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Statistically distinguishing between phase-coherent and noncoherent chaotic dynamics from time

series is a contemporary problem in nonlinear sciences. In this work, we propose different measures

based on recurrence properties of recorded trajectories, which characterize the underlying systems

from both geometric and dynamic viewpoints. The potentials of the individual measures for dis-

criminating phase-coherent and noncoherent chaotic oscillations are discussed. A detailed numeri-

cal analysis is performed for the chaotic Rössler system, which displays both types of chaos as one

control parameter is varied, and the Mackey-Glass system as an example of a time-delay system

with noncoherent chaos. Our results demonstrate that especially geometric measures from recur-

rence network analysis are well suited for tracing transitions between spiral- and screw-type chaos,

a common route from phase-coherent to noncoherent chaos also found in other nonlinear oscilla-

tors. A detailed explanation of the observed behavior in terms of attractor geometry is given.
VC 2012 American Institute of Physics. [doi:10.1063/1.3677367]

Oscillatory processes can be frequently observed in natu-

ral and technological systems. Often, the corresponding

dynamics is not strictly periodic, but shows more complex

temporal variability patterns characterized by a fast

divergence of trajectories with arbitrarily close initial

conditions.1–3 There are numerous examples of such cha-

otic oscillators for which long-term predictions of ampli-

tudes and phases are not possible. Therefore, studying

their phase dynamics has recently attracted particular in-

terest, e.g., regarding the process of phase synchroniza-

tion between different coupled systems.4,5 However, most

existing methods suitable for this purpose require the

explicit definition of an appropriate phase variable,

which can become a non-trivial problem in the case of

noncoherent chaotic oscillations. Therefore, studying the

phase coherence properties of chaotic systems has

become an important problem in both theoretical and ex-

perimental studies.6 In this work, we propose some meth-

ods based on the concept of recurrences in phase space,

which allow studying complementary aspects of chaotic

oscillators relating to the geometric structure of, and the

dynamics on the attractor. Specifically, we derive a

detailed characterization of changes of the geometric

structure of complex systems in phase space with varying

control parameters, which accompany transitions from

phase-coherent to noncoherent dynamics.

I. INTRODUCTION

In the last decades, the complexity of chaotic oscillators

has been widely characterized by a variety of different

quantities inspired from nonlinear dynamical systems

theory.7,8 Lyapunov exponents9,10 describe the characteristic

time-scale associated with the finite-time exponential diver-

gence of nearby chaotic orbits and, thus, relate directly to the

predictability horizon of the dynamics. Fractal dimensions

and entropies measure the structural complexity of the

underlying attractor, often based on concepts from informa-

tion theory.

In contrast to the aforementioned concepts, in many sit-

uations, one is interested in explicitly characterizing the

phase dynamics of the recorded nonlinear oscillations. How-

ever, depending on the structural properties of the chaotic

oscillations under study, it may be difficult to assign a well-

defined phase variable to the observed dynamics. This

problem predominantly occurs in the presence of noisy oscil-

lations; however, also in the fully deterministic case, one

frequently observes oscillations without a distinct center

of rotation in phase space, e.g., in the funnel regime [see

Fig. 1(b)] of the Rössler system,11

_x ¼ �y� z;

_y ¼ xþ ay;

_z ¼ 0:4þ zðx� 8:5Þ: (1)

In case of such noncoherent oscillations, the appropriate

definition and the analysis of the phase dynamics are chal-

lenging. Therefore, given the rising number of examples of

real-world chaotic oscillators, the problem of automatically

distinguishing between phase-coherent (PC) and noncoher-

ent (NPC) chaos is of practical relevance. Traditionally, this

problem has been considered by studying the phase diffusion
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properties of the system under study.5 However, in order to

apply this conceptual idea, an appropriate phase variable has

to be defined in advance.

In this work, we propose an alternative approach based

on the recurrence properties of a dynamical system’s trajec-

tory in phase space for quantitatively characterizing whether

or not an observed chaotic dynamics is phase-coherent. In

contrast to the explicit study of phase diffusion, the corre-

sponding concepts do not rely on an explicit definition of a

phase variable. We emphasize that this fact has already moti-

vated using recurrence-based properties for studying syn-

chronization processes of coupled NPC oscillators12,13 and

time-delay systems.14,15

Generally, recurrence properties can be conveniently an-

alyzed by using recurrence plots (RPs),13 originally intro-

duced in the seminal work by Eckmann et al.,16 which

provide an intuitive visualization of the underlying temporal

structures. For this purpose, one defines the recurrence ma-
trix Ri,j as a binary representation of whether or not pairs of

observed state vectors on the same trajectory are mutually

close in phase space. Given two state vectors xi and xj

(where i and j are time indices), this proximity is most com-

monly characterized by comparing the length of the differ-

ence vector between xi and xj with a prescribed maximum

distance e, i.e.,

Ri;jðeÞ ¼ Hðe� xi � xj

�� ��Þ; (2)

where H(�) is the Heaviside function and k � k a norm (e.g.,

Euclidean, Manhattan, or maximum norm). In this work, we

will specifically chose the maximum norm for defining dis-

tances in phase space, since it has lower computational

demands than other norms. However, the choice of a differ-

ent norm would not change the presented results qualita-

tively. The properties of RPs have been intensively studied

for different kinds of dynamics,13 including periodic,

quasiperiodic,17–19 chaotic, and stochastic dynamics.20,21

It has been shown that, among other features, the length

distributions of diagonal and vertical structures in RPs can

be used for defining a variety of measures of complexity,

which characterize properties such as the degree of determin-

ism or laminarity of the system.22–25 The resulting toolbox

of recurrence quantification analysis (RQA) has been widely

applied for studying phenomena from various scientific dis-

ciplines.13,26 In this work, however, we will utilize some

complementary conceptual approaches also based on RPs,

which do not belong to the set of classical RQA measures.

