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Abstract — In this letter, we find how the frequency of an oscillation determines the exact form of
the control for suppressing the oscillation through feedback controls with time delays. These results
are based on necessary and sufficient conditions we analytically established for the stability of a
dynamical system with feedback control and time delays. We also interpret how these conditions
change as the time delay either is equal to zero or becomes larger appropriately. All the analytical
and numerical results are illustrated by suppressing the oscillations of the FitzHugh-Nagumo model
and by the oscillation death and synchronization phenomena observed in a complex dynamical
network with time-delayed couplings. Our findings could be potentially useful for modulating
oscillations through proper control devices in various fields.

Copyright © EPLA, 2013

Introduction. — Various oscillations are ubiqui-
tously observed in nature and man-made systems. Some
oscillations are beneficial; while some others, harmful
to the system’s stability, need to be suppressed or
modulated [1-4]. For example, oscillations observed in
gene regulation are in charge of encoding or decoding
information [5-7]; however, oscillations emergent synchro-
nously in neural activities may impair brain function,
which possibly results into some mental disorders as
epilepsy [8-12]. Many control techniques have been
developed in the past two decades to suppress chaotic
oscillations to unstable equilibria or periodic orbits.
These include the OGY method [13,14], the time-delayed
feedback controller [15-19], and the adaptive coupling
scheme [20-22], which are the three most efficient
techniques. To force periodic oscillations to approach
unstable equilibria, the preceding techniques have been of
some use [13-16,20-22]. Typically, a stable and diagonal
feedback controller is sufficient to suppress periodic
oscillations, which we term as a “common sense”.
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Due to the physical distance of the signal transmission
in various real systems, feedback controllers often meet
with time delays [23-25]. However, time delays are able
to yield richer dynamical behavior, because of the infinite
dimensionality of the dynamical systems induced by time
delays [23,24]. These require us to include time delays
influence into the oscillation suppression (OS), and to
investigate when the “common sense”, mentioned above, is
preserved or completely broken. It is worth noting that the
original time-delayed feedback controller [15,16] still needs
feedback input without any time delay, which is likely to be
impractical for controlling real systems in which a remote
transmission of the signal is required.

This letter first gives necessary and sufficient (NS)
conditions for OS in a typical dynamical system through
feedback control with time delays. Establishing these
NS conditions requires an analytical solution of a tran-
scendental characteristic equation with complex-valued
coefficients. This is different from the discussion on the
conventional equation with real coefficients. Basing on
these NS conditions we infer an accurate relation between
a successful OS and unstable or asymmetric feedback
controls when time delay is considered and the value of
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oscillation frequency is located in a series of periodically
appeared intervals. We also investigate how the estab-
lished conditions change as the time delay either equals
zero or becomes larger appropriately. In addition to OS,
since some of those network models can be transformed
into a typical dynamical model with particular feedback
control and time delays, this work is still useful for
illustrating oscillation death (OD) [26,27] and even
synchronization occurs in some complex networks with
particular time-delayed couplings [17,18,28]. To illustrate
the practical usefulness of this work, we finally study OS
in the FitzHugh-Nagumo model (FHNM) as well as OD
and synchronization phenomena in a complex network
with particular time-delayed couplings.

A paradigmatic oscillating model with time-
delayed control. — To begin, we consider the following
paradigmatic dynamical model:

t=(a+id)z+ (—1+iv)|2|?, (1)
which we call a normal form of the super-critical Hopf
bifurcation. As a>0, eq. (1) is capable of generating
a stable periodic oscillation with a minimal period T =
27 /(d+~a) and a radius r = +/a. Here, for any given a
and -y, the larger the value of the parameter d, the higher
the frequency of the stable periodic oscillation. Moreover,
the equilibrium zyp = 0 of (1) is an unstable focus for which
the eigenvalues of the corresponding linearized matrix
around zo are a=xid (a>0). Now, the task is to force
the periodic oscillation to approach zy through a linear
feedback controller with a time delay. Thus, adding such
a controller into (1) yields a controlled model:

s=(a+id)z + (—1+iy) |22z + ke'Vz(t—7), (2)
where 7€ (0,+00) is a time delay, ke is a control gain
taking complex values, and k is the coupling strength. We
write the complex state variable as z =z +1iy. Then, a
linearization of (2) around the equilibrium zy yields

| |a —d||=x m —n||z(t—"1)

