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Recent studies of brain connectivity and language with methods of complex networks
have revealed common features of organization. These observations open a window to
better understand the intrinsic relationship between the brain and the mind by studying
how information is either physically stored or mentally represented. In this paper, we
review some of the results in both brain and linguistic networks, and we illustrate how
modelling approaches can serve to comprehend the relationship between the structure of
the brain and its function. On the one hand, we show that brain and neural networks
display dynamical behaviour with optimal complexity in terms of a balance between
their capacity to simultaneously segregate and integrate information. On the other
hand, we show how principles of neural organization can be implemented into models of
memory storage and recognition to reproduce spontaneous transitions between memories,
resembling phenomena of memory association studied in psycholinguistic experiments.

Keywords: brain networks; semantic networks; complexity; memory latching; free association

1. Introduction

In recent years, a novel field has emerged which aims at the analysis,
characterization and modelling of intricate interrelations between the components
that form complex systems. Networks of both natural and artificial systems are
often coined with the term complex because their topology is neither regular
nor random, they contain some degree of organization that is not trivial at
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first sight. Systems of diverse origin often share similar topological properties
indicating the presence of common mechanisms of formation and functional
organization [1-3]. Such is the case of neural and cortical networks [4,5], as
well as linguistic-related networks [6,7]. These observations open the door to
a promising framework which is gaining experimental strength: that one of the
ingredients to bridge the gap between the brain and the mind is to understand
how knowledge is organized. This comprises how information is either physically
stored and mentally represented.

Physiological evidences and cognitive theories have long foreseen high-
level cognitive functions as emerging from the interplay of distributed but
interconnected neural networks [8-13]. The novelty is that only during the last
two decades have reliable data of anatomical connectivity been collected and
analysed [4,5]. On the other hand, uncovering the structure of the mind, i.e.
the organization of knowledge at the mental level, is rather challenging. Beyond
technological limitations, the challenge lies on the conceptual difficulty of defining
what the observables are and how to quantify them. Percepts, concepts, words,
memories of past experiences, feelings, etc., are all elements of the mental world,
and they are interrelated. To some extent, the manner in which those items are
associated at the mental level is intrinsically related to the manner in which
memories are stored, retrieved and associated at the neural level. As explicit
memories depend on the personal history of individuals, they are unsuitable for
experimental study and statistical characterization. On the other hand, languages
are abstract mental objects with their own rules, distinctive constituents (words)
and are shared by large human populations. Therefore, language and the words
encoding conceptual memories form a suitable experimental window through
which the organization of the mind can be explored.

In this paper, we summarize present knowledge on anatomical and linguistic
networks. We describe their common properties and we illustrate how modelling
of memory storage and retrieval in neural-like networks emerges as a promising
approach to shed light into the elusive problem of linking brain and mind. In §2, a
concise introduction to complex networks and graph theory is provided. Section 3
summarizes the physical organization of the nervous system at different scales,
from neuronal assemblies to the macroscopic connectivity between different parts
of the brain. By means of dynamical simulations, we show that the modular
and hierarchical architecture of neural networks enhances the complexity of
dynamical processes they host. In §4, the properties of linguistic networks are
reviewed with a particular focus on free-association studies. A model is introduced
that produces spontaneous retrieval of memories. The transition probabilities
between the memories allow us to generate simulated networks of free association
whose properties are comparable to the characteristics of empirically obtained
free-association networks.

2. Complex networks in a nutshell
Many natural and artificial systems are composed of multiple elements whose
interrelations can be represented as a graph. This abstract representation
provides the system with a form (a topology) that is a subject of mathematical

characterization and statistical description. A graph is composed of nodes that are
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connected by links. The nature of the links differs depending on the system under
study. They can be physical entities, such as the cables connecting a network of
computers, or the axonal projections between neurons. Often, they represent more
abstract interactions, e.g. the friendship ties between a group of humans or the
semantic relationship between words. Graphs are represented by an adjacency
matrix A, whose elements A;; =1 if there is a link connecting the node number ¢
to node number j; otherwise, A;; =0. The matrix entries may take either integer
or real values, encoding the strength of the link between the two nodes.

