to apply the above formalism to the physical
systems attaining nonequilibrium steady states, one further
assumes that the rate matrix Wmn is irreducible in the sense
that there is a unique stationary distribution pst

n (λ) eventually
reached by the system corresponding to the control parameter
set constant in time, i.e.,

∑
n Wmn(λ)pst

n (λ) = 0. Armed with
the irreducibility of the rate matrix, one can show that the
change in total entropy can be divided into the adiabatic,

.

Sa(t) =
∑
m,n,ν

W (ν)
mn(λt )pn(t) ln

W (ν)
mn(λt )pst

n (λt )

W
(ν)
nm(λt )pst

m (λt )
, (7)

and nonadiabatic entropy changes, i.e.,
.

Sna(t) = −
∑
m

.
pm(t) ln

pm(t)

pst
m (λt )

, (8)

so that
.

S tot(t) =
.

Sa(t) +
.

Sna(t), where the subscripts denote
adiabatic and nonadiabatic contributions, respectively. In order
to relate the above equations to thermodynamics, the stochastic
thermodynamics requires that the transition rates related to a
given mechanism ν satisfy the following local detailed balance
condition (DBC) [15–17]:

W (ν)
mn(λt )p

eq
n (λt ,ν) = W (ν)

nm(λt )p
eq
m (λt ,ν). (9)

When the system is coupled to a single reservoir for a fixed
value of the control parameter λ, the stationary distribution
becomes an equilibrium distribution, i.e., pst

m (λ) = p
eq
m (λ).

Then, for such a system under the influence of only con-
servative forces, the adiabatic entropy production vanishes,
as can be seen from Eqs. (7) and (9). However, when
the system is coupled to multiple reservoirs with different
thermodynamic properties, the reservoirs try to impose their
respective equilibrium distributions, resulting in an overall
stationary distribution. It is worth remarking that the adiabatic
entropy production can also be caused by the nonconservative
driving in the presence of a single reservoir.

Note that the nonadiabatic entropy production is zero
in the adiabatic limit since then we have pm(t) → pst

m (λt ),
indicating that the physical system moves through a sequence
of successive steady states at each time instance [16]. As a
result, one has

.

S tot(t) =
.

Sa(t). Since the only term surviving
in an adiabatic switching is

.

Sa(t), it is called the adiabatic
entropy change, while the rest of the total entropy contribution
is called nonadiabatic.

Focusing now only on the nonadiabatic entropy change, we
can further split it into the excess entropy change

.

Sex(t), given

as
.

Sex(t) =
∑
m

.
pm(t) ln pst

m (λt ), (10)

and the change in the system entropy,

.

S(t) = −
∑
m

.
pm(t) ln pm(t) = d

dt

(
−

∑
m

pm(t) ln pm(t)

)
,

(11)

so that
.

Sna(t) =
.

Sex(t) +
.

S(t). (12)

The excess entropy change is defined as the entropy change
caused by the transition between the states, as can be seen
from Eq. (10). In fact, if one considers the transitions between
the equilibrium states under conservative driving, the excess
entropy change multiplied by the temperature becomes the
total heat dissipated to the surrounding medium. We from
now on consider only the nonadiabatic contribution and the
transitions between the nonequilibrium steady states [15–17].
Therefore, a system is initially assumed to be in a normalized
steady state pst

m (0) corresponding to the initial value of the
control parameter λti . The external driving is represented as
usual by the change of the control parameter λti to its final value
λtf . Assuming that a steady state is formed for fixed values of
the control parameter after an asymptotically long time, i.e.,
the irreducibility of the rate matrix, a new normalized steady-
state distribution pst

m (T ) is reached after a long time T . For
the transitions between the nonequilibrium steady states [16],
the change in the system entropy reads

�S = −
∑
m

pst
m (T ) ln pst

m (T ) +
∑
m

pst
m (0) ln pst

m (0), (13)

and the following second-law-like relation [16] is satisfied:

�Sna − �Sex = �S. (14)

It is important to note that the expression above obtained
by Esposito and Van den Broeck [16] for the transitions
between the nonequilibrium steady states is quite general and
already includes both the change in the system entropy and
the excess entropy change as well. On the other hand, the
usual formulations of the second law between the equilibrium
states are only focused on the change in the system entropy.
Therefore, our main motivation is to write Eq. (14) so that
the system entropy change incorporates the excess entropy
change within, forming one term only, which can be written as
a relative entropy (see below for more on this). This change in
the system entropy, including also the excess entropy change
within, will be denoted as �Sst [see, for example, Eq. (17)].
For consistency, �Sst must naturally be equal to �Sna in
Eq. (14), formerly obtained in Ref. [16].

