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Abstract. This paper investigates the problem of exponentially asymptotic synchronization of complex
time-delay dynamical networks with multi-links and structure uncertainty. The structure uncertainty be-
longs to the uncertain coupling strength and unknown topologies structures, which appear typically in
networks environment. In order to synchronize complex networks with structure uncertainty, the adaptive
controller is designed, and some general synchronization criteria of the controllers are proposed and proved
based on the Lyapunov stability theory and the Lipschitz hypothesis. Finally, numerical simulations of
dynamical networks with different topological structures are presented to demonstrate the feasibility and
the effectiveness of the results.

1 Introduction

Generally speaking, a complex network is a large set of in-
terconnected nodes, in which a node is a fundamental unit
with specific contents. With the small world (SW) prop-
erty and the scale-free (SF) property being found, recently,
the study of various complex networks has attracted in-
creasing attention from researchers in various fields such
as physics, mathematics, engineering, biology and sociol-
ogy [1–5]. Synchronization in networks is a very common
phenomenon in real systems. Investigation of synchroniza-
tion in networks has drawn great attention recently [6–15].
Synchronization in specific kinds of complex networks such
as small-world networks, random networks and scale-free
networks has been achieved [16–25].

Most previous studies assume that interaction
strengths or link weights can be exactly measured. Conse-
quently, the synchronization problem is significantly sim-
plified, naturally translating into a spectral graph theo-
retic problem, e.g. the spectrum of the Laplacian matrix
of the network [16,20]. However, the assumption that the
link weights can be exactly measured is not realistic in
many real-world networks, because the measurement error
and the uncertainties cannot be avoided in real systems.
The study of the synchronization problem with structure
uncertainty becomes an interesting and challenging topic.

a e-mail: li lixiang2006@yahoo.com.cn

Multi-links means that there are more than one
connection between two nodes and each of them has
its own property. For instance, there are relationship
networks, transportation networks, world wide web,
etc. [1–4]. Figure 1 shows a transportation network as an
example of a network with multi-links, which is made up
by combining the corresponding airline network, railway
network and highway network [26]. When dealing with
these complex networks with multi-links, we can split
them into sub-networks. There are many different ways
to split a complex network with multi-links. The most
common principle of splitting them is based on the prop-
erty of the connections. For most of the networks, the
phenomenon that there are different transmission speeds
between connections is widespread. For a transportation
network, the transmission speed is different among air-
line network, railway network and highway network. In
most situations, time-delay is an important aspect since
time-delays of different connections are often not all iden-
tical [27–29]. Therefore, time-delay is a proper parameter
that could be used to split the networks.

In our previous work [26], time-delay was introduced
to split complex dynamical networks into sub-networks,
upon which a model of complex dynamical networks with
multi-links has been constructed. Asymptotic synchro-
nization results of complex networks were also given in ref-
erence [26]. The speed of convergence towards synchrony
provides a fundamental collective time scale for synchro-
nizing networks [30]. For many real network systems, it
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Fig. 1. Transportation network and its division. According
to different transmission speeds, the transportation network
can be split into airline network, railway network and highway
network.

equally matters how fast the units synchronize or whether
the network interactions fail to coordinate the unit’s dy-
namics on time scales [30]. However, the important issue
of synchronization speed for complex dynamical networks
with multi-links has so far received little attention. More-
over, we often know very little information on the network
structure, which makes network synchronization design
very difficult. To overcome these difficulties, this paper
will further investigate the adaptive feedback synchroniza-
tion of complex dynamical networks with multi-links. In
particular, we obtain several novel criteria for globally ex-
ponentially asymptotic synchronization of uncertain com-
plex time-delay dynamical networks with multi-links. The
results are proved to be able to guarantee different expo-
nential convergence rates for the controlled states as well
as the uncontrolled states of the error systems. The pro-
posed method is efficient to control the convergence rates
of synchronization and easy to be verified in engineering
applications.