DR I R e I G
where the elements in the gain matrix are m = k cosy and
n=ksinty. On the one hand, when ¢ (mod 7) =0, i.e.,
n =0, the value of the above control gain becomes real and
then the gain matrix turns to be diagonal and symmetric.
On the other hand, when ¢ (mod 7)#0, i.e., n #0, the
gain matrix is asymmetric. In addition, m < 0 corresponds
to a stable control; conversely, m > 0 induces an unstable
control. Note that for optimal control a real-valued (or
symmetric) control gain has been used frequently in the
community of control; however, a complex-valued (or
asymmetric) gain is rarely taken into account until the
appearance of those pioneering studies of the equilibrium
stabilization via the conventional time-delayed feedback
control in physics [16-19].

Necessary and sufficient conditions for stability.
— Clearly, a successful suppression of the periodic oscilla-
tion in (2) depends on the local stability of the equilibrium
2. Actually this local stability can be determined equiva-
lently by analyzing the root distribution of the character-
istic equation of (3):

A= (a+id) — keYe " =0 (4)

with respect to A [23-25]. If the feedback control without
time delay is considered, the local stability can be assured
by fulfilling the condition m < —a < 0. This is consistent
with the “common sense” when 7=0. However, 7>0
modifies (4) to a transcendental equation with complex-
valued coefficients and infinitely many roots. Although
there have been several numerical works on the root
distribution including a systematical study with the aid
of the Lambert function [16,29,30], there are only a
few completely analytical results in the literature on NS
conditions which practically ensure the location of all the
roots of eq. (4) on the left half of the complex plane C for
arbitrarily given time delay 7.

In order to establish such NS conditions, we apply the
following transformations of the argument and complex
parameters:

Z=Ar—ar—idr, [=0be.

Here, b= —kre °" and a = —dr (mod 7), so that be R
and « € [0, 7). Hence, eq. (4) is transformed into:

hZ)2 Z+Be % =0. (5)

It can be directly verified that each root of eq. (4) is on
the left half of C if and only if [RL]: each root of eq. (5)
is on the left side of the line Z =—A in C, i.e., for any Z
with h(Zp) =0, Re{Zy} < —A with A=a7 >0.

To analytically give conditions under which [RL] is valid
for any 7, we need to describe the root variation along
infinitely many branches which are generated by eq. (5)
in C for two cases, viz., « # 0 and a =0. We present our
detailed arguments in the Supplementary Information [31].
Here, we summarize in table 1 all the NS conditions on
the local stability of the equilibrium z, for three cases.
Case I of our main interest corresponds to the oscillating
model (1); however, Cases II, III correspond to a stable
zg. The constants in table 1 are illustrated as follows:
both o* = ap and o* = a1 in Case I are the two solutions
satisfying the equation

{cos[y*(a*) —a*]}> =ar = A

with respect to the argument o*. Here, A=a7 <1 and
y=y*(a*) is the unique solution of the equation 2y=
sin2(y — a*). For Case I and a € [0, ag), both B= By >0
and B = Byy > 0 are the only two solutions of the equation
H,(B)=—a+ Hy(B) with respect to the argument B,
where

H,(B)=+/B2— A2, Hy(B)=arccos (g) .
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Table 1: NS conditions for the local stability of the equilibrium zo in the controlled model (2). Here, () represents an empty set.