The average excess entropy change with respect to the final
steady state is

�Sex =
∑
m

[
pst

m (T ) − pst
m (0)

]
ln pst

m (T ). (15)

It is worth noting that the equation above for the excess entropy
change cannot be obtained from the more general Eq. (10)
by a simple integration due to the dependence of the control
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parameter on time. However, since pst
m (T ) is a steady state

obtained by keeping the control parameter constant in time
for an asymptotically long duration T , it is independent of
t , thereby justifying the derivation of Eq. (15). It is seen
from Eq. (14) that the system entropy change is not equal
to the nonadiabatic entropy change due to the excess entropy
contribution. For a Brownian particle in a periodic potential,
the excess entropy change is zero since the steady states in this
model also correspond to the equilibrium distributions once
they are reached [17,18]. However, the excess change is not
zero in general. Motivated by the particular model studied by
Speck and Seifert [18], we now generally include the excess
entropy term in the system entropy change for the transitions
between the nonequilibrium steady states. This incorporation
is necessary in order to relate our results to the recent formulas
derived for the transitions between equilibrium states since
the latter are formulated in terms of the system entropy change
only. Note that the inclusion of the excess term in the system
entropy change also makes the latter equal to the nonadiabatic
entropy change, as can be seen from Eq. (14). To include the
excess entropy term, we treat as if it is zero and consider
the result of this equality as a condition to be satisfied by the
system entropy change, which reads∑

m

pst
m (T ) ln pst

m (T ) =
∑
m

pst
m (0) ln pst

m (T ), (16)

as can be easily seen from Eq. (15). Incorporating Eq. (16)
into the change of the system entropy given by Eq. (13), we
obtain

�Sst = −
∑
m

pst
m (0) ln pst

m (T ) +
∑
m

pst
m (0) ln pst

m (0), (17)

which can be rewritten as

�Sst =
∑
m

pst
m (0) ln

(
pst

m (0)

pst
m (T )

)
, (18)

where we have denoted the system entropy change �S

including the excess term by �Sst . Before proceeding further,
one can check whether considering the excess entropy term as
zero in the form of a constraint and its inclusion in the system
entropy change resulted in any mathematical discrepancies.
Note that one has initially the nonadiabatic entropy change
equal to �Sna = ∑

m

pst
m (0) ln( pst

m (0)
pst

m (T ) ), as can be seen from

Eqs. (12)–(14). Since we have obtained exactly the same
expression in Eq. (18) for the system entropy change, this
implies that the excess term is well incorporated into the system
entropy without loss of generality.

We now note that the right-hand side of Eq. (18) is the non-
negative relative entropy expression D[pst (0)‖pst (T )] (also
known as Kullback-Leibler distance) between the steady-state
distributions [20], i.e.,

�Sst = D[pst (0)‖pst (T )] � 0. (19)

This is our main result, which relates the system (or, equiv-
alently, nonadiabatic) entropy change due to the transitions
between nonequilibrium steady states to the relative entropy
of the initial and final steady-state distributions.

It is worth noting the difference between Eq. (19)
and the expression

.

Sna(t) = − d
dt

D[p(t)‖pst (λ)] obtained in

Refs. [16,17]. Apart from a minus sign, the equation found in
Refs. [16,17] has a time-dependent probability p(t) as opposed
to Eq. (19) since the former expresses how the system relaxes to
its new steady state once the control parameter is fixed in time,
whereas Eq. (19) is related to what happens between two steady
states, each independent of time, i.e., when they are already
relaxed but separated from one another by an asymptotically
long time interval T .

