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Abstract

Synthetic biology is a relatively new research discipline that combines standard biology
approaches with the constructive nature of engineering. Thus, recent efforts in the field of

synthetic biology have given a perspective to consider cells as ‘programmable matter’. Here,
we address the possibility of using synthetic circuits to control protein dynamics. In particular,
we show how intercellular communication and stochasticity can be used to manipulate the
dynamical behavior of a population of coupled synthetic units and, in this manner, finely tune

the expression of specific proteins of interest, e.g. in large bioreactors.

PACS numbers: 05.45.—a, 89.75.—k, 87.18.Gh, 87.18.Tt, 87.18.Vf

(Some figures in this article are in colour only in the electronic version.)

1. Introduction: the potential of synthetic biology for
controlled protein production

In the past decade, synthetic biology has revolutionized the
concepts and approaches of engineering biological systems.
The growing understanding of cellular processes and the
potential that molecular biology techniques offer nowadays
have provided a solid basis for the development of this
research discipline. Its main focus is on the design of
sophisticated synthetic genetic circuits which should, in
the near future, be capable of controlling gene expression,
information processing, communication, etc.

In general, synthetic biology approaches the problems
from a novel, engineering perspective, which has already
led to the development and construction of various synthetic
devices and small circuit modules capable of performing
predefined tasks. Currently, these circuits include switches
(Gardner et al 2000, Kramer et al 2004, Ham et al 2008),
cascades (Hooshangi et al 2005), pulse generators (Basu
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et al 2004), oscillators (Elowitz et al 2000, Atkinson et al
2003, Stricker et al 2008, Tigges et al 2009), logic gates
(Rinaudo et al 2007), etc. These synthetic units are not
derivatives of natural circuits, but are engineered designs
that could function independently of the host cell and
therefore offer the opportunity to study specific functions and
signaling pathways for which limitations occur in the natural
environment. Thus, these circuits can serve to control gene
expression, protein function or metabolism. Additionally,
most of the existing units can also reproduce or mimic
given cellular behavior. This, on the other hand, offers the
possibility of gaining valuable information about the design
and functionality of natural genetic circuits.

However, most of the circuits designed so far have
been fairly simple and directed generally at executing
specific functions in isolated cells. This could further lead to
controlled isolated behavior (e.g. the synthesis of a specific
protein can be regulated if the expression of the corresponding
gene is placed under the control of a synthetic circuit—a
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switch or an oscillator). The practical application of the
synthetic modules, on the other hand, requires a larger
functional synthetic system, which could be programmed to
execute various tasks in a cellular environment. Thus, the
challenges that the synthetic biology target disciplines (such
as chemical and pharmaceutical engineering) are imposing
on current research in this field necessitate substantially new
design principles and an improved scientific understanding
of the biological environment. This implies the development
of means of (synthetic/artificial) communication between
separate cells, as a way to partially bridge the problem of
regulated dynamical behavior of a cellular population. The
design of multicellular systems that can exhibit a finely tuned
coordinated behavior is a major actual challenge for synthetic
biology (McMillen et al 2002, Garcia-Ojalvo et al 2004,
Ullner et al 2007, Danino et al 2010). By constructing and
analyzing synthetic multicellular systems that use artificial
signaling, we can address the question of controlling a
population’s dynamical behavior and, in this manner, address
the question of controlling the expression of proteins of
interest. We have shown recently (Koseska et al 2007a, Ullner
et al 2008, Koseska et al 2010) that multi-stability and
multi-rhythmicity are inherited properties of synthetic circuits
coupled via a specific type of quorum-sensing mechanism,
allowing the synthetic system to exhibit high adaptability, as
is typical of natural systems.

Following this line of research, here we show how
intercellular communication can be used to control protein
dynamics. The subject of our study is a system consisting of
synthetic oscillators (Kuznetsov et al 2004) coupled via an
intercellular mechanism, which in turn is able to establish
controlled expression of constant proteins with strictly
regulated concentration values. The usage of oscillating units
for the control of protein production is important, since a
vast range of proteins that govern fundamental physiological
processes, such as insulin secretion (Tsaneva-Atanasova et al
2006), cell cycle and circadian rhythms (Lloyd et al 1990,
Gonze et al 2005, Locke et al 2005), display oscillatory
behavior. Moreover, the control of protein production we
propose here does not depend on the topological structure of
the system: we investigate regulatory mechanisms in globally
as well as in locally coupled synthetic systems. The latter
allows also a spatial, in addition to the dynamical, regulation
of the protein production. In the context of gene expression
regulation, we also discuss the necessary conditions under
which noise can regulate the dynamical behavior of the
system.