Three Cases I, II, IIl o= —dr (mod w) Nonzero and finite-valued 7 7=0 T — 400
ae0,a ke (— B2 —Bu ke (—o0,—2 0
I:a>0and7'<1 10, @) ( 4 4 ) ( Cosw)
¢ Oé€(0[1,7f) ke( B‘z(-m %) ke(_co(;z,/)’—'_oo) (Z)
S ae0,7/2) ke (2X2,0) k€ (—o0,0) 0
fa=
ac(r/2,m) ke (0,2=2) k € (0,+00) 0
ael0,m/2 ke(—LBos _Bos ke(—oo,—=2 ke(a,—a
I a<0 [ / ) ( T T ) ( Cosw) ( )
a€r/2,m) ke (— Bos, Do) ke (— gmprto0)  ke(a,—a)
Correspondingly, for Case I and a € (ay,7), B= Bos <0 20 @ ®) © 10
and B = By < 0 satisty Hy(B) = a — H2(B). For Case 111,
B = B3 <0 and B = By7 < 0 satisfy Hl(B):OszQ(B), ol r -_r -
respectively, for a € [0, T) and a € [F, 7). Still for Case III, . 5
B=DBps>0 and B=DBys>0 satisty Hy(B)=—-a+ 58
Hs(B), respectively, for a €[0, %) and a € [, 7).
AP 0 57 " 20 (@) (e) () 0
A role of time-delayed control with different
frequencies. — Next, we discuss in detail the NS condi- 0| |----= | ~. 5
tions of Case I. It is easy to find the necessity of the .
inequality condition 5
1 ) -%0 0 2020 0 2020 O 20
T —, ide, A=ar<l m
a

for a successful OS. For instance, if a =10 and 7> 0.1,
the oscillation in (2) cannot be suppressed. Hence, we
can directly conclude that for any given a > 0, OS cannot
be achieved as 7 — +oo (see table 1). Furthermore, 7 is
allowed to take any large but finite value, since a can
be sufficiently small for satisfying the above inequality.
Therefore, not a separate but the combined relation of a
and 7 should be taken into account for OS.

Once A =at <1 is fixed, we need to design the control
gain ke'¥ = m + in in accordance with the other conditions
of Case I listed in table 1. Since the coupling strength & is
determined by 7 and by the solutions of the equations

Hl(B) = :FCEZEHQ(B),

k is independent of d for any given « € [0, ap) U (aq, ).
Moreover, from a =1 — d7(mod 7), it follows ) = a+dr
for any appropriately given «. Hence, when « and k are
determined, both m = k cos(a+ dr) and n = ksin(a + dr)
could be regarded as periodic functions of d with the
period 27/7. Thus, through increasing d, the feasible
region (FR) in the m-n plane for the control gain corre-
sponding to a successful OS rotates around the origin with
the rotation period 27 /7. Note that d is responsible for
the oscillation frequency 1/T of the original model (1).
Thus, it is the frequency that determines both the FR’s
rotation angle and the period. Additionally, note that k
is still restricted to the limited interval for any appropri-
ately given a. The larger the value of 7, the shorter the

Fig. 1: (Color online) The FRs appear rotationally around
the origin in the m-n plane when, respectively, d=0 (a),
d=5 (b), d=10 (¢), d=15 (d), d=20 (e), and d=30 (f).
Here, the contours of the leaf-shaped FRs are depicted by the
dashed lines according to the NS conditions listed in table 1
with a =7 =0.1, the rotation period is 27/7 &~ 62.83, and the
colors represent the exponential rates of the convergence or
divergence of the trajectories generated by (3).

length of the interval. Thus, the FR indeed is located in
some circumscribed area. Figure 1 depicts the rotational
leaf-shaped FRs for a particular A and different d.

More interestingly, since the FR rotates anticlockwise
in the m-n plane, it passes by the areas in which m is
strictly positive. As defined above, a positive m invites an
unstable control. We therefore conclude that for success-
fully suppressing oscillations with frequencies in a series
of periodically appeared intervals, a completely unstable
control with time delay is indispensable. Figure 2(a) shows
the periodically changing ratio of the stable control gains
in the FR with increasing d, which validates our conclu-
sion clearly. It is important to emphasize that this kind of
conclusion is never valid for feedback control without time
delay.