In order to uncover the topological architecture of a network, many statistical
descriptors are applied to the adjacency matrix, allowing the organization of the
network to be scanned through at different scales. The degree k(i) of a node i
is the number of nodes to which the node is connected. The distribution of the
degrees p(k) informs about the heterogeneity of nodes we can find in the network.
In a regular lattice, all nodes have the same number of neighbours and hence they
are indistinguishable. Many real networks display a scale-free degree distribution,
meaning that most of the nodes have few connections and only a few nodes have
many neighbours.

Other popular measures include the clustering coefficient C' and the average
path length [. The clustering characterizes the transitive probability that two
nodes are connected to each other, provided they have a common neighbour. In
social terms, it is well known that two persons are more likely to know each
other, provided they have a common friend. In a network, the distance between
two nodes d;; is quantified by the number of links crossed to travel from one node
i to another node j. If there is a link connecting the two nodes, then d; =1. If
there is no direct link but it can travel from 4 to another node & that is connected
to 7, then d;; =2, and so on. If there is no path to travel between two nodes, then
they are at an infinite distance and d;; = oco. The average path length [ is the
average distance between all pairs of nodes.

Networks usually contain distinguishable groups of nodes, named modules or
communities. The nodes within a module are densely connected to each other,
but less likely connected to nodes in other modules. In a similar manner in which
nodes group into modules, the modules can also join to form larger modules,
giving rise to hierarchically nested structures.

3. Anatomy of brain networks

The nervous system of mammals forms a vast complex network with different
scales of organization [14]. At the microscopic level, we find individual neurons
and their local neighbours forming ordered structures such as layers and micro
columns. At the other extreme, we find the large components of the brain:
brainstem, thalamus, hippocampus, cerebral cortex, cerebellum, etc. These
components are interconnected with each other. Uncovering those patterns of
local and global interconnectivity and their functional influence on the working
brain are very relevant questions that we are starting to understand. For example,
the diversity in the microstructure (cytoarchitecture) of different brain parts
may respond to the kind of specialized signal processing they perform [15], and
the large-scale connectivity may support the intrinsic necessity of the brain to
simultaneously segregate and integrate information [16,17]. While some parts
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of the brain extract features of the sensory input, perception and awareness
emerge from the combination of those features [18,19]. In this section, we will
review recent discoveries on the neural connectivity and their potential functional
implications. We will focus on data that have been studied through graph analysis.

(a) Architecture of corticocortical connectivity

By tracing the propagation of dyes injected into the brain, the axonal fibres
between different regions can be revealed. Compilation of reported tract-tracing
experiments led, in the early 1990s, to connectivity matrices between cortical
areas in the brains of cats [20] and macaque monkeys [21,22]. The invasive
and toxic nature of these experimental techniques makes them unsuitable for
application in humans. Large-scale connectivity in the human brain might be
obtained through non-invasive imaging techniques [23]. Although the reliability
of these techniques to achieve accurate maps is difficult to evaluate, they serve
as an initial draft of the human large-scale connectivity.

Recent analysis of the corticocortical networks of the cat and macaque have led
to the discovery of striking characteristics of functional relevance. In comparison
to most natural networks analysed in the literature of complex networks, the
corticocortical networks are densely connected. In the cortex of the cat, 30 per
cent of the pairs of areas are connected by direct links, and 60 per cent are
separated by only two processing steps [24]. As a consequence, the information
processed in any cortical area is highly accessible to other areas. Cortical networks
are referred to as small-world networks because of this closeness and accessibility
between cortical areas [25-27]. Additionally, information can flow through many
alternative paths, which significantly enhances the richness and complexity of
the information processing capabilities with a limited set of resources [24].
These observations support the idea that the cortex is a highly cooperative and
interactive system, in contrast to the generally accepted conception that regards
cortical function as a collection of functional regions, each highly specialized and
rather independent of the processing of other areas.

