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We study the characteristics of stochastic resonance (SR) in the Duffing oscillator with three
types of asymmetries in its double-well potential. The asymmetries controlled by a parameter α
are introduced in the potential by varying (i) the depth of the left-well alone, (ii) the location
of the minimum of the left-well alone and (iii) both depth and location of the minimum of
the left-well alone. The characteristics of SR in the asymmetric cases are different from the
symmetric case (α = 1). We find that asymmetry has a strong influence on the optimum noise
intensity at which signal-to-noise ratio (SNR) is maximum, mean residence time at resonance
and the probability distribution of residence time in the left- and right-wells. For a range of
values of α, α �= 1, SNR is found to be relatively higher than for α = 1.

Keywords : Stochastic resonance; asymmetric Duffing oscillator; signal-to-noise ratio; mean
residence time.

1. Introduction

Features of stochastic resonance (SR) were often
studied in bistable systems [Jung, 1993; Gam-
maitoni et al., 1998]; however, SR is also realized
in monostable oscillators [Stokes et al., 1993;
Evstigneev et al., 2004], chaotic systems [Gomes
et al., 2003] and time-delay systems [Masoller, 2002;
Borromeo & Marchesoni, 2007]. Most of the analy-
sis of SR are on symmetric double-well potential
systems. Since it is difficult to preserve symme-
try in real physical or even natural systems, the
study of asymmetric systems has received consider-
able interest. For example, the occurrence of SR has
been studied in an overdamped asymmetric double-
well system (where asymmetry is introduced by
adding a constant bias which changes both depth

and location of the two wells) [Gammaitoni et al.,
1989] and Schmitt trigger [Marchesoni et al., 1999].
McNamara and Wiesenfeld [McNamara & Wiesen-
feld, 1989] developed a discrete two-state theory
for understanding SR in overdamped symmet-
ric bistable systems. With this theory, an ana-
lytical expression for signal-to-noise ratio (SNR)
can be obtained. The two-state theory has been
applied to an overdamped asymmetric system
where depth and location of the minima of the
two wells are altered [Li, 2002; Wio & Bouzat,
1999]. The variation of SNR with the frequency of
the external periodic force in the bistable poten-
tial ax2 + bx3 + cx4 was reported [So & Liu, 2002].
Improving the measurement conditions by stochas-
tic resonance is demonstrated in an experiment with
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optomechanically coupled oscillator [Mueller et al.,
2009]. Double SR was found in an asymmetric
system recently [Borromeo & Marchesoni, 2010].
Though there are studies on SR in asymmetric sys-
tems, the influence of asymmetries especially the
difference in the depth of the wells and the location
of the minima of the wells have not been explored
systematically.

The aim of the present paper is to investigate
the role of certain forms of asymmetries for the
various characteristics of SR in the paradigmatic
double-well Duffing oscillator. For this purpose, we
consider the Duffing oscillator with three different
asymmetric potentials V1, V2 and V3 given by

Vi(x) =
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where i = 1, 2, 3, A1 = B1 = α,A2 = 1/α2, B2 =
1/α4, A3 = 1, B3 = 1/α2 and α, β, ω2

0 > 0. α
is here the parameter which controls the asym-
metry. The potentials V1, V2 and V3 are shown in
Fig. 1. In all three potentials, the shape of the
right-well is unaffected by α. In the potential V1,
the depth of the left-well depends on α: ∆V− =
αω4

0/(4β). The location of the left-well minimum,
xL

min = −
√

ω2
0/β, is independent of α. In the poten-

tial V2, the location of the left-well minimum is
given by xL

min = −α
√

ω2
0/β, which depends on α

while the depth ∆V− remains as ω4
0/(4β). On the

other hand, in the potential V3, xL
min = −α

√
ω2

0/β
and ∆V− = α2ω4

0/(4β).
The asymmetric potentials V1, V2 and V3 can

be realized experimentally. For example, in the
mechanical model of the Duffing oscillator described
in [Moon & Holmes, 1979], we can introduce the
above types of asymmetries by simply varying the
position of the left-side magnet and its strength.
In submicron Bi-wires, modeled by a double-well
potential, the applied magnetic field is varied to
change the depth of one well [Zimmerman et al.,
1991]. A double-well system with different depths is
realized as an appropriate model of auditory nerve
fibre response [Simiu, 2002].