In addition, since the FR rotates periodically around
the origin which is located outside this FR, there exist
infinitely many intervals of d, in which the FR has no
interaction with the line n =0. Thus, every n#0 in the
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Fig. 2: (Color online) (a) The variation of the ratio P=.5_/S
with d. Here, S and S_ represent, respectively, the area of the
FR and the area of the gains corresponding to stable controls
in this FR. The other parameters are the same as those in
fig. 1. Periodically, P approaches 0 (1, respectively), which
implies that every control with a gain in the FR is unstable
(stable, respectively). (b) The intersection points ag,1 between
the curve cos?[y*(a*) — a*] and the line A=ar =0.3 < 1.

FR implies an asymmetric gain matrix. Therefore, not
a symmetric but an asymmetric gain matriz in front of
the feedback control with time delay is vital for OS with
particular frequencies. To find out such frequencies, we set
1 =0, such that n =0 and @ = —dr (mod 7). Then, the NS
conditions for local stability are not satisfied provided with
a € (ap,aq). Here, both oy and a; are the two solutions
of the equation

{cos[y*(a*) — a*}}z =A<1,

as mentioned above and shown in fig. 2(b). Consequently,
we get that

seg, s (To o)
T T
for p € N, that is,
lej s [(pr—a1+vA pr—ap+yA
T P 2T ’ 2T

are the intervals in which a symmetric gain matrix with
any m is useless but an asymmetric one is essential for a
successful OS.

Although model (1) has no persistent oscillation when
a <0, we still include the NS conditions for Cases II

15 5
(a) (b)
---a(n)|| =0 iy
8 | —an)
-5
0.424}(€)
__________ -l S
- 1 0.420
o 1007110[120" "0 5 t 10

Fig. 3: (Color online) (a) The plots of functions a(I) and d(I)
with respect to the argument I. Here, a(I) is slightly above 0 for
I€(90,11). (b) An unsuccessful OS in the controlled FHNM by
a stable and symmetric control (m = —4), and (c) a successful
OS by an unstable and asymmetric control (m =4 and n = —5).

and IIT in table 1 since they are useful for realizing
oscillation synchronization in complex systems later in
this letter. Differently from A=ar <1 in Case I, there
is no restriction on any finite time delay for these two
cases. We also list the conditions for the limit situations
of 7. Clearly, it is possible for Case III to guarantee the
stability of model (2) when 7 goes to +00; nevertheless, it
is impossible for the critical Case II.

Applications-oscillation death and synchroniza-
tion. — Now, we will validate the usefulness of the above-
established NS conditions in coping with typical complex
dynamical systems. First, we consider the FHNM [32,33],
which describes neuronal activity by the equations

v=v—0*/3—w+I, =e(v+(—ow).

The FHNM produces oscillations when the current input
I is around I, where I1 = (s +()/§ +s3/3 — s is a super-
critical Hopf bifurcation point at the equilibrium E(vg, wo)
and s = (1 — d¢)}/2. We aim to suppress these oscillations
to F by a feedback control with time delay. We set

1 d
|:]-7 ) 0:|
p 2p

with p = (§e —v3 +1)/2. Through the linear transforma-
tion

T =

[xvy]T :T [U — Vo, W _’UJO]T

and by the linearization around E [31], the controlled
FHNM can be transformed into equations of type (3),
where the gain matrix is [m, —n; n, m|. In particular, a and
d here can be regarded as functions of I for the FHNM (see
fig. 3(a), and the gain matrix for the original controlled
FHNM before the linear transformation reads

n n
vk (@ +p%) E
When n =0, this gain matrix G becomes symmetric, i.e.,
G =diag{m,m}. By using the NS conditions of Case I in

g +p n}
= |m — m—p—|.
pd’ Pd

20003-p4



Oscillation suppression and synchronization

table 1, we conclude that for any m a symmetric gain
matrix is useless to suppress the oscillation when 7=0.1,
¢ =0.02, § =0.004, and € =200, and T € (90, I;). However,
we can find a particular unstable and asymmetric control
with time delay to achieve OS for the FHNM. Both unsuc-
cessful OS and successful OS are numerically depicted in
figs. 3(b), (c), respectively.