The regions in the cortex of the macaque and cat are arranged into a few
distinguishable modules [25,28]. The areas in one module are more frequently
connected with each other than with areas in the other modules. Additionally,
the modules follow functional subdivisions, i.e. they contain areas known to be
specialized in the processing of information of the same modality: visual, auditory,
somatosensory, motor and frontolimbic. This modular organization represents
the partial segregation of information in the cortex and permits that sensory
information of different modalities be processed in parallel, i.e. simultaneously by
different parts of the cortex. On the other hand, the emergence of a coordinated
perception and awareness requires that the multi-sensory information is combined
(integrated). How and where this happens is still a source of debate. Further
analysis of these corticocortical networks has shed new light onto the discussion.
In the cortical network of the cat, a small set of areas have been found that could
be responsible for such multi-sensory integration [16,24,29,30]. These cortical hubs
have both afferent and efferent projections to areas in all the modalities and they
are densely interconnected with each other, forming a module of their own on
top of the hierarchy of the cortical network [17,31]. This observation strongly
suggests that while sensory information is processed by the modally related
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modules, it is the function of the cortical hubs to collect and cooperatively process
the information of different modalities, giving rise to multi-sensory integration
necessary for perception and awareness. An important observation is that, while
areas of similar functions are usually located close to each other in the cortical
surface, the hubs are dispersed, forming a delocalized module, only detectable
through the analysis of the large-scale connectivity.

(b) Complexity of neural and brain network dynamics

The neural networks serve as the physical substrate in which the dynamical
activity and the information processing of a working brain happens. On the
other hand, dynamical activity can influence the architecture of the network
by processes of learning and evolutionary adaptation. Hence, the architecture of
cortical networks described above is the evolutionary consequence of the interplay
between the functionality they can support and the functional necessities of
the brain. Modelling of neural activity helps explore the range of dynamical
behaviours that are possible within a given network. Neurones and cortical
areas are simulated by mathematical neuronal models, and the complexity of
the resulting network dynamics is quantified. Such models simulate the neuronal
activity in the absence of external stimulation and can be considered as models of
the ‘resting-state’ activity [16,29,30]. Performing the simulations require adequate
selection of models for the neuronal dynamics and for the synaptic binding,
otherwise the resulting dynamics could be insensitive to the underlying network
topology [32].

In the following, we simulate the neuronal network of the worm Caenoharbditis
elegans and the corticocortical network of the cat. The nervous system of
the C. elegans consists of approximately 270 neurons and 3000 synapses and
electrical junctions between them [33-35]. We simulate its neurons by noisy
Hodgkin—-Huxley neurons [36] and the cortical areas of the cat by neural-mass
models [37,38]. The time series obtained for each node during the simulation are
used to quantify their dynamical influence. In particular, we compute the pairwise
cross-correlation R and summarize the results into a correlation matrix, figure
1.

Given the distribution of the correlation values P(R;), we characterize
the complexity of the dynamical influences as the Shannon entropy of this
distribution,

1 m
S=—-—— P;log P, 3.1
Sm ; 110g 17, ( )

where S, =logm and 1/5,, is a normalization factor for the number m of
bins used to compute the distribution. By increasing the coupling strength
between the nodes, the network dynamics move from non-synchronization to
complete synchronization [39]. In this process, the distribution P(R;;) shifts
from a very narrow peak close to (R;)=0, to another narrow peak near
(Rj;) = 1. For intermediate values of the coupling, the network dynamics display
a balance between partial independence and partial synchronization. In this
regime, the values R are widely distributed, reflecting that the various levels
of synchronization and complexity are maximal.
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Figure 1. Correlation matrices of (a) the neural network of the C. elegans and (b) the corticocortical
network of the cat. (Online version in colour.)

