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Role of delay in the mechanism of cluster formation
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We study the role of delay in phase synchronization and phenomena responsible for cluster formation in
delayed coupled maps on various networks. Using numerical simulations, we demonstrate that the presence
of delay may change the mechanism of the unit to unit interaction. At weak coupling values, the same parity
delays are associated with the same phenomenon of cluster formation and exhibit similar dynamical evolution.
Intermediate coupling values yield rich delay-induced driven cluster patterns. A Lyapunov function analysis sheds
light on the robustness of the driven clusters observed for delayed bipartite networks. Our results reveal that delay
may lead to a completely different relation, between dynamical and structural clusters, than that observed for the

undelayed case.
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Studying the impact of network topology on dynamical
processes is of fundamental importance for understanding the
functioning of many real world complex networks [1]. The
dynamical behavior of a system depends on the collective
behavior of its individual units. One of the most fascinating
emergent behaviors of interacting chaotic units is the observa-
tion of synchronization [2]. In general, synchronization may
lead to more complicated patterns including clusters [3-5].
The interplay between the underlying network structure and
dynamical clusters has been the prime area of focus for
the past two decades [6]. Furthermore, a communication
delay naturally arises in extended systems [7]. A delay gives
rise to many new phenomena in dynamical systems such as
oscillation death, stabilizing periodic orbits, enhancement or
suppression of synchronization, chimera state, etc. [8—14].

In this Rapid Communication, we study the impact of
delay on the phenomenon of phase synchronized clusters
in coupled map networks. We investigate the formation
of clusters on various networks, namely, one-dimensional
(1D) lattice, small-world, random, scale-free, and bipartite
networks [15], and provide a Lyapunov function analysis for
bipartite networks to explain the possible reasons behind the
role of a delay on synchronized clusters. So far, studies on
delayed coupled dynamical systems have mostly concentrated
on a global synchronized state, except a few recent studies
which have focused on pattern formation or clustered states
[4,5,16,17]. These studies have revealed that delay emulates
qualitative changes in a clustered state, whereas the mechanism
of delayed unit to unit interactions still needs to be investigated.

Previous studies on undelayed coupled systems have iden-
tified two different phenomena for synchronization, namely,
the driven (D) and the self-organized (SO) [3]. SO (D)
synchronization refer to the state when clusters are formed
because of intracluster (intercluster) couplings. Here, we report
that a delay can play a crucial role in the formation of clusters
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as well as the phenomenon behind it. The formation of delay-
induced synchronized clusters may be because of intercluster
couplings, instead of coupling between synchronized units
[5,16]. Introduction of a delay may result in a transition from
D to SO synchronization or vice versa. Furthermore, our
studies demonstrate a delay-induced emergence of dynamical
phase synchronized D patterns. These patterns are stable
with time and are dynamical with respect to a change in
7. A delayed bipartite network leads to a transition from
SO to D synchronization in an intermediate coupling range,
irrespective of t.

Here we take networks with a less average degree (N¢ ~
N), leading to phase synchronized clusters instead of a
complete synchronized state which usually spans all the nodes.
We consider a network of N nodes and N, connections
between the nodes. Let each node of the network be assigned
a dynamical variable xti=1,2,...,N. The dynamical evo-
lution is defined by the well known coupled maps [18]

N
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Here A is the adjacency matrix with elements A;; taking
values 1 and O depending upon whether or not there is a
connection between i and j. k; = Z;V:] A;; is the degree
of the ith node and ¢ is the overall coupling constant. In
the present investigation we consider a homogeneous delay
7. The function f(x) defines a local nonlinear map, and
g(x) defines the nature of the coupling between the nodes.
We consider phase synchronization as described in Ref. [19].
As the network evolves, it splits into several synchronized
clusters. In order to have a clear picture of SO and D
behavior, we use fiywa and finer measures for intra- and
intercluster couplings as follows [3]: finra = Ninwra/N. and
finter = Ninter/ Nc, Wwhere N, is total number of connections
in the network, and N, and Njye are the numbers of
intra- and intercluster couplings, respectively [20]. We evolve
Eq. (1) starting from random initial conditions, and study
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the dynamical behavior of nodes after an initial transience.
First let us consider the local dynamics being governed by
the logistic map f(x) = 4x(1 — x), and the coupling function
gx) = f(x).