The equations of motion of the Duffing oscilla-
tor with the potentials V1, V2, and V3, linear damp-
ing, periodic force f sin ωt and Gaussian white noise
η(t) are given by

ẍ + dẋ +
dVi

dx
= f sinωt + η(t), i = 1, 2, 3. (2)
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Fig. 1. The shape of the potentials V1, V2, and V3 for
ω2

0 = 1, β = 0.5 and α = (a) 0.5, (b) 1 and (c) 1.5.

We call the systems with the asymmetric potentials
V1, V2 and V3 as systems 1–3 respectively. η(t) is
chosen as Gaussian white noise with zero mean,
unit variance and correlation 〈η(t)η(s)〉 = Dδ(t−s)
where D is the noise intensity.

In our study, we noticed several interesting dif-
ferences on the features of SR in the three asymmet-
ric systems compared to the symmetric system. The
noise intensity DMAX at which SNR is maximum
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(denoted as SNRMAX) is relatively higher (lower)
than that of the symmetric system (α = 1) for
α > 1 (α < 1). In the symmetric system the prob-
ability distribution of normalized residence times,
P (TR/T ) where TR represents residence time in a
well and T = 2π/ω, in the left- and right-wells
are identical for all values of the noise intensity. In
contrast to this, P is different in two wells in the
asymmetric cases. The parameter α has a strong
influence on the mean residence time TMR at reso-
nance. In the symmetric case, TMR in the left- and
right-wells are T/2 at resonance. This characteristic
property is destroyed by the asymmetry. However,
at resonance the sum of the mean residence times in
the two wells is equal to the period of the external
periodic force.

The paper is organized as follows. In Sec. 2,
we show the occurrence of SR in the three systems
for a set of values of asymmetric parameter α. We
compare the SR phenomenon in the systems with
time-series plot, variation of DMAX and SNRMAX.
In Sec. 3, we discuss the effect of asymmetries
on the probability distribution of normalized resi-
dence time in the two wells and also on the varia-
tion of mean residence time at resonance. Section 4
contains concluding remarks.

2. Effect of Asymmetries on SNR
and Time-Series Plot

We fix the parameters in Eq. (2) as d = 0.5, ω2
0 = 1,

β = 0.5, ω = 0.05 and f = 0.38. In all three noise-
free systems for any fixed value of α,α > 0, cross-
well motion is not possible for f = 0.38. Before
studying the noise-induced resonance dynamics, we
consider the noise-free system. We computed the
variation of output signal amplitude S as a function
of ω and α in the absence of noise. For a range of
fixed values of α when ω is varied from a small value
we found typical nonlinear resonance in these sys-
tems. S is maximum at a critical value of ω denoted
as ωmax. This critical value of ω varies with α.
Figure 2(a) shows S versus ω for α = 1.5 and α = 1
for the systems 1–3 and corresponding to the orbit
lying in the left-well. ωmax is different for the three
systems. Smax of systems 2 and 3 are relatively
higher than that of system 1. This is because for
α = 1.5 the distance between the left-equilibrium
point and the middle equilibrium point (origin) of
systems 2 and 3 is greater than that of system 1.
In all these systems, for each fixed value of α in the
range [0, 2] when ω is varied there is no cross-well
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Fig. 2. (a) Frequency-response curves of systems 1–3
denoted as S1, S2 and S3 respectively for α = 1.5 and D = 0.
The dashed curve represents the response amplitude S of
the symmetric system (α = 1). The values of other param-
eters in the noise-free systems are ω2

0 = 1, β = 0.5 and
f = 0.38. (b) The amplitude S of the orbit in the left-well
for a range of values of α for the three systems with the par-
ticle initially in the left-well for each value of α for ω = 0.05
and D = 0.

motion at resonance. Further, for small values of α
and ω there is no orbit confined to the left-well alone
for systems 1 and 3 where the depth of the left-well
is changing with α. Trajectories starting from the
left-well with different initial conditions cross the
potential barrier and jump to the right-well. After
the transient motion the orbit is confined to the
right-well alone (shape of the right-well is indepen-
dent of α). In Fig. 2(b) we plotted S versus α for the
three systems in the absence of external noise η(t).
In systems 1 and 3 the amplitude S of the output
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signal decreases with α. In contrast to this, in sys-
tem 2 the amplitude S increases with α and this is
because of increase in the distance between the left-
well equilibrium point and widening of the left-well
potential. In any case in the three systems there is
no resonance and no cross-well motion when α is
varied in the absence of noise.