In the literature, this balance has been quantified by a measure of ‘neural
complexity’ [40] that relies on information theoretical approaches. This measure
is suitable only for very small networks because it requires all the bipartitions of
the network for sizes n=2,3,..., N, where N is the number of nodes, to be found.
Zhao et al. [41] have shown that the definition of complexity in equation (3.1) is
consistent with neural complexity and can be very easily calculated for networks
of any size.

From the viewpoint of information processing, the regime of high complexity
is of particular interest. It captures the dynamical regime at which specialized
processing within the modules coexists with the capacity of the network to
integrate global information. It is thus natural to speculate whether the neural
network topologies have been optimized in the course of evolution to satisfy these
dynamical demands. We test this speculation by studying the variation of the
complexity measure S after perturbation of the network architecture. Therefore,
we perform a series of modifications in the network that aim to (i) eliminate the
integrative influence of the hubs and to (ii) decrease the capacity of the network
to segregate dynamics. See Zhao et al. [41] for further details.

Type I. We rewire the network to eliminate the integrative properties of the
hubs. First, we break the community of hubs by rewiring the links between
20 per cent nodes with the largest degrees while conserving their input and
output degrees. After this operation, the hubs no longer form a module. Second,
we rewire to randomize only the output links of the hubs while maintaining their
input degrees. Third, we randomize both input and output links, and the hubs
are all eliminated. In the rewiring process, the number of connections within
and between the modules and their direction are preserved. A link pointing from
community A to community B is rewired such that, after the rewiring, it still
points from A to B. As a consequence, the topological modularity is maintained,
but the community of hubs, and the hubs, are destroyed. Results are shown in
figure 2a,b.
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Figure 2. Complexity of the neural and corticocortical networks (filled star) compared with the
rewired versions. (a,b) Type I rewiring. Complexity S is shown as a function of the standard
deviation g of the node degree in the network. Breaking the community of hubs, filled black
square; destroying in-hubs, filled circles; destroying in- and out-hubs, open triangle. (¢,d) Type II
rewiring. S is shown as a function of topological modularity (k. Decreasing modularity, open
diamonds; increasing modularity, open circle. (a,c), C. elegans; (b,d), cat.

Type II. We rewire the network to modify its modular organization. To reduce
the modularity, links are randomly rewired. To enhance the modular architec-
ture, the inter-community links are rewired into the communities. For example,
in the cat cortical network, a link pointing from a node in the visual module to
a node in the frontolimbic module is redirected such that it points to another
node in the visual module. Results are shown in figure 2¢,d, as the variation of
complexity S depending on the modularity @; of the rewired networks.

In both networks, application of all the rewiring procedures proposed have the
effect of reducing the dynamical complexity, figure 2. These results confirm that
the current modular and hierarchical topology of the two networks are optimal
in terms of our complexity.

In this section, we have summarized the topological characteristics of neural
networks from a large-scale perspective. We have highlighted the importance of
their modular and hierarchical architecture as serving the functional necessities
of the nervous system to simultaneously process different modalities of sensory
information (specialization) and to integrate that information. By perturbing the
corticocortical network of the cat and the neural network of the C. elegans, we
have shown that evolution might have shaped neural and brain connectivity to
optimize dynamical complexity, supporting a balance between integration and
segregation.

4. Memory networks

The results reviewed in the previous section focus on the large-scale organization
of the brain and its capacity to work with sensory information from different
modalities. When studying particular functions of the brain, e.g. cognitive
function, one has to concentrate on smaller scales of description. The fundamental
role of the prefrontal cortex for cognitive processing has been widely documented,
in as much as the posterior cortex is important in the processing of sensory input.
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Regardless of the general principles of organization exposed above, the presence of
specialized but interconnected regions forming distributed networks of interaction
could be also valid across many neural scales. Studies of brain damage, as well
as functional imaging studies of healthy subjects have evidenced the existence
of dissociable neural systems that are specialized in representing knowledge
of different conceptual domains [42-44]: living or non-living things, man-made
tools, vegetables, animals, etc. On the other hand, micro-electrode recordings
have evidenced that memories are physically stored involving distributed and
overlapping networks of neurons, where individual neurons participate in more
than one memory [9,12,45,46].