Based on Eq. (2), we will discuss the properties based on the

recurrence time (RT) statistics and so-called e-recurrence

networks (RNs). The underlying methodological concepts

are briefly described in Sec. II and, subsequently, applied to

two realizations of the Rössler system in PC and NPC

regimes, respectively. Following the results obtained for this

example, potential new statistical indicators for phase coher-

ence based on the recurrence properties of the underlying

system are introduced in Sec. III and compared to other

established as well as novel measures based on phase

diffusion and Poincaré return times, respectively. Applica-

tion to a complete bifurcation sequence of the Rössler system

in Sec. IV demonstrates the feasibility of the recurrence-

based approaches. The geometric consequences of the transi-

tion from PC (spiral-type) to NPC (screw-type) chaos and

their impact on the recurrence properties are discussed. As a

second example, the behavior of the recurrence based meas-

ures is illustrated for the Mackey-Glass system27 in a param-

eter range including transitions between periodic and NPC

chaotic behaviors.28

II. METHODS

A. Recurrence time statistics

Complementary to RQA, another natural way for char-

acterizing the recurrence properties of dynamical systems in

phase space is statistically evaluating the distribution of RTs,

which has been applied to both chaotic and stochastic

systems.29–32 In contrast to return times with respect to a

fixed Poincaré surface, recurrence times refer to the time

intervals after which the trajectory enters the e-neighborhood

of a previously visited point in phase space. Gao et al.33

demonstrated that, similar to some line-based RQA meas-

ures, characteristics based on the RT distributions p(s) can

be used for detecting subtle dynamical transitions, which

motivated using a corresponding approach for testing against

stationarity.34,35 Besides their immediate importance for

studies on extreme events,36 recurrence times have also pro-

ven their potential for the estimation of dynamical invariants

such as the information dimension30 and the Kolmogorov-

Sinai entropy.37

Given a RP, RTs can be identified as the lengths of non-

interrupted vertical (or horizontal, since the recurrence

matrix is symmetric) “white lines” that do not contain any

recurrence (i.e., no pair of mutually close state vectors).

More precisely, such a white line of length s starts at the

position (i,j) in the RP if38

Ri;jþm ¼
1 if m ¼ �1;
0 for m 2 f0;…; s� 1g;
1 if m ¼ s:

8<
: (3)

In order to see this, for all times, k¼ j� 1,…, jþ s, the val-

ues xk on the trajectory are compared with xi. Then, the

structure given by Eq. (3) can be interpreted as follows: At

time k¼ j� 1, the trajectory falls into an e-neighborhood of

xi. Then, for k¼ j,…, jþ s� 1, it moves further away from

xi than a distance e; until at k¼ jþ s, it returns to the e-neigh-

borhood of xi again. Hence, given a uniform sampling of the

FIG. 1. Two-dimensional projection of a part of the trajectory of the Rössler

system [Eq. (1)] in the (a) PC (a¼ 0.165) and (b) NPC (funnel) regimes

(a¼ 0.265).
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trajectory in the time domain, the length of the line is propor-

tional to the time that the trajectory needs to return e-close to

xi. Going beyond the concept of first-return times, the en-

semble of all recurrences to the e-neighborhood of xi induces

a RT distribution for this specific point. Combining this in-

formation for all available points xi in a given time series

(i.e., considering the lengths of all white lines in the RP),

one obtains the RT distribution p(s) associated with the

observed (sampled) trajectory in phase space. Hence, the

length distribution p(l) of “white” vertical lines l in the RP

not containing any recurrent pair of observed state vectors

provides an empirical estimate of the distribution of RTs on

the considered orbit, which contains important information

about the dynamics of the system under investigation.

B. Recurrence network analysis

Recently, different approaches have been proposed for

studying the basic properties of time series from a complex

network perspective.39–44 Many existing methods for trans-

forming time series into network representations have in

common that they define the connectivity of a complex net-

work—similar to the spatio-temporal case—by the mutual

proximity of different parts (e.g., individual states, state

vectors, or cycles) of a single trajectory.44,45 Among other

related approaches, e-RNs and their quantitative analysis

have been found to allow identifying transitions between dif-

ferent types of dynamics in a very precise way.43,44,46,47,50 In

order to construct the RN, we re-interpret the recurrence ma-

trix Ri,j; the main diagonal of which is removed for conven-

ience, as the adjacency matrix Ai,j of an undirected complex

network associated with the recorded trajectory, i.e.,

Ai;j ¼ Ri;jðeÞ � di;j; (4)

where di,j is the Kronecker delta. The vertices of this network

are given by the individual sampled state vectors on the tra-

jectory, whereas the connectivity is established according to

their mutual closeness in phase space. This definition of a

complex network provides a generic way for analyzing phase

space properties of chaotic attractors in terms of network to-

pology.45,50 However, since the network topology is invari-

ant under permutations of vertices, the statistical properties

of RNs do not capture the dynamics on the attractor, but its

geometric structure based on an appropriate sampling. In this

respect, we emphasize that since a single finite-time trajec-

tory does not necessarily represent the typical long-term

behavior of the underlying system, the resulting network

properties depend—among others—on the length N of the

considered time series (i.e., the network size), the probability

distribution of the data, embedding,51 sampling,44,52 etc. We

choose the threshold e in such a way that the resulting RN

has a fixed edge density (recurrence rate) of RR¼ 0.03 unless

otherwise stated explicitly.

Although they primarily describe geometric aspects, the

topological features of RNs are closely related to invariant

properties of the underlying dynamical system.43,45,50,53 In

model systems (e.g., Rössler and Lorenz systems), both local

and global network properties have already been studied in

great detail.44,45,50,51 Among others, two particularly inter-

esting local measures are

(1) the local clustering coefficient Cv, which quantifies

the relative amount of closed triangles centered at a given

vertex v (i.e., at the associated point xv in phase space) and

gives important information about the geometric structure of

the attractor within the e-neighborhood of v in phase space50

and

(2) betweenness centrality bv, which quantifies the frac-

tion of all shortest paths in a network that include a given

vertex v.54 In a RN, vertices with high bv correspond to

regions with low phase space density, which are located

between higher density regions. Hence, bv yields information

about the local fragmentation of the attractor.45,51 Since in a

complex network, the values of bv may span several orders

of magnitude; in the following, we will consider log bv as a

characteristic measure for network topology.