Our main result, i.e., Eq. (19), shows that the equilibrium
form of the second law is preserved if the excess entropy
change is incorporated into the system entropy change. This
can also be seen by inspecting the second law derived by
Hatano and Sasa [4], i.e., T �S � −Qex . This expression of
the second law immediately gives our main result, Eq. (19),
once the excess heat Qex , equal to T �Sex = Qex , is in-
corporated into the system entropy so that one now has
�Sst � 0 since �S + �Sex = �Sst . This is plausible since
the Hatano-Sasa form of the second law is derived for a
system under nonconservative driving in contact with a single
reservoir, and the excess entropy change is the same as the
excess heat divided by the temperature of the reservoir under
this condition.

It is also worth noting that the system entropy change
now possesses all the information of the nonadiabatic entropy
change as a result of incorporating the excess entropy change,
as can be seen from Eq. (14). It is well known that the
nonadiabatic entropy change is related to the system properties
and is independent of the constituting process [17]. Therefore,
our main result, being exactly at the same level of description
as the nonadiabatic entropy change, is also independent of
the process, which generates the steady-state conditions, be it
through the time-dependent driving or multiple reservoirs with
different thermodynamic properties. We also note that Eq. (19)
is valid for any kind of transition, slow or not.

Another related issue concerns when the equality holds
for the second law given by Eq. (19): valid for arbitrary
protocols and independent of the constituting process, the
second law written in terms of the system entropy given
by Eq. (19) is zero for two cases. (i) The first trivial case
is when the steady-state distribution, once reached, remains
unchanged despite the presence of the time-dependent driving
or when the switching is slow enough not to perturb the
steady state. (ii) The second case is nontrivial: the entropy
change given by Eq. (19) is zero also when the steady-state
distribution does not change its form drastically despite the
presence of driving. To understand this, consider a case where
pst

m (0) = ( eα−1
eα )e−αm and pst

m (T ) = ( eδ−1
eδ )e−δm are initial and

final normalized steady-state distributions, respectively. The
terms α and δ are constants, which usually depend on the values
of friction and diffusion, for example. Enforcing Eq. (16),
i.e., incorporating the excess entropy change into the system
itself, a simple calculation shows that α = δ, yielding zero
system entropy change in Eq. (19). This provides a new
insight into the physical meaning of processes regarding the
transitions between nonequilibrium steady states. In other
words, a transition process yields zero entropy production if
the steady distribution does not change its form drastically. One
observes no entropy change in the physical system if an initial
exponential steady-state distribution is preserved exactly or
only changes its argument under the influence of external
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driving or due to the coupling of the physical system to multiple
reservoirs with different thermodynamic properties. However,
a transition from an exponential steady-state distribution to a
Gaussian one produces a nonzero entropy change, as we will
see below for the Van der Pol oscillator under the influence of
noise.

One might ask whether our central result, Eq. (19), provides
information on the entropy change when the physical system
is acted on by an energy-conserving and conservative driving
[or, considering the generality of Eq. (19), one can have
equilibrium states by keeping the thermodynamic properties
of the multiple reservoirs the same], so that the steady states
are replaced by the equilibrium states in Eq. (19). In fact, all
the steps above can be repeated in their full generality only
by noting that the nonequilibrium steady states are replaced
by the equilibrium ones, so that one obtains the relation
�Seq = D[peq(0)‖peq(T )] � 0 as the second law for the
transitions between initial and final equilibrium distributions,
where the equality is satisfied for quasistatic processes.

In order to see that this is in fact the case, we consider the
nonequilibrium Landauer principle in Ref. [13]. This principle
in its full generality reads

βWdiss − D[p(T )‖peq(T )] + D[p(0)‖peq(0)] = �Stot,

(20)

where β is the inverse temperature. The dissipated work Wdiss

is given by 〈W 〉 − �Feq , where 〈W 〉 and �Feq stand for
the average work and free energy difference between the
equilibrium states, respectively. In the equation above, the
relative entropy terms are separately zero if the system is both
initially and finally at equilibrium [13]. Moreover, �Stot is the
total entropy change and becomes equal to �Sna since the
adiabatic contribution �Sa vanishes for a single reservoir with
conservative driving or for multiple reservoirs with the same
thermodynamical properties due to the local detailed balance
condition [15–17]. Moreover, since the excess entropy change
is incorporated into the system entropy in deriving Eq. (19)
[see also Eq. (14)], the nonadiabatic entropy change �Sna

is equal to the change in the system entropy �S. Under the
influence of conservative driving, the steady states now relax
to the equilibrium states [see, e.g., the paragraph above Eq. (5)
in Ref. [21]], so that we have