2 Model of complex time-delay dynamical
network with multi-links

We consider a complex dynamical network model con-
sisting of N identical nodes with linear couplings [31,32],
which is characterized by

ẋi = f(xi) +
N∑

j=1

aijHxj , i = 1, 2, . . . , N, (1)

where xi = (xi1, xi2, . . . , xin)T is the state vector of the
ith node, f is a smooth nonlinear vector field, H is the
inner-coupling matrix and A = (aij)N×N represents the
coupling strength and the topological structure of the net-
work. If there is a connection from node i to node j (j �= i),
then the coupling weight aij �= 0; otherwise, aij = 0.

Note that the inner coupling matrix H ∈ Rn×n is a
constant matrix linking the coupled variables. In general,
H is selected as an identity matrix, and therefore it is
omitted in our following models.

Networks with multi-links are very common in the
real world. For a transportation network, the transmission
speed is different among airline network, railway network
and highway network which could be considered as that
the connections of transportation network may have dif-
ferent time-delays. Recently in reference [26], time-delays
were introduced to split the complex dynamical network
into sub-networks in order to describe the time-delay prop-
erty of the networks with multi-links, upon which a model
of complex time-delay dynamical networks with multi-
links has been generalized from the network model (1),
which is described as follows:

ẋi = f(xi) +
N∑

j=1

a0
ijxj(t) +

N∑

j=1

a1
ijxj(t − τ1) + . . .

+
N∑

j=1

am−1
ij xj(t − τm−1), i = 1, 2, . . .N, (2)

where xi = (xi1, xi2, . . . , xin)T ∈ Rn is the state vector of
the ith node, f : Rn → Rn is a smooth nonlinear func-
tion, Al = (al

ij)N×N ∈ RN×N(l = 0, 1, . . . , m − 1) is the
coupling strength and the topological structure of the lth
sub-network, τl(l = 0, 1, . . . , m−1) is time-delay of the lth
sub-network compared to the zero sub-network (τ0 = 0)
which is without time-delay. The definition of al

ij is that
in the lth sub-network, if there is a connection between
node i and node j (j �= i), then al

ij �= 0; otherwise,
al

ij = 0, and we define al
ii = −∑N

j=1,j �=i al
ij .

In dynamical network (2), some sub-networks may
have small world characteristics, others random charac-
teristics, etc. Taking into account different characteristics
of each sub-network, the complex time-delay dynamical
networks with multi-links may present some interesting
dynamical phenomena.

3 Synchronization of uncertain time-delay
dynamical networks with multi-links

In this paper, we consider the synchronization problem
of network (2) with structure uncertainty. The structure
uncertainty means that Al(l = 0, 1, . . . , m − 1) are un-
known or uncertain coupling configuration matrix. Note
that, for most random networks, the degree distribution
of the networks can be measured according to some statis-
tics, although exactly known each link is improbable. So
the coupling configuration matrices Al(l = 0, 1, . . . , m−1)
can be random matrices with certain distribution.

Assumption 1: there always exist positive constants
ki > 0 satisfying the following Lipschitz condition:

||f(y) − f(x)|| ≤ ki||y − x||, (3)

where x and y are the time-varying vectors.
Many dynamical systems meet the Lipschitz condition

of assumption 1, especially chaotic systems, such as Chen’s
system, the Lorenz system, Chua’s circuit and the Rössler
system (cf. [32,33]).
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We take the dynamical network given by equation (2)
as the driving network, and the response network with a
control scheme which is given by:

ẏi = f(yi) +
N∑

j=1

ã0
ijyj(t) +

N∑

j=1

ã1
ijyj(t − τ1) + . . .

+
N∑

j=1

ãm−1
ij yj(t − τm−1) + ui, (4)

where i, j = 1, 2, . . . , N , yi = (yi1, yi2, . . . , yin)T ∈ Rn is
the state vector of the ith node, ãl

ij ∈ Rn is the estimation
of al

ij , l = 0, 1, 2, . . . , m−1, f and τl(l = 1, . . . , m−1) have
the same meaning as those in equation (2), and ui is the
controller for node i to be designed.

Definition. Networks (2) and (4) are globally expo-
nentially asymptotically synchronous if there exist con-
stants Mi > 0 and α > 0, such that for any initial condi-
tion, we have:

||ei(t)|| ≤ Mi exp(−αt), (5)

where i = 1, 2, . . . , N and ei(t) = yi − xi is the synchro-
nization error.