In a RN, both Cv and bv are sensitive to the presence of

unstable periodic orbits (UPOs), but resolve complementary

aspects.51 Specifically, in a continuous system, it is well-

established that if a chaotic trajectory enters the neighbor-

hood of an UPO, it stays within this neighborhood for a cer-

tain time.55 As a consequence, states accumulate along this

UPO instead of homogeneously filling the phase space in the

corresponding neighborhood (in particular, if we consider

UPOs of lower period), which results in a locally reduced

effective dimension that can be quantitatively characterized

by Cv and measures derived from this quantity.50

In addition to the aforementioned vertex characteristics,

several global network measures have already proven to dis-

tinguish between qualitatively different types of behavior in

both discrete and continuous-time systems.43,47–49 Extending

these previous results to different appearances of chaotic

dynamics, we will consider four particular measures56–58 as

potential candidates for discriminatory statistics:

(1) the global clustering coefficient C,59 which gives the

arithmetic mean of the local clustering coefficient Cv taken

over all vertices v,

(2) network transitivity T ,60,61 which is closely related

to C (but gives less weight to poorly connected vertices50)

and globally characterizes the linkage relationships among

triples of vertices in a complex network (i.e., the probability

of a third edge within a set of three vertices given that the

two other edges are already known to exist),89

(3) the average path length L, which quantifies the aver-

age geodesic (graph) distance between all pairs of vertices,

and

(4) the assortativity coefficient R,62 which characterizes

the similarity of the connectivity at both ends of all edges in

the network (i.e., the correlation coefficient between the

degrees of all pairs of connected vertices).

Network transitivity and average path length have already

proven to provide an excellent discrimination between complex

periodic and chaotic orbits in a two-parameter bifurcation sce-

nario of the Rössler system.47 An analytical theory for comput-

ing the value of T from a known invariant density q(x)
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revealed a strong relationship to a certain concept of general-

ized fractal dimensions.50 In this respect, high values of T
indicate the presence of a lower-dimensional structure in phase

space corresponding to a more regular dynamics. In contrast,

the average path length behaves differently for discrete and

continuous-time dynamical systems:43,45,47 for maps, more

regular dynamics is characterized by low values of L, whereas

the opposite applies to chaotic oscillators.

C. Recurrence properties of phase-coherent and non-
coherent Rössler systems

As a simple continuous-time deterministic dynamical

system that exhibits both PC and NPC chaotic dynamics, we

first study the behavior of the RP-based concepts described

in Secs. II A and II B for the Rössler system [Eq. (1)]. In the

following, we will use numerical simulations of this system

for various parameters a, obtained with a fourth-order

Runge-Kutta integrator with step width h¼ 0.01. The result-

ing trajectories have been down-sampled to N¼ 10 000 data

points with a sampling interval of Dt¼ 0.2, which avoids

strong effects of trivial temporal correlations.

In order to illustrate qualitative differences in the behav-

ior of the RP-based indicators for PC and NPC dynamics, we

consider the individual cases a¼ 0.165 (PC) and a¼ 0.265

(NPC), respectively. A part of the resulting trajectories (pro-

jected onto the (x,y)-plane) is shown in Fig. 1. One clearly

recognizes that the oscillations of the system have a well-

defined center in the PC case, but no unique center for NPC

chaos.

The RT distributions obtained for both examples are quali-

tatively different (see Fig. 2). Specifically, in the PC regime,

the lengths of time intervals without any recurrences are peaked

around multiples of the basic period of oscillations, with a max-

imum at three full periods of the system38 (note the logarithmic

units in Fig. 2). This indicates that, in this regime, one distinct

time-scale dominates the dynamics of the system. In contrast,

in the NPC case, the distribution becomes much more irregular,

which indicates that a multiplicity of time-scales is relevant in

the observed chaotic dynamics. However, since the complex

structures in the RT distributions have not yet been explicitly

studied in previous work, it is not a priori clear which kind of

statistical property (e.g., mean recurrence time or the corre-

sponding standard deviation) can be used for distinguishing

between both cases. Specifically, since the recurrence time is

related to the mean period of oscillations, its mean value varies

considerably within the different dynamical regimes as the

parameter a is changed.

In contrast to the RT statistics, the local RN properties

characterize higher-order features of the attractor geometry

in phase space rather than dynamical aspects.45 While global

network properties have been recently applied for automati-

cally discriminating between chaos and periodic dynamics in

a complex two-parameter bifurcation scenario of the Rössler

system,47 we suggest that local properties are able to charac-

terize even more subtle structural changes of the system. For

the two considered test cases, Fig. 3 shows the pattern of the

local clustering coefficient Cv and betweenness centrality bv

in phase space. It is clearly visible that both measures char-

acterize different aspects of attractor geometry,51 which

results in a correlation coefficient that is still significant, but

not very large (Fig. 4). Specifically, both measures are some-

what sensitive to the presence of UPOs, which are densely

embedded in the chaotic attractor. However, while the corre-

sponding direct relationship has been theoretically estab-

lished only for Cv so far in terms of an effective local

dimension of the attractor,50 bv is no direct indicator for

UPOs.

Studying the full probability distributions of both local

network measures in some more detail (Fig. 5), we observe

clear differences between PC and NPC dynamics. Specifi-

cally, all distributions are at least bimodal (which is partially

related to the presence of UPOs leading to locally increased

clustering coefficients), whereas the bimodality is more

expressed in the phase-coherent case. Together with the gen-

eral finding that the maxima of the respective distributions

do not differ considerably, this result motivates considering

simple statistical properties of the distributions of Cv and

log bv for deriving novel indices for phase coherence. We

will come back to this idea in Sec. III.

III. QUANTIFYING PHASE COHERENCE OF CHAOTIC
OSCILLATORS

A. Phase and frequency of chaotic oscillators

In order to numerically study the phase coherence of cha-

otic oscillators, a reasonable definition of a phase variable is

usually required first. While the derivation of optimum phase

FIG. 2. RT distribution p(s) with s¼ lDt (zoom for short times) for one real-

ization of the Rössler system with (a) PC and (b) NPC chaos. The threshold

e has been chosen to yield a recurrence rate RR¼ 0.03.