βWdiss = �Seq = D[peq(0)‖peq(T )] � 0. (21)

We note that Wdiss � 0 is indeed the second law of thermo-
dynamics, and the dissipated work, being explicitly equal to
〈W 〉 − �Feq , also relates only two equilibrium states, just like
the relative entropy expression D[peq(0)‖peq(T )]. Moreover,
this equality also ensures that the relative entropy formulation
of the second law attains zero only for quasistatic, reversible
processes since only then does the dissipated work vanish.
From Eq. (21), one can further see why our main result,
Eq. (19), has been interpreted as preserving the equilibrium
form of the second law.

It is worth remarking that one can also derive Eq. (21)
directly without using the Landauer principle derived in
Ref. [13]. However, before proceeding, it might be important
to see how the usual work formulation of the second law
is obtained: The first law reads 〈W 〉 = �U + Q, where the

dissipated heat is negative by sign convention. The work
applied to the system either increases the energy U of the
system or is dissipated into the surrounding medium in the
form of heat, i.e., Q = T �Sm. The total entropy change is
given by the equation �Stot = �S + �Sm, where �S is the
change in the system entropy. Therefore, the first law now
reads 〈W 〉 = �U + T �Stot − T �S. This last equation can
further be written as (〈W 〉 − �U + T �S)/T = �Stot � 0,
where we have used �Stot � 0. Remembering the definition
of the Helmholtz free energy F = U − T S and assuming
both equilibrium states are at the same temperature T ,
we can obtain the work formulation of the second law
as (〈W 〉 − �Feq)/T = βWdiss � 0, setting the Boltzmann
constant to unity. In accordance with the work formulation
of the second law, we now initially couple our system to a
thermal reservoir at some temperature β−1, so that the initial
equilibrium distribution is given by peq(0) = e

−βH (�;λti
)

Z(β−1,λti
) , with Z

being the partition function, corresponding to the initial value
of the control parameter λti , such as volume, where � denotes
the phase space variables. Similar to the transitions between
the nonequilibrium steady states, the external conservative
driving is represented by the change of the control parameter
λti to its final value λtf . Having changed the control parameter
to its final value λtf , we bring the system to another equilibrium
state by coupling it to a thermal reservoir at the same
temperature β−1, i.e., peq(T ) = e

−βH (�;λtf )

Z(β;λtf ) , where we invoke
the concept of an ideal superbath, implying that no work is
done through the process of coupling [10]. From Eq. (21), one
can directly calculate

D[peq(0)‖peq(T )] = −β
〈
H

(
�; λti

)〉 + βF
(
β; λti

)
−βF

(
β; λtf

)+ β
∑
m

peq(0)H
(
�; λtf

)
,

(22)

where we have also used the relation F (β; λ) =
−β−1 ln Z(β; λ). Using Eq. (16) now for the equilibrium distri-
butions rather than the nonequilibrium steady states, we obtain
the relation

∑
m peq(0)H (�; λtf ) = ∑

m peq(T )H (�; λtf ) =
〈H (�; λtf )〉. By substituting this relation for the last term
on the right-hand side of Eq. (22) and also using 〈W 〉 =
〈H (�; λtf )〉 − 〈H (�; λti )〉 due to the conservation of total
energy, we finally obtain Eq. (21), i.e., D[peq(0)‖peq(T )] =
β(〈W 〉 − �Feq) = βWdiss.

As an illustrative example, we consider the free expansion
of an ideal gas from a volume V/2 to a final volume V , with
both states being at equilibrium at temperature β−1 in accor-
dance with the scenario above. The Hamiltonian for the free
expansion is time independent, i.e., 〈H (�; λti )〉 = 〈H (�; λtf )〉
so that 〈W 〉 = 0. The relative entropy D[peq(0)‖peq(T )] is
equal to ln(Z(β;λtf )

Z(β;λti
) ), where we have used the time independence

of the Hamiltonian and the normalization
∫

d�peq(0) = 1.
Note that we now use the continuous version of the relative
entropy expression. The ratio of the final and initial partition
functions can be calculated as

Z(β; λtf )

Z
(
β; λti

) = V
∫

d3p exp(−βp2/2m)(
V
2

) ∫
d3p exp(−βp2/2m)