The method of adaptive control based on Lyapunov
stability theory has been considered widely and proved
to be effective to solve problems about synchroniza-
tion [34–37]. Now, we discuss the synchronization of dy-
namical networks (2) and (4) based on Lyapunov stability
theory. The aim of this paper is to design a proper adap-
tive controller ui and the principle of parameter estima-
tion so that ||xi − yi|| → 0 as t → ∞.

Theorem 1: let the controller u = ε(y(t) − x(t)),
and the feedback strength ε = −L. The adaptive laws
of ãl

ij(l = 0, 1, . . . , m − 1) are chosen as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

˙̃a0
ij = −α0

ije
T
i (t)yj(t) exp(μt),

˙̃a1
ij = −α1

ije
T
i (t)yj(t − τ1) exp(μt),
...

˙̃am−1
ij = −αm−1

ij eT
i (t)yj(t − τm−1) exp(μt),

(6)

where i, j = 1, 2, . . . , N , μ ≥ 0 is a sufficiently small
positive constant and αl

ij is the arbitrary constant for
l = 0, 1, . . . , m − 1. If assumption 1 holds, and if there
exists a positive number L such that

pi

{
(ki +

1
2
μ − L + (a0

ii)
+) +

n∑

j=1,i�=j

|a0
ij |

+
1
2
(exp(μτ1) + 1)

n∑

j=1

|a1
ij | + . . .

+
1
2
(exp(μτm−1) + 1)

n∑

j=1

|am−1
ij |

}
< 0, (7)

where (a0
ii)

+ = max{a0
ii, 0}, pi(i = 1, 2, . . . , N) is the pos-

itive constant and | . . . | means the sign of the absolute

value. Then the exponential synchronization is achieved
between the driving network (2) and the response net-
work (4) with

||ei(t)|| ≤ Mi exp(−0.5μt), (8)

where Mi > 0. For the proof of theorem 1, please see
Appendix for details.

Furthermore, if the state vector xi ∈ R and the smooth
nonlinear vector f : R → R, then we have the following
results.

Theorem 2: let the controller u = ε(y(t) − x(t))
and the feedback strength ε = −L. The adaptive laws
of ãl

ij(l = 0, 1, . . . , m − 1) are chosen as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

˙̃a0
ij = −α0

ijSgn(ei(t))yj(t) exp(μt),

˙̃a1
ij = −α1

ijSgn(ei(t))yj(t − τ1) exp(μt),
...

˙̃am−1
ij = −αm−1

ij Sgn(ei(t))yj(t − τm−1) exp(μt),

(9)

where i, j = 1, 2, . . . , N, and μ ≥ 0 is a sufficiently small
positive constant, and αl

ij is the arbitrary constant for
l = 0, 1, . . . , m − 1, Sgn(x) is the sign function which is
defined as follows:

Sgn(x) =

⎧
⎪⎨

⎪⎩

−1 if x < 0

0 if x = 0

1 if x > 0.

(10)

If assumption 1 holds, and if there exists a positive number
L such that

pi

{
[ki + μ − L + (a0

ii)
+] +

N∑

i=1,j �=i

|a0
ij | + . . .

+ (exp(μτ1) + 1)
N∑

j=1

|a1
ij | + . . .

+ (exp(μτm−1) + 1)
N∑

j=1

|am−1
ij |

}
< 0, (11)

where (a0
ii)

+ = max{a0
ii, 0} and pi(i = 1, 2, . . . , N) is the

positive constant. Then the synchronization is achieved
between the driving network (2) and the response net-
work (4). Moreover,

|ei(t)| ≤ Mi exp(−μt), (12)

where Mi > 0. For the proof of theorem 2, please see
Appendix for details.

Through theorems 1 and 2, we succeed to achieve
globally exponentially asymptotically synchronization of
uncertain complex time-delay dynamical networks with
multi-links.
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Fig. 2. Topological structure of the network for example 1.

4 Numerical simulations

In this section, we present several numerical simulation
examples to illustrate the effectiveness of the proposed
methods.