FIG. 3. (Color online) Color-coded representations of local RN properties

((a) and (b) local clustering coefficient Cv, (c) and (d) logarithm of between-

ness centrality log bv) for the Rössler system with [(a) and (c)] PC and [(b)

and (d)] NPC chaos (RR¼ 0.03). In (c) and (d), black circles indicate verti-

ces in poorly populated regions of phase space with bv< 1.
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variables has been recently attracted considerable interest,63–66

we restrict our attention in this work to the standard analytical

signal approach. Here, a scalar signal x(t) is extended to the

complex plane using the Hilbert transform,

yðtÞ ¼ 1

p
P:V:

ð1
�1

xðtÞ � xh i
t� s

ds; (5)

where P:V: denotes Cauchy’s principal value of the integral,

which yields the phase

/ðtÞ ¼ arctan
yðtÞ
xðtÞ : (6)

We emphasize that this definition is appropriate for oscilla-

tions with a well-defined center in the origin of the (x,y)-

plane. Specifically, for PC dynamics, it is possible to find

simple (linear) transformations of x and y (e.g., subtracting

the mean) so that the oscillations are centered around the

origin. In contrast, NPC dynamics is characterized by the

non-existence of such a unique central point in phase space

[cf. Fig. 1(b)]. As a result, defining the phase in the above

way leads to a variable that does not monotonously increase

with time. Within the framework of phase synchronization

analysis, an alternative phase definition has, therefore, been

proposed based on the local curvature properties of the

analytical signal,67–69 i.e.,

~/ðtÞ ¼ arctan
dyðtÞ=dt

dxðtÞ=dt
: (7)

We note that the proper evaluation of the derivatives in the

latter equation may pose substantial numerical challenges,

especially in the case of (noisy) experimental data.

The instantaneous frequency of a chaotic oscillator is

defined as the derivative of the phase variable with respect to

time. Averaging this property over time yields the mean

frequency,

x ¼ 1

2p
d/ðtÞ

dt

� �
: (8)

Since, in the standard Hilbert transform-based definition, the

phase variable /(t) does not necessarily increase monoto-

nously in time, we quantify this monotonicity in order to

obtain a simple heuristic order parameter for phase coher-

ence, which we will refer to as the coherence index,

CI ¼ lim
T!1

1

T

ð1
0

Hð� _/ðtÞÞdt; (9)

with _/ðtÞ ¼ d/ðtÞ=dt.

B. Traditional measures of phase coherence

The classical approach to characterizing phase coher-

ence of chaotic oscillations is based on the second-order

structure function (variogram) of the detrended phase

U(t)¼/(t)� 2pxt,

D2
/ðsÞ ¼ Uðtþ sÞ � UðtÞ½ �2

D E
: (10)

Averaging this property over different realizations of the

same process (or, as an alternative, over different time inter-

vals captured by the same trajectory—note that both options

can be considered equivalent as long as the system under

study can be considered ergodic), one may approximately

describe the dynamics of phase increments as a diffusion

process.5,6,70–72 In this case, one obtains

D2
/ðsÞ ¼ B1sþ B0: (11)

Comparing this with classical (stochastic) diffusion proc-

esses yields the phase diffusion coefficient D¼B1/2. We note

that the proper estimation of this quantity from a single tra-

jectory may be challenging, since the detection of a proper

scaling window in which the above linear relationship holds

may be a nontrivial task. This is particularly true for NPC

dynamics, where the appropriate definition of the phase vari-

able / is crucial. We note that the numerical values of D
depend on which of the phase definitions from Sec. III A is

used.

As an alternative approach, in recent studies on the phe-

nomenon of coherence resonance,73,74 it has been suggested

using the coherence factor,

FIG. 4. Scatter plot between the RN measures Cv and log bv for the Rössler

system with (a) PC and (b) NPC chaos (RR¼ 0.03). qs gives the values of

the rank-order correlation coefficient (Spearman’s Rho) between both

quantities.

FIG. 5. Probability density function of the RN measures [(a) and (b)] Cv and

[(c) and (d)] log bv for the Rössler system with [(a) and (c)] PC and [(b) and

(d)] NPC chaos. The different symbols represent the results obtained for the

same trajectory with different choices of the recurrence rate (RR¼ 0.02 (h),

0.03 ?ð Þ, and 0.04 (�)).
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CF ¼ Th i=rT (12)

(i.e., the coefficient of variation of Poincaré return times Ti,

with Th i and rT denoting mean and standard deviation of T),

as a measure of coherence of noise-induced oscillations.

This approach can be directly transferred to the problem of

distinguishing PC and NPC deterministic-chaotic oscilla-

tions,70 given a properly selected Poincaré section in phase

space. However, we emphasize that in case of NPC chaotic

oscillations, the choice of such a Poincaré section may be a

difficult task itself.

C. RP-based indicators of phase coherence

Since the proper estimation of the phase diffusion coeffi-

cient D and coherence factor CF may be challenging, we

will in the following use our results from Sec. II C for defin-

ing some novel indicators for phase coherence of chaotic

oscillations based on RPs. As we have already observed, the

appearance of the RT distribution p(s) is different for PC and

NPC chaos. Since mean RT sh i ¼ sh i eð Þ and the correspond-

ing standard deviation rs(e) do not provide sufficient results

when considered separately, we suggest using the coefficient

of variation instead. This idea provides a straightforward

generalization of the coherence factor CF (based on the

return times with respect to a fixed Poincaré section) to a

comparable measure based on the recurrence times to arbi-

trary e-neighborhoods of previously visited points in phase

space. Consequently, we will refer to this measure as the

generalized coherence factor,

GCF ¼ GCFðeÞ ¼ hsiðeÞ
rsðeÞ

: (13)

Complementary to this approach, we also consider measures

characterizing the properties of the associated RNs. On the

one hand, we suggest that some global network characteris-

tics may be helpful for distinguishing between PC and NPC

chaos, as they have already proven useful for discriminating

between complex periodic and chaotic orbits.47,50 On the

other hand, since the empirical distributions of the local RN

measures Cv and log bv differ primarily with respect to

their variance when comparing them for PC and NPC

chaos (Fig. 5), we propose using the standard deviations rC
and rlog b as two further alternative measures for phase co-

herence. In addition, it may be helpful also for considering

higher-order statistics of the corresponding empirical distri-

bution functions, e.g., their skewness cC and clog b.