The undelayed coupled maps on all model networks we
have considered yield dominant D clusters in the range
0.16 < & < 0.25. For the rest of the ¢ values, coupled maps on
1D lattice and small-world networks exhibit no phase synchro-
nization, except for ¢ 2 0.74 having mixed clusters with very
small values of finer and finga [Figs. 1(a) and 1(b)]. In this ¢
range scale-free and random networks favor synchronization,
yielding better cluster formation than the corresponding
regular and small-world networks [Figs. 1(c) and 1(d)], while
bipartite networks lead to ideal SO synchronization for 0.45 <
& < 0.85 and ideal D synchronization for higher ¢ values [3].
Upon introducing a delay of 7 =1 in Eq. (1), after very
small ¢ values, for which there is no phase synchronization
for the undelayed case [black in Figs. 1(a)-1(d)], we get SO
clusters in the region 0.13 < ¢ < 0.2, as seen from the white
regions in Figs. 1(b) and 1(d). For most of the ¢ values in this
region, the coupled dynamics exhibits a periodic evolution
with a period depending upon t. For a further increase in
&, in the middle coupling range, the 1D lattice, small-world,
scale-free, and random networks lead to an increase in
D synchronization in 0.4 < e < 0.7, whereas for complete
bipartite networks, ideal D synchronization is achieved for
almost all ¢ values in this range. For 0.85 < ¢ < 1.0, the
delayed case exhibits a very small (almost negligible) cluster
formation compared to the undelayed case, hence indicating
a suppression of synchronization for all the networks except
for bipartite networks forming ideal D clusters. For 7 = 2, the
lower ¢ range coerces the formation of dominant D clusters,
similar to the undelayed case. As ¢ increases, 1D lattice
and small-world networks lead to mixed clusters, whereas
scale-free and random networks lead to dominant D clusters.
Bipartite networks emulate ideal D synchronization. With a
further increase in 7, at a lower ¢ range, odd t leads to a similar
behavior as for t = 1 and even 7 exhibits similar behavior as
for t =0 and v = 2. For the intermediate ¢ range there is
a suppression in synchronization. Higher ¢ values manifest
no cluster formation, as illustrated by the black regions in
Fig. 1 for all networks except the bipartite, which form ideal
D clusters for ¢ 2 0.4 for all .

The above description boils down to the following: There is
a € region which demonstrates a change in the phenomenon of
cluster formation with a change in t. The zero and even delays
imply dominant D clusters, whereas odd delays imply ideal
or dominant SO clusters. Moreover, odd delays lead to SO
clusters with a periodic evolution, whereas zero and even de-
lays lead to a D cluster with periodic, quasiperiodic, or chaotic
evolution [21]. Note that the measure of phase synchronization
considered here satisfies the metric properties, but does not
include antiphase synchronization and consequently nodes be-
ing antiphase synchronized would end up in different clusters.
However, antiphase or phase shift synchronization is not the
only cause behind the separation of nodes in clusters [21].

Though the nodes in various clusters display a rich dynam-
ical evolution, a simple analysis for the periodic synchronized
state, for example, bipartite networks in the lower & region,
provides a basic understanding of different behaviors indicated
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FIG. 1. Phase diagram of phase synchronization patterns in
system (1) for a 1D lattice with N = 50, (k) = 4. Grayscale encoding
represents values of (a) finer and (b) finra. The local dynamics is
governed by a logistic map f(x) = 4x(1 — x) and a coupling function
g(x) = f(x). The figure is obtained by averaging over 20 random
initial conditions. The regions, which are black in both (a) and (b),
correspond to states of no cluster formation. Both subfigures with gray
shades correspond to clusters having both inter- and intracouplings.
The regions in (a), which are lighter as compared to the corresponding
¢ and t values in (b), refer to dominant D phase synchronized clusters,
and the reverse refer to dominant SO phase synchronized clusters.
White regions in (a) and (b) refer to ideal D or ideal SO clusters,
respectively. The regions, which are dark gray in (a) and black in
(b) or vice versa, correspond to states where many less clusters are
formed. (c) and (d) are for scale-free and (e) and (f) are for bipartite
networks and demonstrate the same as (a) and (b), respectively.