= 2. (23)
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Therefore the relative entropy D[peq(0)‖peq(T )] between
the initial and final equilibrium states is then equal to ln 2.
Using Eq. (21), we see that the dissipated work Wdiss is equal
to (β−1 ln 2), which is greater than zero, as expected, since
the process of free expansion is irreversible. The value of
the dissipated work can directly be checked through Wdiss =
〈W 〉 − �Feq , noting that the average work 〈W 〉 is zero. Then,
Wdiss is equal to (−�Feq), which is again equal to (β−1 ln 2).
Note that one does not need to use the constraint in Eq. (16) for
this particular example owing to the fact that the Hamiltonian
is time independent.

Although we have only considered transitions between
equilibrium states above, one can use the nonequilibrium
Landauer principle [13] to include, for example, the transition
from an initial equilibrium state to a final nonequilibrium one.
Hence, one can write Eq. (20) as

�Seq − D[p(T )‖peq(T )] = �Stot, (24)

where the term D[p(0)‖peq(0)] is zero since the system
is initially at equilibrium. One has to keep the right-hand
side of the equation above as �Stot since the final state is
not at equilibrium any longer. In other words, one does not
consider only the transitions between the equilibrium states,
and consequently, boundary terms must be included too [see
in particular Eqs. (37)–(39) and (42) in Ref. [16]]. Therefore,
�Stot cannot be equal to �Seq in general, as we had in Eq. (21).
However, the total entropy �Stot is always non-negative [13],
i.e., �Stot � 0, implying

�Seq � D[p(T )‖peq(T )]. (25)

This expression was recently obtained by Vaikuntanathan
and Jarzynski [12] for the relation between the dissipation
and the lag, where they have used βWdiss instead of its equal
�Seq [see Eq. (21) above]. Finally, following Ref. [12] [see
in particular the section below Eq. (10) in Ref. [12]], one can
write Eq. (25) as

�Seq � D[p(T )‖p̃eq(0)], (26)

where the tilde denotes the reverse process so that the initial
state of the system during the reverse process is the final
equilibrium state, i.e., peq(T ) = p̃eq(0). This last relation was
obtained by Kawai et al. [9,10] and relates the dissipation
to the time reversal asymmetry. Equation (26), on the other
hand, relates the change in equilibrium entropies to the
time-reversed process.

III. EXAMPLES

Before proceeding, we would like to note that the results
of the previous section are valid in the continuous case even
though our formalism has been, in general, discrete so far.
As an illustrative model, we first consider a driven Brownian
particle on a circle [17,18],

ẋ = ut +
√

2Dξ , (27)

where ut is the time-dependent periodic drift and D is
the time-independent diffusion constant, also assuming x ∈
[0,1]. This model represents a colloidal particle moving in
a periodic potential, and it is used to study the violation of
the fluctuation-dissipation theorem in nonequilibrium steady

states with external driving [18]. Note that the force (and
hence the potential) is directly proportional to the periodic
drift term in stochastic thermodynamics [see Eq. (15) in
Ref. [17]]. The stationary solution for the driven Brownian
particle is equal to unity for any value of the control parameter,
i.e., pst (0) = pst (T ) = 1 [17,18]. In other words, once the
Brownian particle has relaxed to this steady state with pst = 1,
it remains so despite any external driving. Our main result, i.e.,
Eq. (19), yields zero entropy change for this model. Note that
this result was also observed in Ref. [17] for the nonadiabatic
entropy change using the Fokker-Planck formulation of the
stochastic thermodynamics once the steady-state distribution is
reached, rendering the excess entropy contribution redundant
from there on for the transitions between the nonequilibrium
steady states.