2. Model of the synthetic multicellular system

We consider a model of hysteresis-based relaxation genetic
oscillators coupled via a quorum-sensing mechanism
(Kuznetsov et al 2004). The oscillator is constructed by
combining two engineered gene networks: the toggle switch
(Gardner et al 2000) and an intercell communication system
(Kobayashi et al 2004, Fuqua and Greenberg 2002). The
synthesis of the two repressor proteins, which constitute the
toggle switch, is regulated in such a way that the expression of
both genes is mutually exclusive, and organizing bistability.
The second network is based on the dynamics of an

autoinducer (AI), which, on the one hand, drives the toggle
switch through a hysteresis loop and, on the other hand,
provides intercell communication by diffusion through the
cell membrane.

The time evolution of the elements in the system is
governed by the following dimensionless equations (for
details, see Kuznetsov et al (2004)):

—(Lui =aj f(v;) — u; +azh(w;), (D
t
dv;
d—l; =ap g(u;) — v, 2
dwi
y =8(C{4g(bﬁ)_wi)+2d(we_wi)’ (3)
dwe  de &
=N ;(wi — we). 4

where N is the total number of cells (oscillators), u; and
v; represent the proteins from which the toggle switch is
constructed in the ith cell and w; represents the intracellular
and w, the extracellular Al concentration (figure 1). The
mutual influence of the genes is defined with the following
functions:

n
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where B, n and y are the parameters of the corresponding
activatory or inhibitory Hill functions.

In equations (1)—(4), the dimensionless parameters o
and «; regulate the repressor operation in the toggle switch,
a3 the activation due to the Al and a4 the repressing of the
Al The coupling coefficients in the system are given by d
and d. (intracellular and extracellular) and depend mainly on
the diffusion properties of the membrane, as well as on the
ratio between the volume of the cells and the extracellular
volume (Kuznetsov et al 2004). If the parameter ¢ is small
(e < 1) (Kuznetsov et al 2004), as in our case, the evolution
of the system splits into two well-separated timescales: a fast
dynamics of u;, v; and a slow one of w;. Due to this presence
of multiple timescales, the system can produce relaxation
oscillations.

The intercell signaling in this model is organized through
the slow recovery variable. As is known from oscillation
theory, such coupling has phase-repulsive properties and can
be referred to as inhibitory. However, such organization is
not only characteristic of globally coupled systems, but can
also be realized in a system where the coupling has local
properties. We envision, for example, a set of synthetic
oscillators organized in a ring, where the following equation
substitutes equations (3) and (4) from the previous model:

dw;

d_tl =e(os g(ui) — w;) +2d (Wi +wi—1 —2w;).  (5)
Such spatial organization of the synthetic units has a
significant influence on the dynamics of the system, which we
investigate next.
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Figure 1. Schematic diagram of the network of genetic relaxation oscillators. u, v and w denote the genes and P;, P, and P; the

corresponding promoters. Al refers to the AI molecules.

3. Results and discussion

3.1. Control of protein production in a population of identical
synthetic circuits

In our previous work (Koseska et al 2007a), we have shown
that multi-rhythmicity and coexistence of several attractors is
a typical property of the globally coupled system (equations
(1)—(4)). The main manifestation of multi-stability for systems
of globally coupled oscillators is clustering, defined as a
dynamical state of the system characterized by the coexistence
of several subgroups, where the oscillators exhibit identical
behavior (Golomb et al 1992, Okuda et al 1993). Here, two
separate cluster formations are possible: steady state and
oscillatory clusters (for a detailed explanation, see Koseska
et al (2007a)). In this work, we will mainly elaborate on the
steady state clusters, and in particular the oscillation death
(OD) phenomenon, since it is responsible for the production
of constant levels of protein concentration in an oscillating
population.