IV. EXAMPLE I: BIFURCATION SCENARIO OF THE
RÖSSLER SYSTEM

In order to systematically evaluate the performance of

established as well as potential new RP-based indicators for

phase coherence of chaotic oscillators, we study a part of the

bifurcation scenario of the Rössler system [Eq. (1)], where

the parameter a is systematically varied in the range [0.15,

0.3]. This parameter range comprises different kinds of

dynamics, including periodic windows and PC as well as

NPC chaotic oscillations. The transition between PC and

NPC chaos occurs at ac� 0.2, which is in reasonable

agreement with previous studies using a slightly different pa-

rameter setting (e.g., Ref. 68). Specifically, for a< ac, the

observed chaotic attractors are always PC, whereas they are

NPC for a> ac. In order to properly detect the location of

periodic windows and systematically exclude them when

comparing the values of our measures for PC and NPC

chaos, the largest Lyapunov exponents k1,2 of the system are

additionally computed.9

A. Traditional and recurrence times-based measures

Figure 6 displays the variation of the Lyapunov expo-

nents k1,2, the phase diffusion coefficient D, the coherence

index CI, and the generalized coherence factor GCF when

the parameter a is changed. One clearly observes that the

different measures are able to detect the transition between

PC and NPC oscillations at about a¼ 0.21, but show differ-

ent signatures in the presence of periodic windows. Specifi-

cally, the phase diffusion coefficient D takes values close

to zero (D< 10�3) in both the periodic and PC chaotic

windows, but gets much larger in the NPC chaotic regime

[Fig. 6(b)]. The latter observation coincides with a rather

high variance for the NPC chaotic dynamics, which is

mainly due to the subjectivity in choosing the scaling

window for obtaining the linear regression parameters in

Eq. (11). The coherence index CI [Fig. 6(c)] is zero for

a <� 0:2, but strictly positive for higher values, including pro-

nounced local maxima in the periodic windows (indicating

that the periodic oscillations in these windows have no

unique origin in the (x,y)-plane either). In contrast, the gener-

alized coherence factor based on the recurrence time distri-

butions takes very low values for NPC chaos and higher

ones for periodic and PC chaotic windows [Fig. 6(d)].

FIG. 6. Behavior of different measures for phase coherence for the Rössler

system in dependence on the parameter a (error bars indicate standard devia-

tions obtained from 100 independent realizations of the system for each

value of a): (a) Largest Lyapunov exponents k1 (solid line, D) and k2

(dashed line) calculated from the dynamical equations, indicating the loca-

tion of periodic windows, (b) phase diffusion coefficient D, (c) coherence

index CI, and (d) generalized coherence factor GCF (RR¼ 0.03). Shaded

areas indicate the presence of periodic windows evaluated by means of the

largest Lyapunov exponents.
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B. Recurrence network measures

In a similar way as described above, the values of local

as well as global RN measures have been computed for real-

izations of the system for different values of a. Figure 7

shows the corresponding results. Regarding the global net-

work characteristics, we find that the transitivity T has

clearly higher values in the NPC regime in comparison to the

phase-coherent chaos. In contrast, the assortativity coeffi-

cient R is clearly not capable of distinguishing both types of

chaos, while a corresponding evaluation for C and L requires

more detailed statistical analysis (see below). Regarding the

two local RN measures Cv and log bv, standard deviation and

skewness of both quantities show significantly higher values

for NPC chaos than in the PC case, which is to be expected

due to the more complex structure of the attractor in phase

space. In general, the fluctuations of RN measures between

different realizations obtained for the same value of a are

much larger in the NPC regime than for PC chaos. For the

periodic windows, T , C, and L show pronounced maxima

(which is consistent with previous findings47,50), whereas rC
clearly displays local minima. In contrast, the signatures

in R and the betweenness-based measure rlog b are more

complex.

C. Discriminatory skills of RP-based phase coherence
indicators

In order to systematically compare the discriminatory

skills of all proposed RP-based measures with respect to PC

and NPC chaos, we divide the set of considered values of the

control parameter a into three groups: one group S0 repre-

senting the periodic windows (characterized by a maximum

Lyapunov exponent k1 which does not significantly differ

from zero within the numerical limits (i.e., k1< k*¼ 0.02),

and two groups S1 and S2 distinguished by whether or not the

coherence index CI [Eq. (9)] does significantly differ from

zero (i.e., CI(a)<CI*¼ 0.001 for PC chaos, and CI(a)�CI*

for NPC chaos, respectively). Based on this initial discrimi-

nation, we may statistically evaluate whether or not main sta-

tistical characteristics of the distributions p(x|Si) of the

different measures x obtained for both groups S1 and S2 dif-

fer significantly. This problem can be solved by a one-way

analysis of variance (ANOVA),75 with the factor being deter-

mined by two classes of values of CI. In order to evaluate

whether the medians of some characteristic parameters in

sets S1 and S2 differ significantly (given the variances of the

empirically observed distribution functions), we perform a

Mann-Whitney U-test,76,77 which can be considered as the

equivalent of an F-test78 on the sets of rank numbers.

The results of our corresponding analysis are summar-

ized in Table I and confirm our qualitative statements. Spe-

cifically, we observe that standard deviation and skewness of

the distributions of Cv and log bv allow a statistical discrimi-

nation of both chaotic regime with very high confidence. For

the global RN measures, only network transitivity T per-

forms comparably well. The average path length L also guar-

antees a reliable discrimination, whereas global clustering

coefficient C and assortativity coefficient R perform clearly

worse. Finally, we find that the generalized coherence factor

FIG. 7. Behavior of RN-based characteristics for the Rössler system in de-

pendence on the parameter a (RR¼ 0.03, error bars indicate standard devia-

tions obtained from 100 independent realizations of the system for each

value of a): (a) global clustering coefficient C, (b) network transitivity T , (c)

average path length L, (d) assortativity coefficientR, and [(e) and (f)] stand-

ard deviation and [(g) and (h)] skewness of the local clustering coefficient

and logarithmic betweenness centrality (rC , rlog b, cC , and clog b,

respectively).