A nontrivial example is the Van der Pol oscillator subject
to noise. Then the Ito-Langevin type stochastic equation reads

ẋ = v, v̇ + (a + bE)v + x = η(t), (28)

where a and b are the controllable linear and fixed nonlinear
friction coefficients, respectively [22]. The term E denotes,
setting the mass and the angular frequency equal to unity for
simplicity, the energy of the oscillation, i.e., E = 1

2 (v2 + x2).
The random noise is defined to be Gaussian with the noise
intensity

√
2D, i.e., 〈η(t)〉 = 0,〈η(t)η(t ′)〉 = 2Dδ(t − t ′). We

assume that we can control the change in the linear frictional
term, i.e., a = γ − λ and γ 	 bE

2 , where λ denotes the control
parameter and γ is the linear friction coefficient by default. The
most general stationary solution of the noise-driven Van der
Pol oscillator then reads

pst (λ) = exp

(−aE − 1
2bE2

D

)
, (29)

apart from the appropriate normalization [22]. From here on,
we use the energy representation, since it is equivalent to the
phase space integration for the simple harmonic oscillator case.
We now assume that the physical system initially described
by the stationary distribution pst (0) with a zero value of the
control parameter evolves into pst (T ) with λB = γ through a
protocol controlled by an external agent. The initial stationary
distribution corresponding to λ = 0 is given by

pst (0) = γ

D
exp

(
− γE

D

)
, (30)

where we have used γ 	 bE
2 . The final steady state with λ = γ

reads

pst (T ) =
√

2b

πD
exp

(
− b

2D
E2

)
. (31)

The left-hand side of Eq. (16) can now be calculated as
[ 1

2 ln( 2b
πD

) − 1
2 ], whereas the right-hand side of the same

equation yields [ 1
2 ln( 2b

πD
) − Db

γ 2 ]. Therefore, one explicitly
obtains from Eq. (16)

γ 2

2Db
= 1 . (32)

Incorporating the relation above into Eq. (19) is tantamount to
including the excess entropy change into the system entropy.
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Equation (19) by itself explicitly yields

�S =
∫ ∞

0
dE

γ

D
exp

(
− γ

D
E

)
ln

⎡
⎣ γ

D
exp

(− γ

D
E

)
√

2b
πD

exp
(− b

2D
E2

)
⎤
⎦ ,

(33)

which, after integration, becomes

�S = ln

(√
π

γ 2

2Db

)
− 1 + Db

γ 2
. (34)

Including the relation given by Eq. (32), which is tanta-
mount to including the excess entropy change in the system
entropy, we obtain

�Sst = ln(
√

π ) − 1 + 1
2 , (35)

which finally yields

�Sst = D(pst (0) ‖ pst (T )) ≈ 0.07, (36)

which is indeed greater than zero, thereby indicating the irre-
versibility of the transition between these two nonequilibrium
steady states. The smallness of this value is expected since
the departure from the compared steady state with the zero
control parameter is given with respect to the steady state
corresponding to λB = γ , where γ is itself supposed to be
small in all realistic cases.

IV. CONCLUSIONS

To summarize, the system entropy change for the transitions
between nonequilibrium steady states arbitrarily far from
equilibrium is obtained in terms of the relative entropy
of the concomitant steady-state distributions. This result is
independent of the constituting process in the sense that

steady states can result either due to the nonconservative
driving or through the presence of multiple reservoirs with
different thermodynamic properties. We also note that the same
expression for the transition between nonequilibrium steady
states, i.e., Eq. (19), can be used for the transitions between
equilibrium states only by replacing the stationary distributions
with the corresponding equilibrium ones. Considering only
the transitions between the equilibrium states, our result given
by Eq. (21) implies the relations obtained in Refs. [9,10,12].
However, these previous relations considered the dissipated
work as a measure of the second law, while we have related
them to the entropy change between the equilibrium states
through relative entropy expression.

It is worth noting that one should not confuse the main
result of this paper given by Eq. (19) with the well-known
similar expression D[p(t)‖pst (λ)] [16]. This expression can be
considered as a proof of convergence to steady state and relates
the actual and the corresponding steady-state distributions,
whereas Eq. (19), on the other hand, relates two distinct steady
states. In this context, we also note that a new approach has
recently been introduced by defining a novel state function
information free energy which also includes the adiabatic term
in nonequilibrium thermodynamics [23].

Finally, we remark that the dissipated work formula given
by Eq. (21) in this work is obviously restricted to the systems
attaining equilibrium at the same temperature after the driving
of the control parameter is finalized, and more progress is
needed to derive such relations in the case of heat conducting
systems [24]. We hope that in the future our results can
be experimentally tested, e.g., by using the Van der Pol
oscillator studied in this work or a motor protein coupled to an
ATP-regenerating system such that the motor protein forms a
nonequilibrium steady state [25].
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