The OD phenomenon was initially found by Prigogine
and Lefever (1968) for two identical Brusselators coupled
in a diffusion-like manner. Their interaction can break
symmetry (via a pitchfork bifurcation), which leads to a
stable inhomogeneous steady state (IHSS). Furthermore, it
has been shown theoretically that OD is model independent,
persisting for large parametric regions in several models of
diffusively coupled chemical (Bar-Eli 1985) or biological
oscillators (Tsaneva-Atanasova et al 2006, Kuznetsov et al
2004, Koseska et al 2007a, Ullner et al 2007, Shpiro et al
2007). Experimental results reported by Dolnik and Marek
demonstrate the extinction of oscillations in chemical reactors
coupled by mutual mass exchange (Dolnik and Marek 1988).
Later, Crowley and Epstein demonstrated for two coupled,
slightly nonidentical chemical oscillators that the basis for the
OD is a specific, vector-type coupling, namely coupling via
a slow recovery variable (Crowley and Epstien 1989). Very
recently, OD has been experimentally observed in chemical
nano-oscillators (microfluidic Belousov—Zhabotinsky octane

droplets), diffusively coupled via signaling species (Br2 in
this case) (Toiya et al 2008). Moreover, the formation of
OD phenomena in discrete arrays of coupled nonlinear cells
has been also discussed in relation to stable nonuniform
spatial pattern formation, when independent cells have only
a unique stable state. In this context, it was shown that OD
can arise in a circular array whose group of symmetries is the
dihedral group D», of the regular 2n-sided polygon. Thus, the
symmetric patterns (equivalent to the two branches of the OD
solution) can be determined by a linear analysis of the D,,
symmetry of a circular array (Epstein ef al 1993).

Identical oscillators engaged in OD in the synthetic
system we analyze here are distributed between two clusters,
each of them being in a steady state, which corresponds to two
different but constant protein levels. For a synthetic system
of N coupled cells, we have previously found the existence
of (N — 1) possible different distributions of the oscillators
between these two clusters, each characterized by a shift in
the protein production level (Koseska et al 2007a), as shown
in figures 2(a) and (b).

Thus, the production of specific protein concentration
levels can be controlled via the dynamical behavior of the
population and the possibility for clustering, when using
diffusive coupling realized through the slow variable as a
mechanism for communication between distinct synthetic
units. Moreover, the percentage of cells distributed in the
lower and/or in the upper OD cluster depends on the
parameter choice: lower «; values for which OD is established
ensure the majority of cells to produce lower concentration
values and, vice versa, high «; values allow most of the
oscillators to populate the upper clustering level, and in
this way, ‘direct’ the production of, in particular, high
concentration values. The possibility of fine control over
the protein production in interacting cellular populations
using only one of the parameters (here we use o) in
the system opens up a novel horizon in synthetic biology
research: one could engineer a synthetic system where not
only the concentration levels could be manipulated, but also
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Figure 2. (a) Examples of different distributions of the oscillators in the steady state clusters for a system of N = 4 cells (for the system of
equations (1)—(4)). From left to right: distribution 1|3/, where 1 oscillator occupies the upper level and 3 the lower one; distribution 2u|2;
and distribution 3u|1/. Note the different protein levels for different oscillator distributions. Parameters: ¢ = 0.01, ¢y =3, 0 =5, a3 = 1,
as=4,=n=y =2,d=0.3 and d. = 1. (b) Bifurcation chart showing the stable cluster decompositions in the OD regime for the
system of N = 4 elements. Each of the OD clusters is stabilized via a Hopf bifurcation, HB (for simplicity, here we denote the positions of
the HBs for only one of the clusters). Note that the bifurcation chart is not complete, depicting only branches where stable OD cluster
decompositions exist. Here and in the following charts, thin solid lines denote the homogeneous steady state (HSS), thick solid lines denote
the stable inhomogeneous steady state (OD) and dashed lines denote the unstable steady state.

the percentage of cells in the population producing specific
protein concentrations.