by odd and even delays. In this ¢ region, the coupling term
having a delay part yields

f(p)
f(p2)

implying that the discrete time delay considered here intro-
duces a difference in the evolution of the nodes [Eq. (1)]
depending upon the parity of delay, and thus leading to a
particular behavior for zero and even delays but a different
behavior for odd delays.

Furthermore, a change in 7 leads to a change in SO
or D cluster pattern. A pattern refers to a particular phase
synchronized state, containing information about all the pairs
of the phase synchronized nodes distributed in the various
clusters. A change in the pattern refers to the state when
members of a cluster get changed as an effect of delay. For
some cases we observe ideal D or SO clusters. Ideal SO
synchronization refers to a state when clusters do not have
any connection outside the cluster, except one. The ideal D
synchronization refers to the state when clusters do not have
any connections within them, and all connections are outside.

Next we focus on the ¢ range where the delayed evolution
leads to ideal D clusters for bipartite networks, and dominant D
clusters for other networks. In bipartite networks, a division of
nodes into ideal D clusters is unique, whereas for other network
structures there can be various possible ways in which one
can distribute nodes to form ideal D (for an average degree
of two) or dominant D (for larger average degree) clusters.
Figure 2 plots snapshots of clusters for different t by keeping
all other parameters the same. It indicates that with a change
in 7, both nodes forming clusters as well as the size of the

if T = 0 and even,

fat—o) = { if 7 is odd,
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FIG. 2. (Color online) A typical behavior of coupled dynamics
illustrating D patterns observed with changing t. Squares represent
clusters, diagonal dots represent freely evolved nodes, while off-
diagonal dots imply that the two corresponding nodes are coupled
(i.e., A;; = 1). In each case the node numbers are reorganized so that
the nodes belonging to the same cluster are numbered consecutively.
The example presents a scale-free network with N = 50 and ¢ = 0.6.
For T = 0, very few nodes are forming a cluster. For r = 1, 3, and 5,
nodes form dominant D clusters, whereas 7 = 2 and 4 yield very few
nodes forming clusters of an ideal D type.

clusters are changed. Note that the dynamical evolution here
may be periodic, quasiperiodic, or chaotic. In this region, for
a particular delay value, the clusters are almost stable with
time evolution, with few nodes of the floating type [3]. But
a change of 7 has a drastic impact on cluster patterns, and
may lead to entirely different sets of nodes forming clusters.
Hence D patterns obtained in this range are dynamic with
respect to a change in . However, the phenomenon behind the
pattern formation does not change, and the D mechanism is
mainly responsible for the cluster formation. For this ¢ range, a
delayed evolution on a bipartite network yields ideal D clusters
for all T values we have investigated.

The aforementioned can be explained further using the
example of bipartite networks. A Lyapunov function analysis
can be carried out for the delayed case in a very similar
fashion as for T = 0 described in Ref. [22], and for a pair
of synchronized nodes on a bipartite network can be written as

2
Vijt+1) = |:(1 —OLf(xi(0) — fx;@))] + Ng

N/2

N 5 2
x Y g(x,-(r—r))—ﬁ‘SZg(x,-(r—r))}.