Example 1: our first example is to consider a five-
node network which is shown in Figure 2. The network is
composed of two different sub-networks. Sub-network A0

is the one without time-delay, while the other sub-network
A1 has the time-delay τ1 = 0.05. So we get the following
weight configuration matrices:

A0 =

⎡

⎢⎢⎢⎣

−2 1 0 0 1
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
1 0 0 1 −2

⎤

⎥⎥⎥⎦ , A1 =

⎡

⎢⎢⎢⎣

−4 1 1 1 1
1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1

⎤

⎥⎥⎥⎦.

Generally, chaotic systems are more difficult to synchro-
nize than non-chaotic ones. Many different chaotic systems
have been investigated in the past decades [38–40]. Here,
the famous Lorenz system is taken at the nodes of the
networks, and node i is described by:

⎡

⎣
ẋi1

ẋi2

ẋi3

⎤

⎦ =

⎡

⎣
−10 10 0
28 −1 0
0 0 − 8

3

⎤

⎦

⎡

⎣
xi1

xi2

xi3

⎤

⎦ +

⎡

⎣
0

−xi1xi3

xi1xi2

⎤

⎦. (13)

According to equation (2), we have the following driving
network

ẋi = f(xi) +
5∑

j=1

a0
ijxj(t) +

5∑

j=1

a1
ijxj(t − τ1), (14)

where xi = (xi1, xi2, xi3)T , i = 1, 2, . . . , 5.
And the response network is:

ẏi = f(xi) +
5∑

j=1

ã0
ijyj(t) +

5∑

j=1

ã1
ijyj(t − τ1), (15)

where yi(t) = (yi1(t), yi2(t), yi3(t))T , i = 1, 2, . . . , 5.
According to theorem 1, we can construct the following

feedback parameter adaptive laws:
⎧
⎪⎪⎨

⎪⎪⎩

−ε = L = 2501,

˙̃a0
ij = −α0

ijei(t)T yj(t) exp(0.0035t),

˙̃a1
ij = −α1

ijei(t)T yj(t − τ1) exp(0.0035t),

(16)

where i, j = 1, 2, . . . , 5.

Fig. 3. (Color online) Synchronization errors between the driv-
ing and the response networks for example 1, where the time-
delay τ1 = 0.05. The first panel is error ei1(t), the second panel
is error ei2(t), and the last panel is ei3(t).

It is clear that equation (7) is also satisfied with
pi = 1, ki = 71 (i = 1, 2 . . . , 5) and μ = 1

2 when L > 2500.
From theorem 1, we can conclude that the response net-
work is globally synchronous with the driving network.
The synchronization errors from the simulations are shown
in Figure 3.

Example 2: the second example is to consider a net-
work with six different sub-networks which have different
time-delays. The topological structure of the network is
shown in Figure 4. Assuming the network is composed of
four nodes, we can easily get the weight configuration ma-
trixes A0, A1, A2, A3, A4, A5, in which matrix A0 has no
time-delay, and matrix A5 has the maximal time-delay.
The weighted configuration matrices are described by:

A0 =

⎡

⎢⎣

−2 1 0 1
1 −2 1 0
0 1 −2 1
1 0 1 −2

⎤

⎥⎦, A1 =

⎡

⎢⎣

−3 1 1 1
1 −1 0 0
1 0 −1 0
1 0 0 −1

⎤

⎥⎦,

A2 =

⎡

⎢⎣

−1 0 1 0
0 −1 0 1
1 0 −1 0
0 1 0 −1

⎤

⎥⎦, A3 =

⎡

⎢⎣

0 0 0 0
0 −1 1 0
0 1 −2 1
0 0 1 −1

⎤

⎥⎦,

A4 =

⎡

⎢⎣

0 0 0 0
0 −2 1 1
0 1 −1 0
0 1 0 −1

⎤

⎥⎦, A5 =

⎡

⎢⎣

−1 1 0 0
1 −1 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎦.

We suppose that the dynamics at the node of the network
is a linear system whose states are expressed as ẋi = −2xi.

http://www.epj.org
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Fig. 4. Topological structure of the six-feature-edge network.
According to different time-delays, the original network can be
split into six sub-networks.

Fig. 5. (Color online) States of driving network and the syn-
chronization errors between the driving and the response net-
works for example 2, where τ1 = 0.05, τ2 = 0.1, τ3 = 0.15,
τ4 = 0.2 and τ5 = 0.25, respectively.