At the mental level, memories are not isolated entities. Rather, they are
always embedded into broader contextual frameworks: let them be historical,
causal—effect relations, shared conceptual categories, etc. Memories may also be
associated with a word, with an image, with a sound, etc. The conceptual memory
of an apple is associated to a characteristic internal image of an apple, to the
word ‘apple’ and its phonetical sound. But it can also be associated with the
apple tree from which apples grow, with the grocery store we find them, with
apple pies or any other personal experience where apples have been involved.
This multiple contextual forms of associations, and the variability of personal
experiences make it very difficult to systematically study the architecture of the
mind. But there are windows through which we can look at it, for example, the
language. Languages are mental constructions with their own rules and structures,
and they are shared by large human populations. These characteristics, and
restricting to those conceptual memories representable by words, permit us to
statistically describe the interrelations between memories.

There are several approaches to construct linguistic networks, see Borge-
Holthoefer & Arenas [6] for further details. (i) In text analysis, the relation
between words is defined as the times they co-occur in the same sentence
or paragraph and the relative position they take, e.g. whether they appear
one after the other or before. Networks of co-occurrence and co-location are
extracted from text corpuses and they manifest lexical semantic affinities beyond
grammatical restrictions. (ii) Dictionaries provide another source for defining
the relations between words, connecting them if they are synonyms, antonyms,
etc. Note that these semantic relationships are the product of deliberate
classifications by lexicographer expertise. (iii) Feature production norms are
constructed by asking groups of participants about the characteristics of objects
and concepts. For example, an apple is a fruit, it can be round, it can be
red, it can taste sweet or sour, but it can neither be friendly nor rude. The
relationship between words is thus defined as the number of common features
they share. (iv) Finally, networks of free association are constructed by asking
participants to provide the first word that comes to their mind after a cue
word has been presented. Such networks are believed to capture principles of
memory organization because the responses of the subjects arise from a free
navigation of their mental space. Free-association networks have been collected
for English [47], French [48], Spanish [49,50] and German (Mellinger & Weber,
http://www.coli.uni-saarland.de/projects/nag/).

Despite the different constructions, all linguistic networks present three main
features [6,7]. First, they are sparse. Second, they all display small-world
properties [51,52] as encountered in other networked real and technological
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systems. This property means that these networks are well communicated:
it is easy to reach any given element from another one through very short
paths. Patients of Alzheimer’s disease display consistently larger path lengths
in their linguistic networks, revealing a loss of efficiency [53]. And third,
language networks are highly heterogeneous in their degree distribution with
near to scale-free decays, although some of them decay exponentially [54]. In
co-occurrence networks, the hub words correspond to functional words such as
articles and prepositions: a, and, for, of, etc. Polysemic words also appear as
highly connected.

Although the networked and statistical description of language is relevant
per se, to answer questions related to linguistic evolution, formation and learning,
it also helps to explore cognitive implications. From the standpoint of retrieval
of information, the small-world property represents a maximization of efficiency:
high clustering arises from the gathering of similar pieces of information, low
distances allow for fast search and retrieval. It strikes a balance between the
number of active connections and the number of steps required to access any node.
Community analysis of the free-association networks [6] reveals that words are
mentally arranged into well-defined communities. But these communities poorly
correlate with semantic classification of words, they contain words of distinct
semantic categories. This striking observation implies that, although memories
could be stored in the cortex following certain categorical relations as reviewed
above, the mental navigation processes are influenced by other relations between
memories beyond the semantic categories.