TABLE I. Mean values and standard deviations (in brackets) of the different

measures for phase coherence for the considered realizations of the Rössler

system (averages over 100 independent realizations for every value of a,

fixed RR¼ 0.03) taken over all parameter values in the PC and NPC

regimes, and P-values of the associated U-test: generalized coherence factor

GCF, global RN measures C, T , L, and R, and standard deviation r and

skewness c of the distributions of the local RN measures Cv and log bv (from

top to bottom). Symbols indicate the significance of the different parameters

as discriminatory statistics (—: insignificant, *: significant at 5% level, **:

significant at 1% level, ***: significant at 0.1% level).

PC NPC P

GCF 1.16 (0.02) 1.17 (0.02) 0.0177 *

C 0.61 (0.01) 0.61 (0.02) 0.0064 **

T 0.61 (0.02) 0.67 (0.03) 2.08	 10�12 ***

L 6.56 (0.78) 8.12 (2.83) 1.59	 10�7 ***

R 0.84 (0.05) 0.86 (0.04) 0.2435 —

rC 0.07 (0.01) 0.09 (0.02) 5.31	 10�12 ***

rlog b 0.56 (0.04) 0.71 (0.09) 1.18	 10�12 ***

cC 0.39 (0.52) �0.82 (0.62) 1.33	 10�11 ***

clog b �1.39 (0.65) �2.76 (0.48) 8.47	 10�11 ***
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GCF based on the RT distributions in principle also allows

distinguishing between PC and NPC dynamics, however, on

a much lower level of significance.

D. Impact of the homoclinic point on RN measures

A detailed inspection of the previously described find-

ings reveals two interesting aspects: First, we observe that

almost all RN-based measures show an overshooting close to

the transition between PC and NPC chaos (see Fig. 7). Fur-

ther investigations reveal that this effect does not result from

a particular choice of sampling or the finite length of the con-

sidered realizations of the system (i.e., the presence of possi-

bly transient behavior), but seems to be generic. Second, the

behavior of the network transitivity T seems to contradict

recent general findings on the relationship between transitiv-

ity and effective attractor dimensions:50 the higher the effec-

tive dimension, the lower the RN transitivity. Specifically,

the NPC regime has a higher dimension than PC chaos

(this can be inferred from the higher maximum Lyapunov

exponent indicating a higher Lyapunov dimension via the

Kaplan-Yorke conjecture). Therefore, one has to expect that

T takes higher values in the PC regime than for NPC chaos,

whereas Fig. 7(b) displays the opposite behavior. (In a simi-

lar way, given the known fact that for a comparable value of

e, periodic orbits typically have a higher average path length

than chaotic ones due to the formation of geometric

“shortcuts,”45 one would also expect L to be shorter in the

NPC regime than for PC chaos, which is not consistent with

the results in Table I.) As we will argue below, these obser-

vations can, however, be explained in terms of the specific

attractor geometry of the Rössler system, which is character-

ized by the considered RN properties.

In order to understand the aforementioned overshooting

as well as counter-intuitive behavior of RN measures, recall

that the chaotic attractors of the Rössler system are charac-

terized by the presence of a homoclinic point at the origin. In

fact, the importance of the associated homoclinic orbit for

the transition between spiral-type (PC) and screw-type

(NPC) chaotic oscillations has been widely recognized for

the Rössler system as well as other chaotic oscillators with a

similar transition.79–83 On the one hand, as the control pa-

rameter a increases within the PC chaotic regime, the attrac-

tor successively grows and finally extends to the vicinity of

the origin shortly before the transition to the funnel regime.

On the other hand, the dynamics in the (x,y)-plane becomes

very slow whenever a trajectory on the chaotic attractor gets

close to the homoclinic point, before getting rapidly

“ejected” out that plane following the direction of the associ-

ated unstable manifold. Thus, the growth of the chaotic

attractor towards the origin has two consequences: First, the

statistical properties of the distribution of ejection and re-

injection “events” with respect to the (x,y)-plane changes

markedly as a increases towards the transition point between

PC and funnel regimes, which has a distinct effect on the

overall recurrence properties of the system. This is reflected

by the fact that the first return maps display one distinct dif-

ferentiable extremum for spiral-type chaos, but several ones

for screw-type chaos.83 Second, due to the slow dynamics

close to the homoclinic point, there is a high density of

sampled points on a trajectory in the neighborhood of the ori-

gin, because the residence probability in this part of the

phase space increases sharply shortly before the transition

point.

Within the framework of RNs, the accumulation effect

around the origin becomes well expressed in terms of the

distribution of degree centrality kv ¼
P

j 6¼v Av;j, another im-

portant local network measure. Specifically, while the mean

degree kh i ¼ N � 1ð ÞRR is constant when keeping the recur-

rence rate (edge density) fixed [Fig. 8(a)], the standard devia-

tion increases strongly shortly before the transition between

both chaotic regimes [Fig. 8(b)], which implies the presence

of many vertices with high degree, i.e., the existence of a

phase space region with a high probability density of the

attractor. As a result, the local network transitivity in this

distinct region increases significantly: since the neighbor-

hoods of many vertices (in our case, those located close to

the origin) are densely populated (high degree), they also

show a high (local) clustering coefficient [Cv <� 1, cf.

Fig. 3(b)]. This local behavior translates into a higher global

network transitivity T [Fig. 7(b)] as well as a higher rC
[Fig. 7(e)]. In a similar way, we can explain the overshooting

of T and rC close to the transition point, where the variance

of the degree centrality (and, hence, the density of points

close to the origin) is the highest.

Regarding the effect on the path-based measures L and

rlog b, we note that if we consider a fixed value of e (instead

of a fixed RR) as a is changed, we find no overshooting close

to the transition between PC and NPC chaos [see Figs. 9(c)

and 9(f)] (in a similar way, the corresponding effect is

clearly reduced for rlog b as well). Recalling the meaning of

L,45 this observation clearly indicates that the overall size of

the attractor does not change markedly close to the transition

point. Moreover, L now takes larger values for PC chaos than

in the NPC regime (Table II), which reflects the increasing geo-

metric complexity of the attractor. In contrast to the path-based

measures, the overshooting effect on the transitivity-based

measures T and rC persists and becomes even enhanced for

the global measures T and C, while it is reduced for rC and cC.
We emphasize that with a fixed e, the recurrence rate RR
becomes larger when increasing a close to the transition point

due to the accumulation of vertices close to the origin, which

could explain the aforementioned behavior.