According to equation (2), we have the following driving
network:

ẋi = −2xi +
4∑

j=1

a0
ijxj(t) +

4∑

j=1

a1
ijxj(t − τ1) + . . .

+
4∑

j=1

a5
ijxj(t − τ5), i = 1, 2, 3, 4; (17)

where τ1 = 0.05, τ2 = 0.1, τ3 = 0.15, τ4 = 0.2 and
τ5 = 0.25, respectively.

Similarly as in example 1, we construct the corre-
sponding response network and the feedback parameters
adaptive control laws. Equation (7) is also satisfied with
pi = 1, ki = 6 (i = 1, 2, . . . , 4) and μ = 1

2 when L > 12.
From theorem 1, we can conclude that the response net-
work is globally synchronous with the driving network.
The states of the driving network xi(t) and the synchro-
nization errors ei(t) between the driving network and the
response network are shown in Figure 5.

Example 3: our third example is to consider the net-
work consisting of 50 nodes and describe the network us-
ing Lü systems. The network is composed of two different

0 0.005 0.01 0.015 0.02
−5

0

5

10

e i1(
t)

0 0.005 0.01 0.015 0.02
−5

0

5

10

e i2(
t)

0 0.005 0.01 0.015 0.02
−10

−5

0

5

t

e i3(
t)

Fig. 6. (Color online) Separate synchronous error variables
ei1(t), ei2(t), ei3(t) (1 ≤ i ≤ 50) of network with links own-
ing 2 properties. Both A0 and A1 are famous E-R random
network model, the connection probability among nodes is 0.3,
and τ = 0.01.

sub-networks which can be described as:

ẋi = f(xi) +
50∑

j=1

a0
ijxj(t) +

50∑

j=1

a1
ijxj(t − τ1), (18)

where τ1 = 0.05, and the node dynamical systems is:
ẋi = (−36xi1 + 36xi2; 20xi2 − xi1xi3; − 3xi3 + xi1xi2).

Assume that the structures of these two sub-networks
of (25) obey the random network model, i.e., the weight
configuration matrices A0 and A1 are random matrixes.
Similarly as in example 1 and example 2, we construct
the corresponding response network and the feedback pa-
rameters adaptive control laws, and select the parame-
ters as pi = 100, ki = 65 (i = 1, 2, . . . , 50), μ = 2.
When L > 2400, equation (7) is satisfied. From theo-
rem 1, we can conclude that the response network is glob-
ally synchronous with the driving network. Figure 6 plots
synchronous errors with connection probability 0.5, and
where the famous Erdös-Rényi random network model is
considered. Figure 7 plots synchronous errors with dif-
ferent connection probability 0.1, 0.4, 0.6 and 0.9, indi-
cating that the proposed method is effective in suppress-
ing the influence of the structure uncertainty. To be more
persuadable, sub-networks with scale-free structure and
small-world structure are also considered. Figure 8 plots
the synchronous errors with different sub-network models,
such as the E-R random network model, the B-A scale-free
network model and the small-world network model. From
Figure 6 to Figure 8, we attain that our theorem is feasible
in different uncertain network structure models.

From Figures 3 and 5–8, we can see that parameters pi

and μ influence the synchronization speed, i.e., the larger
these two parameters are, the faster the synchronization

http://www.epj.org


Page 6 of 9 Eur. Phys. J. B (2013) 86: 125

Fig. 7. (Color online) Synchronization errors ei(t) =
(ei1(t), ei2(t), ei3(t)) with different connection probability qi

among nodes, where (a) qi = 0.1, (b) qi = 0.4, (c) qi = 0.6,
(d) qi = 1. Both A0 and A1 are famous E-R random models,
and these two models have the same connection probability.