Several models have tried to capture the topological characteristics of language.
Most of them concentrate on the nature of language growth, learning and
evolution [55-57]. Shifting towards a cognitive interest, Borge-Holthoefer &
Arenas [58] studied the relationship between free associations and the semantic
categories through simple models of mental navigation. In the present paper, it
is our aim to glimpse beyond the purely linguistic interest and motivate lines of
research towards the convergence of neuroanatomy and cognitive science, through
the description of the structure of the brain and the storage of memories at the
physical level, and the organization of the memory associations at the mental
level. In the following, we present a model that simulates spontaneous transitions
between memories. The model consists of a group of interconnected Potts units
representing the physical connectivity. The system is entrained to recognize a
set of memories whose retrieval is characterized by the dynamics falling into a
particular attractor state. In contrast to other models of machine learning, here
the states are made unstable, permitting the system to jump from one memory to
another, a process that is comparable to the experimental free-association studies.

(a) A model of memory retrieval and association

The model was inspired by the work of Braitenberg [59], who noted that despite
local peculiarities, the cortex is characterized by the coexistence of two distinct
interacting systems: one with local and another with long-range connections.
Treves characterizes this distinction by choosing the Potts unit as the elementary
constituent of his network [60]. Instead of representing a single neurone, each
of these units stands for a local patch of cortex. Thus, the connection of the
Potts units results in a system that can be regarded as a global network of local
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subnetworks. Further inspired by Braitenberg & Schiiz [61], Treves proposed a
model of the cortex that resembles an associative memory machine. An auto-
associative network is characterized by recurrent collaterals and it has the ability
to store, as attractors, a finite number of memories. In this kind of network,
a memory is associated with a particular activity configuration of the whole
network, and it corresponds to local minima of the system’s energy landscape [62].
After entraining, when partial versions of the memories are presented, the network
dynamics are spontaneously attracted towards the activity pattern associated
with the configuration of the original memory.

The model is thought of as a network of local subnetworks. Being auto-
associative, both the global and the local networks are loaded with global
and local stored memories, respectively. In the model, the local subnetworks
are represented by linear Potts units. Each unit takes values from 0 to 1
along a fixed number S of directions (active states) and in one inactive state.
Each active state labels a local memory and the associated activation value
represents the correlation of the subnetwork configuration with that particular
local memory. The inactive state, instead, measures the inverse of the whole
activity of the subnetwork. If a patch of the cortex is not involved in the
representation of a particular global memory, its Potts unit will be completely
aligned to the inactive state. The activity vector of a Potts unit moves in
an (S + 1)-dimensional space with the only restriction that the sum of the
activation values in all the states is equal to one. In a model with N Potts
units, the long-range connectivity between the units is represented by the
binary adjacency matrix A;; of size N x N. The detailed configuration giving
rise to the memories is encoded into the weighted tensor J/]”fl where indexes
1,j=1,..., N are the Potts units and the indexes k,l=1,...,S5 + 1 are the states
of each unit. By acting on the J matrix, it is possible to shape the energy
landscape in which the system moves, determining automatically the global
memories.

To simulate a dynamical process of free association by spontaneous transitions
between memories, the attractors related to the memories need to become
unstable. Therefore, Treves [60] introduced an adaptive process into the model,
which generates instabilities. Each Potts unit activates according to the incoming
field produced by its neighbouring units. An adaptive threshold in the field
facilitates the spontaneous activation of silent units and obstructs the firing of
active units. After the retrieval of a memory, all active units increasingly feel
fatigue effects and tend to stop firing. As a consequence, the activity of the
network switches to a different configuration by falling into another attractor
state, and another memory is retrieved. As shown in Russo et al. [63], this
transition is controlled by the correlation between the physical representation
of the two memories in the cortex. The activation of units shared by the initial
and the second memory act as a cue for the transition. Treves calls this process
a latching transition.

Figure 3 shows an example of spontaneous latching dynamics. At time 0, an
external field drives the system towards one of the stored memories, randomly
chosen. After the correct retrieval of the pattern, the system adapts and makes
a transition to a new attractor. This new retrieved memory adapts in its turn
and acts as a cue for a new transition, and so on. In this manner, a sequence of
associations between memories spontaneously emerges.
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Figure 3. Latching chain: an example of a sequence of spontaneous memories retrievals after a
first cued recall. (a) The behaviour of the overlap of the system state with the stored memories
is represented in different colours and (b) the sequence of retrieved memories. (Online version in
colour.)