3.2. Control of protein dynamics in a heterogeneous
population

Through the investigation of coupled identical units, we have
shown that synthetic circuits in the OD mode are a promising
tool for cell function regulation, because they can provide for
stable diversity in protein production. However, identical cells
represent a limiting case of studying biological systems, since
almost all biological processes, especially those that occur on
a genetic level, are noisy in general. Thus, many regulatory
parameters differ when comparing separate cells. Therefore,
we show the necessary conditions for OD occurrence and,
in this manner, the regulation of protein production in a
synthetic system of non-identical elements, as an example
of natural heterogeneity. Since the dynamic behavior of the
circuit is regulated by «;, we assume that the detuning
between different cells is expressed in the variability of the
o parameter values, thus defining the detuning measure
between different cells as d;; = af’) /ozf] ). & determines the

expression strength of the gene and is proportional to the
concentration of plasmids present in the cell; subsequently,
it can be manipulated experimentally (Paulsson et al 2001).
For the generalized case of N coupled non-identical synthetic
units, as shown in Koseska er al (2009), the possibility of
controlling the production of specific constant protein levels
is still present, since the effect of clustering is ensured via the
phase-repulsive coupling. For OD, the system demonstrates
again two cluster decompositions, independently of N.
Moreover, OD dominates over given parameter ranges (in the
form of cluster formation), ‘pushing’ the oscillatory solutions
between the stable OD branches (figure 3). This phenomenon,
called oscillation death dominance (ODD), as reported in
Koseska et al (2009), can be additionally seen as a powerful
regulator of the synthetic networks’ dynamics in the case of
strong coupling.

It is important to note here that the OD phenomenon that
we discuss in this work is significantly different from other
types of coupling-dependent quenching of oscillations, which
are classified under amplitude death (AD) phenomena (Zhai
et al 2004, Herrero et al 2000) (the same is valid for ODD
and partial AD phenomena (Atay 2003b)). It has been proven
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Figure 3. Different stable cluster distributions for N = 4 coupled non-identical oscillators (the bifurcation branch for one oscillator is
plotted). From left to right: 1 oscillator located in the ‘(u)pper’ OD cluster and 3 in the ‘(I)ower” one—1u3/ distribution; 2u2/; and 3u1l
distribution. The oscillatory solutions (asymmetric oscillations) are ‘pushed’ between the stable distributions, establishing OD dominance.

@ _

Parameters: o\” =2.592, o\ =2.646, oV =

2.565 and d = 0.007. The solid (red) lines denote the stable limit cycle (stabilized between a

limit point (LP) and a period doubling bifurcation (PD)) and the dotted lines denote the unstable limit cycle.

that for sufficiently strong coupling and sufficiently large
variance of the distribution of the frequencies, the oscillators
pull each other off their limit cycles and into the origin, a
stable equilibrium point (Mirollo et al 1990), which is called
AD. Moreover, it has been shown that AD, in contrast to
OD, is stable also for delayed coupling (scalar or vector)
(Ramana Reddy et al 1998, Atay 2003a). Thus, AD results in a
homogeneous steady state (all oscillators in the system display
identical steady state behavior), despite the OD phenomenon,
which, as mentioned, is characterized by distinct steady state
levels. OD is, on the other hand, important from a biological
perspective, since it provides a stable heterogeneity in a
homogeneous medium. Here, we point out once again that
both the cluster distributions through which OD is manifested
(the upper and the lower steady state) are always stable in
the same parameter region. In contrast to this, in the general
bistable systems, the system can switch from the first to the
second stable state, which need not be symmetric with respect
to the stored energy.

3.3. Regulation of protein dynamics in systems
with distinct topology

The study of collective dynamical behavior of coupled
nonlinear oscillators has proven to be successful in describing
and understanding the properties of complex systems in
general. Moreover, in order to investigate and analyze
the functionality of complex networks, it is important to
understand the dynamics of basic building blocks with a
specific topology, since this enables the control not only
in the phase space, but also in the real space. It is known that
the diffusive coupling mechanism organized locally ensures
the presence of various rhythmogenic activities in the system
(Rabinovich et al 1999, Yang et al 2002, Koseska and Kurths
2010). Thus, we investigate such mechanisms through which
control over gene expression can be established in a ring of
locally coupled synthetic oscillators (detailed model described
via equations (1), (2) and (5)).