Fig. 8. (Color online) Synchronous errors ei1(t), ei2(t), ei3(t)
of different network models where τ = 0.01. (a) A0: B-A scale-
free model, A1: B-A scale-free model, (b) A0: B-A scale-free
model, A1: random network model and where l = 5, (c) A0:
random network model, A1: small-world model, (d) A0: small-
world model, A1: B-A scale-free model. For random networks,
the connection probability among nodes is 0.3. For scale-free
network, the initial graph is complete with three nodes, and
two edges are added in the network when a new node is intro-
duced. For small-world networks, each node in initial regular
ring lattice has K = 8 neighbors, and the rewiring probability
of each edge is 0.2.

speed is. Furthermore, we can see that whether A is cer-
tain or random, since we use the adaptive control, the
synchronization can be obtained well. In addition, from
Figures 7 and 8, we can see that different random sub-
network structures have little influence on the synchro-
nization performance, i.e., the network structures with dif-
ferent probability distributions have very small influences
on the synchronization performance which shows the ad-
vantage of the proposed parameter adaptive law.

5 Conclusion

In this paper, exponentially asymptotic synchronization
between two complex time-delay multi-links dynamical
networks with uncertain coupling configuration has been
studied both theoretically and numerically. In order to
synchronize complex networks with unknown topological
structures, the adaptive controller is given based on the
Lyapunov stability theory. Furthermore, sufficient condi-
tions for synchronization between the driving and the re-
sponse networks are obtained. Finally, several numerical
simulations demonstrate the effectiveness of the proposed
results. Moreover, there are some further significant direc-
tions to be investigated such as the pinning control of un-
certain complex dynamical network with multi-links and
the topological structures identification of complex net-
works with multi-links based on the adaptive method.

The authors would like to thank the editor and all the anony-
mous reviewers for their helpful advices. This work is supported
by the EU-FET Open Project SUMO (Grant No. 266722),
the Foundation for the Author of National Excellent Doctoral
Dissertation of PR China (Grant No. 200951), the National
Natural Science Foundation of China (Grant Nos. 61100204,
61170269, 61121061) and the China Postdoctoral Science Foun-
dation funded project (Grant No. 2012T50209).

Appendix

Proof of theorem 1: we can get the following error dy-
namical system:

ėi(t) = f(yi) − f(xi) +
N∑

j=1

a0
ijej(t)

+
N∑

j=1

a1
ijej(t − τ1) + . . .

+
N∑

j=1

am−1
ij ej(t − τm−1) +

N∑

j=1

(ã0
ij − a0

ij)yj(t)

+
N∑

j=1

(ã1
ij − a1

ij)yj(t − τ1) + . . .

+
N∑

j=1

(ãm−1
ij − am−1

ij )yj(t − τm−1) − Lei(t),

(A.1)

where ei(t) = (ei1(t), . . . , ein(t))T and we define
gi(ei(t)) = f(yi) − f(xi) (i = 1, 2, . . . , N). According to
equation (3), we obtain

||gi(ei(t))|| ≤ ki||ei(t)||, i = 1, 2, . . . , N. (A.2)

http://www.epj.org
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Now, we construct the Lyapunov candidate as:

V (t) =
1
2

N∑

i=1

pi

{
eT

i (t)ei(t) exp(μt) +
N∑

j=1

1
α0

ij

(
ã0

ij − a0
ij

)2

+
N∑

j=1

1
α1

ij

(
ã1

ij − a1
ij

)2
+ . . .

+
N∑

j=1

1
αm−1

ij

(
ãm−1

ij − am−1
ij

)2

+
N∑

j=1

∣∣a1
ij

∣∣
∫ t

t−τ1

eT
j (s)ej(s) exp[μ(s + τ1)]ds + . . .

+
N∑

j=1

∣∣am−1
ij

∣∣
∫ t

t−τm−1

eT
j (s)ej(s)

× exp [μ(s + τm−1)] ds

}
, (A.3)

where pi(i = 1, 2, . . . , N) is the positive constant. Then
we have:

V̇ (t) =
N∑

i=1

pi

{
eT

i (t) exp(μt)

[
gi(ei(t)) +

N∑

j=1

a0
ijej(t)

+
N∑

j=1

a1
ijej(t − τ1)+. . .+

N∑

j=1

am−1
ij ej(t − τm−1)

+
N∑

j=1

(
ã0

ij−a0
ij

)
yj(t)+

N∑

j=1

(ã1
ij−a1

ij)yj(t − τ1)+. . .