Secondly, we analyze the OD phenomenon which possi-
bly occurs in a complex system of N identical dynamical
units connected through time-delayed couplings [19]:

N
Jj=1

Here, x; € RY represents the state variable of each unit,
{cij}nxn is a diagonalizable coupling matrix whose row
sum Zjvzl cij is supposed to be m foralli=1,... ,N, and
o = 0 is assumed as the equilibrium of each unit. It is easy
to verify that the occurrence of OD can be determined by
the stability of all the variational equations (VEs):

50 = ,Df(o)fo + )\050 (t - T)v

where A\; =m is the eigenvalue of {c¢;; }nxn associated to
perturbations at xy within the synchronization manifold
(SM) and Az, n are the transversal eigenvalues [34]. For
example, when each uncoupled unit satisfies model (1),
q = 2 and the stability of the first VE is determined by the
root distribution of eq. (4) as k =m and ¢ = 0. According
to the NS conditions established above for a symmetric
control (¢ =0) with time delay, despite A=ar <1, for
any m the first VE is unstable and so OD cannot be
observed physically when the oscillation frequency of the
uncoupled unit is located in the intervals jp as defined
above. However, OD can be reached only when the
frequency is not in jp, and the stability of the transversal
VEs, in addition to the first VE, should be guaranteed
through adjusting the eigenvalues A\, of {¢;j}nxn in
light of the NS conditions. For some frequencies, the
transversal eigenvalues might satisfy Re{\,} >0, which
implies unstable control.

Finally and more significantly, we discuss periodic orbit
synchronization in the above complex system. For a clear
illustration, we suppose the uncoupled unit to be a three-
dimensional system having a stable periodic orbit S(¢)
with period T. Thus, the Floquet exponents of S(t)
become

c=1,...,N,

p1=0, po3=axid,

where a < 0 [35]. We further set A =m =0, such that S(¢)
is within the SM. The other transversal VEs become

50 = ,Df(S(t))ga + )\ago(t - 7'),

which, by virtue of the Floquet theory [35], can be further
transformed into

e = diag{p1, p2, 3}1s + Ao (t —7)

if 7=pT and p € N [31]. We thus conclude that synchro-
nization can be achieved if Ay . n are adjusted to fulfill
the NS conditions for Cases IT and III in table 1. For exam-
ple, one possible condition becomes

B B
Mo € (—5250) 10 (0403)
2T T T

ifall A, n are real and —dr (mod 7) € [0, §) with 7 = pT.

Concluding remarks. — Altogether, we have estab-
lished NS conditions for OS through feedback control with
time delays. We find that, when the time delay is appro-
priately selected, realization of OS crucially depends on
the oscillation frequencies and the forms of control gains.
Compared with the case of no time delay, an introduction
of time delays brings an essential difference in the realiza-
tion of OS.

Our results also suggest several directions for future
research: i) the continuous dynamical model (1) could
be replaced by some paradigmatic oscillating model in
a discrete type; ii) our findings could be used in modu-
lating the oscillations in real systems including prevent-
ing or generating the occurrence of OD and the synchro-
nization phenomenon in the treatment of some mental
diseases [8-12]; iii) the results could be used to analyze
the dynamics of some higher-dimensional system which is
controlled by the original time-delayed feedback controller,
such as in systems biology (gene regulation) [7,16,26,27];
iv) the deterministic control with time delays could be
replaced by some stochastic control with or without time
delays [36-38].
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