(b) Simulated networks of free association

For illustrative purposes, we consider here a simple long-range connectivity,
each Potts unit is connected with all other units. This pattern of connections can
be easily replaced by more biologically realistic topologies. We entrain the network
to recognize p =80 memories, each encoded by an N-dimensional configuration
vector £*, where u=1,...,p. The vectors are not completely random but share
some degree of correlation between them in order to facilitate the spontaneous
transitions. We run p? simulations with a duration of 30 latching transitions each.
Every simulation starts at a randomly chosen memory. We count the number of
times that the system jumps from one memory u to another » and summarize
the results into the transition probability matrix, P,,. Its entries are normalized

such that the row sum Zivz 1 Puw =1 for all u because the retrieval of a memory
is always followed by a transition into another memory. Hence, P, =1 only if
the system always switches to v after memory u has been active. The transition
probability matrix resembles the matrices of free association collected in linguistic
experiments and is considered in the following as the weighted adjacency matrix
of the network of associations between the p memories.

The network emerging out of the simulations, the P,, matrix, contains L = 1109
weighted links with values ranging from 0 to 1 due to the normalization. The
network is not fully connected because many memory pairs were not accessible to
each other by a direct transition. Graph analysis reveals that the latching process
has generated a complex network of free associations. The degree of the memories
is very inhomogeneous and ranges from 1 to 35 as shown in figure 4a,b. Many
memories are associated with a few others, and some memories are associated
with up to 43 per cent of the memories. These latter can be considered as
hub memories. The network displays small-world characteristics, also observed
in the empirical networks of free association. Its average path length is only
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Figure 4. Network properties of the simulated free associations. (a) Input and output degrees
of the N =80 memories reflect that memories tend to reciprocally activate each other. (b) Degree
distribution of the memories (bars) and degree distribution of equivalent random networks (dashed
line). (¢) Community analysis of the free-association network reveals 11 communities. All modules
contain nodes of different centrality, revealing internal hierarchies of memories. (Online version
in colour.)

[=2.00, very close to the value of equivalent random networks (lana = 1.87). It
also displays a large clustering coefficient of C'=0.41, which is 2.3 times larger
than the clustering of random networks.

We have performed a community analysis by use of the RADATOOLS software,
http://deim.urv.cat/ sgomez/radatools.php. Considering the weighted links, a
tabu search [64] followed by a refinement procedure by reposition detects 11
communities with a weighted modularity of @ =0.484. Four of the modules
contain only two or three nodes. The modular organization is followed by
a hierarchical ranking of the memories. Every module contains memories of
dissimilar importance, figure 4¢, where importance is quantified here by the
column sum of the elements in the P matrix. In terms of graph theory, this
measure is known as the input intensity of the node s, (u) = Zﬁ\; 1 Pyu. In this
particular system, it is proportional to the frequency with which a memory
is retrieved.

(¢) Effect of memory correlation on the pattern of free association

As described above, the connectivity between the Potts units is a simple
all-to-all connectivity. Hence, the emergence of a complex network of memory
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associations cannot be attributed to an underlying networked substrate. However,
in order to facilitate the transitions, we have entrained the system with correlated
memories. Conceptually speaking, these correlations can be regarded as an
external relatedness between the memories, for example, as if the corpus used
for a free-association experiment would be restricted to words of the same
semantic class. At the level of the Potts network, these initial correlations between
the memories result in structural correlations during the entrainment process,
resembling the similarity in cortical representation of two memories.

We quantify the correlation between the memory vectors &* as the overlap of
their elements and summarize the results into a matrix,

N
1
K=y Y 8(E0 ). (1)

All vectors share an intermediate or high correlation with K, values, between
0.55 and 0.72, figure 5a. The question is then, whether the complexity observed
in the network of associations is a trivial consequence of these initial correlations,
or it emerges from the dynamical process. To explore this possibility, we compare
the total correlation of the memories in the K matrix (row sum) to their degree in
the P adjacency matrix, figure 5. We find that there is only a weak correlation
between the two quantities, hence, the degree of association achieved by the
memories is not a trivial consequence of their initial correlation. We can extract
information about the dynamics from the global structure of the network but
not from a pairwise comparison between couples of memories. Deviations from
this trend are probably due to a history effect. Indeed, it is shown in Russo
et al. [65] that the transition probability between two memories is also affected
by the associative path followed by the system.