+
N∑

j=1

(
ãm−1

ij − am−1
ij

)
yj(t − τm−1) − Lei(t)

]

+
μ

2
eT

i (t)ei(t) exp(μt) +
N∑

j=1

1
a0

ij

(
ã0

ij − a0
ij

) ˙̃a0
ij

+
N∑

j=1

1
a1

ij

(
ã1

ij − a1
ij

) ˙̃a1
ij + . . .

+
N∑

j=1

1
am−1

ij

(
ãm−1

ij − am−1
ij

) ˙̃am−1
ij

+
1
2

N∑

j=1

|a1
ij |(eT

j (t)ej(t) exp(μτ1)

− eT
j (t − τ1)ej(t − τ1)) exp(μt) + . . .

+
1
2

N∑

j=1

|am−1
ij |(eT

j (t)ej(t) exp(μτm−1)

− eT
j (t − τm−1)ej(t − τm−1)) exp(μt)

}
. (A.4)

According to equation (22), we get

V̇ (t) ≤
N∑

i=1

pi exp(μt)

{ (
ki +

μ

2
− L

)
eT

i (t)ei(t)

+
N∑

j=1

a0
ije

T
i (t)ej(t) +

N∑

j=1

a1
ije

T
i (t)ej(t − τ1) + . . .

+
N∑

j=1

am−1
ij eT

i (t)ej(t − τm−1)

+
1
2

N∑

j=1

|a1
ij |(eT

j (t)ej(t) exp(μτ1)

− eT
j (t − τ1)ej(t − τ1)) + . . .

+
1
2

N∑

j=1

∣∣am−1
ij

∣∣ (eT
j (t)ej(t) exp(μτm−1)

−eT
j (t − τm−1)ej(t − τm−1)

)
}

. (A.5)

Let zT = eT
i (t) and w = ej(t − τl) (l = 1, 2, . . . , m − 1),

and according to zT w ≤ 1
2 (zT z + wT w), we attain

V̇ (t) ≤
N∑

i=1

pi exp(μt)

{ (
ki +

μ

2
− L

)
eT

i (t)ei(t)

+ a0
iie

T
i (t)ei(t) +

N∑

j=1,i�=j

|a0
ij |eT

i (t)ej(t)

+
1
2

N∑

j=1

∣∣a1
ij

∣∣ (eT
j (t − τ1)ej(t − τ1) + eT

i (t)ei(t)
)

+ . . . +
1
2

N∑

j=1

∣∣am−1
ij

∣∣ (eT
j (t − τm−1)ej(t − τm−1)

+ eT
i (t)ei(t)

)
+

1
2

N∑

j=1

|a1
ij |(eT

j (t)ej(t) exp(μτ1)

− eT
j (t − τ1)ej(t − τ1)) + . . .

+
1
2

N∑

j=1

∣∣am−1
ij

∣∣ (eT
j (t)ej(t) exp(μτm−1)

− eT
j (t − τm−1)ej(t − τm−1))

}

≤
N∑

i=1

pi exp(μt)eT
i (t)ei(t)

{ (
ki +

μ

2
− L + (a0

ii)
+

)

+
N∑

j=1

∣∣a0
ij

∣∣ +
1
2
(exp(μτ1) + 1)

N∑

j=1

∣∣a1
ij

∣∣ + . . .

+
1
2
(exp(μτm−1) + 1)

N∑

j=1

∣∣am−1
ij

∣∣
}

. (A.6)
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If there exists a large number L such that

pi

{ (
ki +

1
2
μ − L +

(
a0

ii

)+
)

+
N∑

j=1,i�=j

|a0
ij |

+
1
2
(exp(μτ1) + 1)

N∑

j=1

∣∣a1
ij

∣∣ + . . .

+
1
2
(exp(μτm−1) + 1)

N∑

j=1

∣∣am−1
ij

∣∣
}

< 0, (A.7)

then we get V̇ (t) ≤ 0. It follows that V (t) ≤ V (0) for
any t ≥ 0.

Using the Lyapunov function (A.3), we have

1/2pi||ei||2 exp(μt) = 1/2pie
T
i ei exp(μt) ≤ V (t) ≤ V (0).