FIG. 8. Mean values hki (a) and standard deviations rk (b) of the distribu-

tion of degree centrality kv for the RNs obtained from 100 independent real-

izations (error bars indicating ensemble means and standard deviations) of

the Rössler system (N¼ 10 000). The desired recurrence rate

RR ¼ kh i= N � 1ð Þ � 0:03 has been approximated by selecting the threshold

e based on a Monte Carlo sampling of inter-point distances from the trajec-

tory in order to enhance computational efficiency.
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V. EXAMPLE II: BIFURCATION SCENARIO OF THE
MACKEY-GLASS SYSTEM

The scenario of a transition from spiral-type (PC) to

screw-type (NPC) chaos is common to several nonlinear

oscillators (for examples, see Refs. 84 and 85). However,

there are further examples for NPC chaos in other types of

complex systems, especially in time-delay systems. For illus-

trative purposes, in the following, we reexamine a part of the

bifurcation scenario of the Mackey-Glass equation,27

_xðtÞ ¼ 0:2xðt� sÞ
1þ xðt� sÞ½ �10

� 0:1xðtÞ; (14)

a well-studied time-delay system, for s 2 10; 20½ �. In this pa-

rameter range, it is known that the system undergoes several

transitions between periodic and NPC chaotic solutions28

(see Fig. 10). Note that unlike the Rössler system, the

Mackey-Glass equation describes a time-delay system, i.e.,

an infinite-dimensional dynamical system.

Figure 11(a) shows the behavior of the maximum Lyapu-

nov exponent with changing control parameter s. For s> 16,

the Mackey-Glass system switches back and forth between

periodic limit-cycle oscillations (k1¼ 0) and chaotic solutions

(k1> 0). However, the phase diffusion coefficient D starts

increasing from almost zero to non-zero (but still very small)

values only at somewhat larger s [Fig. 11(b)], pointing to a

gradual loss of phase coherence with rising control parameter.

We note that this finding is distinctively different from those

made for the Rössler system, where the system undergoes a

rather sharp transition from PC to NPC chaos. The behavior

of the coherence index CI [Fig. 11(c)] based on the standard

Hilbert phase even shows a clear transition towards signifi-

cantly positive values before the establishment of the first cha-

otic solution. This fact is clearly related to the specific

geometry of the attractor forming a small secondary loop

structure after about s¼ 15 in the (x(t), x(t� s))-plane [see

Fig. 10(c)]. Finally, GCF [Fig. 11(d)] shows a sudden drop at

s> 13 (due to the presence of a period-doubling bifurcation86

leading to marked changes in the RT distribution of the

periodic solutions), followed by a clear downward trend for

further increasing s.

The above findings are further supported by the proper-

ties of RNs resulting from example trajectories obtained for

different values of s (Fig. 12). As a first parameter interval of

interest, we consider s 2 13; 14½ �, which is characterized by

k1¼ 0, i.e., completely periodic dynamics. Here, all network

measures show a marked transition indicating the structural

changes of the underlying attractor corresponding to a

period-doubling bifurcation. Specifically, C and T show a

distinct drop from their values expected for periodic dynam-

ics (C ¼ T ¼ 0:75 (Ref. 50)), indicating the emergence of a

structure of higher geometric complexity [cf. Figs. 10(a) and

FIG. 9. As in Fig. 7 for a fixed recurrence threshold, e¼ 0.2776 (corre-

sponding to RR� 0.03 at a¼ 0.15).

TABLE II. As in Table I, results obtained with a fixed recurrence threshold

e¼ 0.2776.

PC NPC P

C 0.61 (0.02) 0.61 (0.03) 0.6823 —

T 0.62 (0.03) 0.68 (0.02) 5.31	 10�12 ***

L 7.70 (0.43) 7.05 (1.01) 9.26	 10�9 ***

R 0.85 (0.05) 0.86 (0.05) 0.5465 —

rC 0.08 (0.01) 0.10 (0.01) 3.29	 10�11 ***

rlog b 0.69 (0.07) 0.82 (0.04) 7.23	 10�12 ***

cC �0.44 (0.71) �1.52 (0.53) 3.99	 10�9 ***

clog b �2.15 (0.81) �3.00 (0.38) 1.01	 10�6 ***

FIG. 10. Phase portraits of the Mackey-Glass system (14) for (a) s¼ 13, (b)

s¼ 13.5 (after the period-doubling bifurcation), (c) s¼ 15.5, and (d) s¼ 17.

013115-9 Geometric and dynamic perspectives Chaos 22, 013115 (2012)



10(b)]. A similar marked drop is shown by L, which is

related to the emergence of geometric “shortcuts” after

establishing the second loop of the periodic orbit. In contrast

to C and T , this feature persists for higher s. In addition, R
decreases abruptly at the period-doubling bifurcation.

Regarding the local network properties, we find a sharp

increase in the standard deviation and a decrease in the

skewness of both clustering coefficient and log-betweenness

distributions. We explain this observation by the fact that on

the original single-loop limit cycle (with its rather homoge-

neous density), the local clustering coefficient does not vary

much ðrC � 0Þ, whereas due to the emergence of the second

major loop, there exists some “cross-over region” within

which the neighborhood of state vectors has distinctively dif-

ferent shape and, hence, clustering properties in the recur-

rence network. It is interesting to note that at the same time,

the associated skewness changes its sign as the period-2 orbit

successively develops (s< 14) before getting back to

positive values for s> 14.