A community analysis of the K matrix detects three communities, although
their modularity is much lower, @ =0.206, than for the communities found in the
network of simulated associations. To find out whether the modules encountered
in the two cases are related, we compute their cross-overlap, quantified as the
number of common nodes. The result, as shown in figure 5¢, evidences that the
communities of the K matrix serve as seeds for the emerging communities of
associations, but do not fully determine them. The communities 1 and 2 of
the P matrix largely conserve the composition of the communities II and III
of the K matrix, but the nodes of community I end up widely dispersed across
the communities of the P network.

In summary, we have found out that the model presented here generates free-
association networks of artificial memories that share fundamental topological
similarities to experimentally acquired free-association networks. In this
illustrative case, the Potts units were all-to-all connected. However, the latching
process is capable of producing a complex network of memory associations,
beyond the organization imposed by the initial intrinsic correlations between the
memory vectors. The degree of association achieved by two memories is not a
trivial consequence of their initial correlation, but is influenced by the presence
of the other memories, sharing the physical space in which they are stored. A
pairwise comparison does not provide any direct understanding, but the network
approaches do reveal large-scale relationships.
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Figure 5. Relationship between the initial correlation of the memories and the emerging associations
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5. Summary and discussion

This paper is motivated by the old idea that the associations between mental
representations (either sensory and cognitive) are intrinsically related with the
manner in which memories are physically stored and dynamically retrieved in
the brain. Uncovering the organization of both the brain and mind is a difficult
experimental quest, but the last two decades have seen several advances on
both sides, particularly, since concepts and tools of complex networks have been
applied to study their organization. Here, we have reviewed those findings and
concluded that both neural and language-related networks share relevant common
properties: (i) a broad degree distribution containing hubs, (ii) small-world
properties, and (iii) an organization into modular and hierarchical structures.
On the other hand, we have outlined how network models serve to understand
the relationship between the structure and the function of the brain. In §3, we
have presented a simulation of the resting-state dynamics in the corticocortical
network of cats and in the neural network of the nematode C. elegans. By targeted
manipulation of their topology, we observe that their dynamical behaviour is
largely affected. This indicates that evolutive adaptation might have shaped the
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organization of these networks to favour their capacity to host complex dynamical
processes, in particular their ability to segregate and integrate information of
different sensory modalities.

In §4, we have revisited a model of memory storage and pattern recognition
proposed by Treves [60]. This model is inspired by the combination of local
and long-range projections found in corticocortical connectivity. It generates
a chain of spontaneous transitions between memories, and hence, emulates
processes of semantic free association. The simulated network of associations
displays topological similarities to experimental free-association networks: a
broad degree distribution, small-world characteristics and a modular and
hierarchical organization. In our illustrative example, we have considered that the
underlying physical substrate, the network of Potts units, is all-to-all connected.
Future implementations should include more realistic biological topologies as
those reviewed in §3. Other models of learning machines have explored the impact
of the underlying network topology [66-69]. However, their goal is restricted
to evaluate the performance of artificial neural networks to recognize learned
patterns. The approach presented here looks forward, to using machine-learning
models to simulate simple cognitive tasks and to compare them with the outcome
of real-life experiments with human subjects, at least at a statistical level.

In summary, we have reviewed experimental observations on the organization of
both brain and mind networks, and we have stressed their similarities. Further,
we have outlined some of the recent modelling approaches that aim to bridge
the gap between the structure and function of the brain. The reviewed results
indicate that we are at the beginning of fascinating times in which the paths of
neuroanatomy and cognitive science start to converge.
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