Therefore, we obtain ||ei(t)|| ≤ Mi exp(−0.5μt) with
Mi =

√
2V (0)/pi ≥ 0. Thus, according to the Lyapunov

theorem [26,31,34–37,41], we yield ||ei(t)|| → 0 as t → ∞.
That is, networks (2) and (4) are globally exponentially
asymptotically synchronous.

Proof of theorem 2: just as the proof of theorem 1,
construct a Lyapunov candidate as follows:

V (t) =
N∑

i=1

pi

{
|ei(t)| exp(μt) +

1
2

N∑

j=1

1
α0

ij

(
ã0

ij − a0
ij

)2

+
1
2

N∑

j=1

1
α1

ij

(ã1
ij − a1

ij)
2 + . . .

+
1
2

N∑

j=1

1
αm−1

ij

(
ãm−1

ij − am−1
ij

)2

+
N∑

j=1

∣∣a1
ij

∣∣
∫ t

t−τ1

|ej(s)| exp[μ(s + τ1)]ds + . . .

+
N∑

j=1

∣∣am−1
ij

∣∣
∫ t

t−τm−1

|ej(s)| exp[μ(s + τm−1)]ds

}
,

where pi(i = 1, 2, . . . , N) is the positive constant.
Then we have:

V̇ (t) =
N∑

i=1

pi

{
Sgn(ei(t))ėi(t) exp(μt) + μ|ei(t)| exp(μt)

+
N∑

j=1

1
α0

ij

(
ã0

ij − a0
ij

) ˙̃a0
ij + . . .

+
N∑

j=1

1
αm−1

ij

(ãm−1
ij − am−1

ij ) ˙̃am−1
ij + exp(μt)

×
[

N∑

j=1

|a1
ij |(|ej(t) exp(μτ1)| − |ej(t − τ1)|) + . . .

+
N∑

j=1

|am−1
ij |(|ej(t)exp(μτm−1)|−|ej(t−τm−1)|)

]}
.

According to Sgn(ei(t))ei(t) = |ei(t)|, |gi(ei(t))| ≤
ki|ei(t)|, Sgn(gi(ei(t)))gi(ei(t)) = |gi(ei(t))|, we obtain

V̇ (t) ≤
N∑

i=1

pi exp(μt)

{
Sgn(ei(t)) [ki|ei(t)| − L|ei(t)|

+μ|ei(t)|] +
N∑

i=1

∣∣a0
ij

∣∣ |ei(t)| + Sgn(ei(t))

×
[

N∑

j=1

∣∣a1
ij

∣∣ (ei(t) + ej(t − τ1)) + . . .

+
N∑

j=1

∣∣am−1
ij

∣∣ (ei(t) + ej(t − τm−1))

]

+

[
N∑

j=1

∣∣a1
ij

∣∣ (|ej(t) exp(μτ1)| − |ej(t − τ1)|) + . . .

+
N∑

j=1

∣∣am−1
ij

∣∣ (|ej(t) exp(μτm−1)|

− |ej(t − τm−1)|)
]}

≤
N∑

i=1

pi exp(μt)|ei(t)|
{ [

ki + μ − L +
(
a0

ii

)+
]

+
N∑

i=1,j �=i

∣∣a0
ij

∣∣ + (exp(μτ1) + 1)
N∑

j=1

|a1
ij | + . . .

+ (exp(μτm−1) + 1)
N∑

j=1

∣∣am−1
ij

∣∣
}

.

If there exists a large number L such that

pi

{ [
ki + μ − L +

(
a0

ii

)+
]

+
N∑

i=1,j �=i

∣∣a0
ij

∣∣ + . . .

+ (exp(μτ1) + 1)
N∑

j=1

∣∣a1
ij

∣∣ + . . .

+ (exp(μτm−1) + 1)
N∑

j=1

∣∣am−1
ij

∣∣
}

< 0,

then we achieve that V̇ (t) ≤ 0. Similar to the proof
of theorem 1, we have |ei(t)| ≤ Mi exp(−μt) with
Mi =

√
V (0)/pi ≥ 0. Thus, we have ||ei(t)|| → 0 as t →

∞. That is, networks (2) and (4) are globally exponentially
asymptotically synchronous. The proof is thus completed.
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