A second interesting parameter interval with distinct

changes of the attractor geometry is s 2 14; 16½ �, which still

refers to the periodic regime of the Mackey-Glass system

(k1¼ 0). As shown in Fig. 11(c), at s� 15, the two-loop peri-

odic orbit starts forming a cusp in the (x(t), x(t� s))-plane

and, subsequently, an additional minor loop structure

[Fig. 10(c)], so that the associated Hilbert phase variable

does not monotonously increase anymore. In parallel to this,

for s> 14, both C and T increase beyond the expected values

for a periodic orbit, although the maximum Lyapunov expo-

nent clearly displays the presence of a limit cycle. This

behavior results from an accumulation of probability on the

trajectory close to the cusp [cf. Fig. 13(c)]. Since such an

accumulation has a similar effect to a recurrence network as

a fixed point ðCv ¼ 1Þ, the overall values of the transitivity-

based measures increase. The same applies to L, where the

presence of an accumulation region leads to an overall reduc-

tion of the effective e value to maintain the same recurrence

rate RR. Similar considerations explain the increase of stand-

ard deviation and absolute value of skewness associated with

the log-betweenness distribution.

While so far only bifurcations between different peri-

odic regimes have been discussed, for larger values of s, we

observe that the transition from periodic to chaotic behavior

is characterized by a sharp decrease in all four considered

global recurrence network measures [Figs. 12(a)–12(d)],

which is consistent with the results obtained for the Rössler

system47 (see Fig. 7) as well as other continuous-time

dynamical systems. We note that unlike in other systems,

both the periodic orbit prior to the transition point and the

emerging chaotic solution are not phase-coherent (Fig. 10).

In this respect, the Mackey-Glass system does not allow

studying geometric and dynamic differences between PC

and NPC chaotic solutions, but serves as an illustrative

example for the presence of noncoherent (periodic and cha-

otic) oscillations and their impact on recurrence based

characteristics.

FIG. 12. Behavior of RN-based characteristics for the Mackey-Glass system

in dependence on the parameter s (RR¼ 0.03, embedding parameters as in

Fig. 11(d), error bars indicate standard deviations obtained from 100 inde-

pendent realizations of the system for each value of a): (a) global clustering

coefficient C, (b) network transitivity T , (c) average path length L, (d) assor-

tativity coefficient R, and [(e) and (f)] standard deviation and [(g) and (h)]

skewness of the local clustering coefficient and logarithmic betweenness

centrality (rC , rlog b, cC , and clog b, respectively).

FIG. 11. Behavior of different statistical characteristics for individual realiza-

tions of the Mackey-Glass system in dependence on the parameter s: (a) Larg-

est Lyapunov exponent k1 estimated from the variational equations of a

discretized version of the system with 10 000 variables representing (x(t),
x(t� s/9999), …, x(t� s)), (b) phase diffusion coefficient D and (c) coherence

index (CI) obtained via Hilbert transform of x(t). In addition, (d) shows the

mean generalized coherence factor GCF obtained from 100 realizations for

each value of s (RR¼ 0.03, embedding dimension 3 and delay s/2, i.e.,

xi¼ (x(ti), x(ti� s/2), x(ti� s))).
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VI. CONCLUSIONS

In summary, we have proposed a statistical framework

for characterizing phase-coherent and noncoherent chaotic

oscillations, which takes specific geometric information

about the underlying attractor into account. For this purpose,

we have utilized the recently developed concept of RN anal-

ysis. Our results demonstrate that statistical measures based

on the recurrence properties of dynamical systems do not

only distinguish between periodic dynamics and chaos,43,47

or quasiperiodic dynamics and chaos,17–19 but also between

different appearances of chaotic dynamics characterized by

phase-coherent and noncoherent oscillations, respectively. In

this spirit, RN analysis provides a widely applicable tool for

studying complex systems from a geometric point of view,

which supplements existing closely related techniques such

as RQA and recurrence time statistics which characterize

complementary properties directly related with the underly-

ing dynamics. Specifically, besides studying systems

described by a finite set of ordinary differential equations, it

has been demonstrated that RN analysis is also applicable

for describing changes in the attractor geometry of time-

delay systems such as the Mackey-Glass equation or the

piecewise linear time-delay system studied in Ref. 87. How-

ever, it is not yet possible to unequivocally distinguish

between phase-coherent and noncoherent chaos exclusively

based on individual characteristics of RNs such as network

transitivity. The identification of a structural criterion for a

corresponding discrimination will be a topic of our future

work.

For the Rössler system, we have studied the transition

between spiral- and screw-type chaos in some detail, which

is common to several chaotic oscillators and leads to a

change from phase-coherent to noncoherent oscillations. The

corresponding effects on the attractor geometry and, as a

result, RN characteristics have been discussed in detail. As a

particular result, we have shown that the recently given inter-

pretation of the RN transitivity T , as a measure for the effec-

tive attractor dimension, does not take statistical effects due

to a very heterogeneous distribution of residence probability

on the attractor into account, which has been largely over-

looked in previous research.50

In general, we find that, at least for the Rössler system,

statistical characteristics based on the distributions of local

RN measures allow an equal or even better discrimination

between phase-coherent and noncoherent chaos than some of

the global network quantifiers. Moreover, both types of char-

acteristics outperform the studied statistical characteristics

based on the recurrence time distributions. We emphasize

that RN measures probably behave so well because they

explicitly characterize geometric attractor properties in phase

space (i.e., no dynamic characteristics), which do strongly

change at the transition between phase-coherent and nonco-

herent chaos. In this respect, they are particularly useful for

obtaining a corresponding discrimination.
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11O. E. Rössler, Phys. Lett. A 57, 397 (1976).
12M. C. Romano, M. Thiel, J. Kurths, I. Z. Kiss, and J. Hudson, Europhys.

Lett. 71, 466 (2005).
13N. Marwan, M. Romano, M. Thiel, and J. Kurths, Phys. Rep. 438, 237

(2007).
14D. V. Senthilkumar, K. Srinivasan, K. Murali, M. Lakshmanan, and

J. Kurths, Phys. Rev. E 82, 065201 (2010).
15R. Suresh, D. V. Senthilkumar, M. Lakshmanan, and J. Kurths, Phys. Rev.

E 82, 016215 (2010).
16J.-P. Eckmann, S. O. Kamphorst, and D. Ruelle, Europhys. Lett. 4, 973

(1987).
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