In this case, the number of stable dynamical regimes
increases significantly in contrast to the globally coupled
case. As a reminder, we have demonstrated in Koseska
et al (2007a) that the number of stable regimes for globally
coupled systems is dependent on the coupling strength d: for
d < 0.006, three stable regimes are present (in-phase,
anti-phase and asymmetric), whereas for larger coupling
values (d > 0.006), OD and in-phase oscillations are the
only stable solutions. Increasing the size of the system (the
number of oscillators) does not influence the number of
stable regimes, but is rather responsible for the presence
of additional stable attractors that appear as a result of
the possibility for different distributions of the oscillators
between different clusters in the anti-phase, asymmetric and
OD regimes (as shown in figure 2, for example). Considering
signaling mechanisms with local characteristics, on the other
hand, leads to the presence of an increased number of
stable regimes. Despite the coupling strength dependence, this
number is strongly influenced by the number of oscillators
present on the ring, which makes the complete classification
of existent dynamical regimes almost impossible to perform.
Therefore, by means of detailed bifurcation analysis, we
attempt to characterize a limited example here, namely a
system of N =8 identical oscillators, locally coupled on
a ring. For small coupling values (e.g. d =0.002), we
identified four separate regimes as stable, an OD regime and
three distinct oscillatory solutions (the complete bifurcation
diagram and the time series of OD and two of the oscillatory
solutions are given in figure 4).

The OD regime (stabilized between two Hopf
bifurcations, HB;1 >, as shown in figure 4(a)) is in this case
manifested as well in the standard, two-cluster decomposition
(figure 4(b)), and is a result of symmetry breaking of a
system via a pitchfork bifurcation. A different distribution
of the oscillators between the two clusters is again possible,
resulting in N — 1 separate stable attractors (as for globally
coupled systems). In contrast to the globally coupled case
however (where the presence of two Hopf bifurcations was
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Figure 4. Bifurcation structure for a ring of N = 8 oscillators, locally coupled (different colors denote different clusters). d = 0.0002 and
(b) @y =3.131, (c) ; =2.982 and (d) oy = 3.001. Other parameters are as in figure 2.

identified), here we have detected five Hopf bifurcations, three
of them giving birth to stable limit cycles. In particular, HB,
gives birth to a stable in-phase oscillatory regime, whereas
the limit cycles arising from HB, and HB; are characterized
by complex, asymmetric types of solutions. In figure 4(c), a
five-cluster decomposition oscillatory solution arising from
HB, is shown, with a distribution 2:1:2:1:2 between
different clusters, and figure 4(d) shows the oscillatory
solution arising from HBs. This regime is also characterized
by the presence of large- and small-amplitude oscillations
in one attractor. From the three-cluster decomposition that
is observed, two of the clusters perform large excursions
and oscillate in anti-phase, while the other one oscillates
near the steady state with small amplitude. The distribution
of the oscillators between the separate clusters is 3:3: 2.
Another characteristic feature of this regime is the presence of
synchronization of the order of 2 : 1 between the asymmetric
clusters. Again, different distributions of the oscillators
between different clusters in both asymmetric oscillatory
regimes are possible, resulting in different periods and
amplitudes of oscillation of the distinct clusters (results not
shown here).

Increasing the coupling strength in the case of locally
coupled oscillators leads to the appearance of novel
manifestation of the OD regime. In particular, for d = 0.006,
despite the standard, two-cluster decomposition, we observe
OD manifested as three- and five-cluster decompositions
(figures 5(b) and (c)). As seen from the bifurcation chart,
both solutions are the result of a symmetry breaking of the
system via two separate pitchfork bifurcations (PB; and PB,,
in figure 5(a)). The three-cluster decomposition (figure 5(b)),
stable between HByj/>, has a distribution 4:2:2 (of the
oscillators between distinct clusters). HBy3 and HBy4, on the
other hand, mark the stability of the five-cluster manifestation
of OD. Here, the ‘upper’ level consists of three and the ‘lower’
of two separate clusters, with an end distribution of 1:2:2:
2 : 1 oscillators between different levels. These are only two
examples of the possible manifestation of the inhomogeneous
steady state in the ring structure, which are stable with

respect to small perturbations. The number of possible
OD manifestations increases with increasing coupling and
the number of oscillators present in the system. This, in
turn, contributes to an increased variability in the synthetic
network. However, due to the specific topological structure,
separate cells are localized in space. Thus, a clear control of
the protein production in the system can be established.