J=N/241 i=1

For an ideal D state, the synchronization between two nodes
which are not directly connected is independent of the delay
terms as the coupling terms cancel out, and only depends on
e. Hence, delay does not affect synchronization between the
nodes which are not directly connected [22], and only com-
prehends its presence for those which are directly connected.
As a consequence, depending upon ¢ and t, it may either
enhance or destroy the synchrony between them. For instance,
in the lower ¢ range odd delays lead to an enhancement of
coordination between connected nodes, yielding a transition
to SO clusters, whereas in middle ¢ range, delay destroys
synchronization between the connected nodes, yielding a D
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FIG. 3. (Color online) Three-node schematic diagram illustrating
the impact of delay. Arrows depict the direction of information flow as
governed by Eq. (1). The dashed lines show the flow of information
from the (# — 2)th time step. For 7 = 0, the evolution of all nodes
(solid orange circles) receives information from the second node
(left panel), whereas in the presence of delay, the evolution of the
connected nodes at a particular time does not involve any common
term (right panel). For both panels, the first and third nodes are
connected with the second one, leading to the construction of the
smallest possible bipartite network.

cluster state. As indicated in Fig. 3, for = 0, the common
term in the evolution equation for all the nodes may be the
reason for global synchronization, whereas for v > 0 the
network gets divided into two parts, with one set of nodes
having completely different terms in its evolution equations
than those of the second set. An important inference of our
results is that in the presence of delay, the dynamical evolution
on the bipartite network identifies the underlying network
structure and gives rise to ideal D clusters for almost all the
couplings for ¢ 2 0.4. Note that a previous result on delayed
bipartite networks concludes that they would lead to the worst
synchronization [9], but D clusters observed here very clearly
reveal a very good synchronizing power of the same.

In order to demonstrate the robustness of the above
phenomena, we also present results for coupled circle maps. In
Eq. (1), the local dynamics is defined by the circle map f(x) =
x4+ o+ (p/27)sin(2r x), with parameter values taken in a
chaotic regime. Figure 4 plots the examples demonstrating
the S-D transition, and, furthermore, different t values are
associated with a change cluster pattern as manifested by
coupled logistic maps.

We have studied the effects of delay on the phenomena
of phase synchronized cluster formation in coupled map
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FIG. 4. (Color online) Phase synchronized patterns for coupled
circle maps on scale-free networks with N = 50, (k) = 2, g(x) = x,
and ¢ = 0.24.
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networks. Depending upon ¢ values, a change in T may lead
to a change in the phenomenon of cluster formation, with
delays of the same parity being associated with the same
phenomenon, or favoring D clusters for a delayed case over
the undelayed one which in an extreme case of bipartite
networks demonstrates the robustness of the D mechanism
against change in 7. Furthermore, different v values may
lead to an entirely new pattern of the cluster. For example,
in the middle ¢ range, different t values lead to different
dynamical patterns of dominant D type, whereas lower € values
produce dynamical patterns of dominant D or dominant SO
type.

While an enhancement or suppression of complete syn-
chronization as an introduction of delay was already well
investigated in coupled map models, the mechanisms of
the delayed unit to unit interaction were lacking. Delay
may enhance the coordination among the connected nodes,
leading to an enhancement of synchronization identifying the
underlying connection topology, which had been the main
theme of a few recent studies, but the observation of a D

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 87, 030902(R) (2013)

mechanism behind the cluster formation in delayed coupled
networks is an insight suggesting that delay-induced synchro-
nization may lead to a completely different relation between
functional clusters and topology than relations observed for
the undelayed evolution. Our study draws its significance in
understanding synchronization in real world networks such as
neural networks, where clusters are formed due to delayed
interactions between neurons [23] and may be of D type
[24]. An analysis presented for bipartite and periodic cases
helps in discerning a possible impact of T on the coupled
evolution in such systems. Moreover, a change in patterns
of neural activities has been found to be related with brain
disorders such as Alzheimer’s [25]. Research in the dimension
of delay-induced patterns might propagate a finer apprehension
of the origin and treatment of these diseases. At a fundamental
level, a study of phase shift synchronization [2], based on the
phase synchronization measure considered here, is an aspect
to explore in future [26].
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