3.4. Stochastic variability in systems of globally coupled
synthetic units

Experimental evidence shows that among the most important
factors affecting the performance of a cellular system within
a living organism are intercellular communication (McMillen
et al 2002) and noise (Elowitz et al 2002, Swain et al
2002). Moreover, the inherent stochasticity of biochemical
processes, which depend on relatively infrequent molecular
events involving a small number of molecules, is an essential
source of internal noise in biological systems. Additionally,
fluctuations originating from a random variation of one or
more externally set control parameters act as external noise.
Since the presence of noise is inevitable, the study of its
impact on the dynamics of the gene network is, of course,
very important. Thus, we explore here not only the effects
that noise has on the protein dynamics, but also the question
as to whether noise can contribute as a regulating factor in a
synthetic system, i.e. the constructive effects of noise.

For this purpose, the noise influence on the systems’
dynamics is represented via the noise term &, which models
the contribution of random fluctuations and is a Gaussian
white noise with zero mean. We consider noise intensity
that is rather small, not exceeding the order of 1072, hence
a sufficient motivation to use Gaussian noise and Langevin
equations. Thus, the contribution of the noise to the dynamics
of the system is modeled via

dwi _ (s g(ui) — w;) +2d(we — w;) +§;(1).  (6)

dr
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Figure 5. (a) Bifurcation chart displaying two different stable OD distributions. Manifestation of OD as a (b) three-cluster (¢; = 3.161) and
(c) five-cluster («; = 3.1) decomposition (different colors denote different clusters). d = 0.0006 and other parameters as in figure 2.

Numerical integrations are  performed  using
standard techniques for stochastic differential equations
(Garcia-Ojalvo et al 1999).

In systems where multiple stable attractors exist, noise
can induce a robust switching between them. For example,
a short noise pulse (with a duration of approximately 100
time units) can induce a stable switching between different
cluster distributions in the OD regime. Due to the presence of
N — 1 possible stable distributions between the two clusters
through which OD is, in general, manifested, a noise pulse
with intensity of the order of 107> will enable a robust
transition between them, e.g. from 2u|2/ to 3u|1/ distribution
in the case of N =4 coupled oscillators, as shown in
figure 6(a). This provides an effective control mechanism
to manipulate the percentage of cells that produce proteins
with a given concentration. Moreover, manipulation of the
noise pulse intensity can further lead to a transition between
different dynamical regimes: due to the coexistence of OD and
in-phase regime in a population of globally coupled identical
oscillators, a noise pulse of the order of 102 could switch
the production from constant (OD) to oscillatory protein
concentrations (figure 6(b)).

As we have seen here (and shown previously in Koseska
et al (2007b)), the presence of multi-stability strongly
influences the response of the synthetic system to different
external stimuli, such as the effects of extrinsic and intrinsic

noise. Thus, complex dynamical behavior can be predicted
as a result of the interplay between noise, heterogeneity and
intercell coupling. We observe now the continuous influence
of stochasticity on the behavior of the globally coupled
synthetic units, when the system finds itself in the vicinity of
the Hopf bifurcation (HB) through which the OD is stabilized
(figure 2(b); HB;). In order to determine the effective jumps
of the oscillators in the system due to noise, we analyze
statistically the interspike intervals (ISIs), also called the
frequency distribution (Klevecz 1976).

When the system is close to the HB through which the
OD is stabilized, a constant noise influence on the system
significantly contributes to enhancement of variability and the
well-expressed presence of multiple frequencies: the solutions
are now polymodal, as shown in figure 7, where the ISI
distributions are shown for two separate oscillators from a
system of N = 8 slightly inhomogeneous coupled synthetic
units. Choosing slightly different «; values (the difference
between the «; values in distinct cells is not larger than
4%), one can effectively switch between different multi-peak
distributions, adapting the artificial network to produce the
desired frequencies.

In general, we can state that in a broad parameter
interval, control is saved in the presence of noise. Thus, we
can speculate that noise selects the most robust distribution
of cells in the clusters. However, due to variability in
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environmental conditions, for example, the system is able to
switch between different attractors, adapting to the external
influence, as manifested in the example with the short noise
pulse. Moreover, these mechanisms can be further used as
additional control mechanisms for external manipulation of
the dynamical behavior of a population of coupled synthetic
units.

4. Discussion

The question whether synthetic biology can offer a novel
insight into the understanding of cellular mechanisms, and
thereof into the controlled production of specific proteins
of interest, has become more intriguing and challenging
in the past decade. The experimental realizations of single

genetic devices and simple modules so far have shown that
synthetic biology has the potential to transform our approach
to human health, as suggested in Purnick and Weiss (2009).
In particular, using engineered synthetic circuits one could
establish controlled expression of proteins, which would lead
to regulated cellular behavior—an initial step to create new
capabilities and effective solutions for drug production and
novel therapy treatments, e.g. cells that are programmed to
recognize and destroy tumors (Anderson et al 2006).

Here, we have discussed the possibility that the
construction of synthetic multicellular systems, in contrast to
single synthetic units, can provide finely tuned coordinated
behavior of the cellular population and, in this manner,
provide the possibility for effective control of the dynamical
behavior of the system. It has been suggested that intercellular
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signaling plays a crucial role in the establishment of
cooperative functioning in a population. Thus, we use the
intercellular signaling and, in that direction, the dynamical
properties of the multicellular system to suggest a mechanism
for controlling the dynamical behavior in synthetic genetic
networks via a direct manipulation of the (co)existent
attractors. In the theoretical analysis presented here, we
have shown that the dynamical characteristics of the system
could be used as a way of ‘fine-tuning’ the protein
production in interacting cellular populations, if specific
cluster distributions in the OD regime are chosen (in terms
of a single parameter value or a directed noise pulse). Using
the characteristics of the OD solution, one could also provide
a way to determine in advance the percentage of cells
producing specific protein concentrations in homogeneous
and heterogeneous populations. Moreover, the possibility of
controlling protein production that we propose here does not
depend on the topological structure of the system: we have
investigated the particular regulatory mechanism not only
in a system of globally coupled synthetic units but also in
systems with distinct topology, such as a system of synthetic
oscillators, locally coupled on a ring.

Special configurations of cells that would allow for
diffusion of AI molecules only between neighboring cells
(thereby the local coupling characteristics will be fulfilled)
are experimentally not easy to achieve. However, recent
advances in so-called rolled-up nanotechnology have led to
the realization of the idea to use bioanalytic microsystems for
spatial and temporal control of single cells (Huang et al 2009).
This provides the possibility of confining a precise number of
single cells equipped with the corresponding synthetic units
in separate nanotubes; thereby spatial and temporal control of
the protein production in distinct cells could be achieved.

Additionally, we have investigated the effect that noise
has on the dynamical behavior of the system, and the
question whether noise can contribute as a regulating factor.
We can generalize that a specific control of the dynamics
of the system in the presence of noise is possible in two
distinct cases: when a short noise pulse is established and
when a continuous presence of noise is established. Based
on these conclusions, we can speculate that under the
influence of changing environmental conditions (which could
be interpreted as external noise), for example, the system
is capable of switching between different stable attractors,
which enhances the fitness of the cellular population under
environmental stress, and optimizes the adaptation of the
colony by a sensitive adjustment of the protein dynamics.

The new capabilities of synthetic, in this case
multicellular, systems presented here serve as an introduction
to anew ‘wave’ of synthetic biology, which will in turn benefit
a wide variety of existing fields (such as pharmaceutical and
chemical engineering), and will allow the control of
dynamical behavior of cells for various purposes. The
possible establishment of the control of protein dynamics on
a system level will thus enable the design and construction of
complex synthetic devices that will ensure functional control
of specific cellular mechanisms. In this direction, some of the
envisioned applications of the discussed mechanisms include
tissue engineering, molecular fabrication of biomaterials and
nanostructures, synthesis of pharmaceutical products, and
biosensing.
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