Now, we consider systems 1–3 in the presence
of external noise. We fix the value of ω as 0.05.
Equation (2) is integrated numerically with the
fourth-order Runge–Kutta method from t to t + ∆t
without noise term and then noise is added to the
state variable x as x(t + ∆t) → x(t + ∆t)+

√
D∆tξ

where ξ is a Gaussian random number generated
using Box–Muller algorithm. This is repeated in
each integration step ∆t. To characterize SR we
numerically calculated SNR from the power spec-
tral density estimated using fast Fourier transform
(FFT) with n = 212 data with sampling interval
τ . Average power spectrum of 25 realizations of
Gaussian random numbers is considered to have
a better accuracy. SNR can be defined in units of
decibel as

SNR = 10 log10

(
S

N

)
dB. (3)

For α = 1, we numerically intergrated the system
with three different time steps. For each case the
critical value of D (denoted as DMAX) at which
SNR is maximum is calculated. For ∆t = 0.01, 0.005
and 0.001 the values of DMAX are found to be
0.15010, 0.15105 and 0.15076. Since the magni-
tude of the relative error with ∆t = 0.01 is less
than 1% we use this time step for the numerical
simulation.

Figures 3(a)–3(c) show the variation of SNR
versus D, for each fixed value of α, as D increases
from a small value the SNR value increases and
attains a maximum at a value of D, say, DMAX

and decreases with further increase in D. This
is the typical characteristic of SR. In Fig. 4, we
plotted DMAX at which SNR is maximum (repre-
sented as SNRMAX). In all three systems DMAX

(α < 1) decreases (increases) when α is decreased
(increased) from the value 1. That is, SR can be
observed at relatively lower noise intensity than
that of the symmetric double-well system by reduc-
ing ∆V− alone or xL

min alone or both. For α > 1,
DMAX increases rapidly with α in systems 2 and 3.
But in system 1 very slow variation of DMAX is
noticed for α > 1. Since the left-well barrier height
increases with α, sufficiently large noise intensity
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Fig. 3. (a)–(c) Variation of SNR as a function of the noise
intensity D of systems 1–3 for three fixed values of α. α = 1
corresponds to the symmetric double-well system.



October 4, 2011 11:31 WSPC/S0218-1274 03006

Characteristics of Stochastic Resonance in Asymmetric Duffing Oscillator 2733

 0.1

 0.15

 0.2

0 1 2

D
M

A
X

α

System-1

(a)

 0.1

 0.3

 0.5

0 1 2

D
M

A
X

α

System-2
System-3

(b)

0

 0.3

 0.6

0 1 2

D
M

A
X

α

System-2
System-3

(c)

Fig. 4. (a) and (b) Plot of DMAX (at which SNR is maxi-
mum) as a function of α for systems 1–3 respectively. (c) Plot
of numerically computed DMAX versus α for system 2 (con-
tinuous line) and system 3 (dashed line) with A2 = 1/α2,
B2 = 1/α4, A3 = 1 and B3 = 1/α4.

is needed for the particle to move from left-well to
right-well. This is the reason for increase in DMAX

with α in system 1. In system 2 the location of min-
imum of the left-well increases with increase in α
so the particle covers a wide area in the left-well.
Consequently, higher noise intensity is required to
push the particle from left-well to right-well for
large values of α. In system 3, DMAX increases
because of the increase in both depth and location
of the minimum of the left-well with α. Consider-
ing the result from Fig. 4(b) we find that DMAX for
systems 2 and 3 are almost the same. In this con-
nection we note that in Eq. (1), in order to have
the same expression for xmin

L in systems 2 and 3,
B3 is chosen as 1/α4. However, the depth of the
left-well potential of system 2 is independent of
α while that of system 3 is ∆V− = α2ω2

0/(4β).
For clarity, in Fig. 4(c) we plotted DMAX versus
α for systems 2 and 3 with A2 = 1/α2, B2 =
1/α4, A3 = 1 while B3 = 1/α4. In this case DMAX

of two systems are widely different for a range of
values of α.

Next, we obtain different changes of SNRMAX

in dependence on α (Fig. 5). In systems 1 and 3,
SNRMAX decreases and in system 2, it increases
with increase in α. That is, SNR can be improved
(compared to the symmetric system) either by
increasing xL

min or by decreasing ∆V− or both. It
is important to note that though DMAX(α < 1) is
lower than DMAX(α = 1) in all three asymmetric
systems, SNRMAX(α < 1) < SNRMAX(α = 1) hap-
pens only in system 2. The different variations of
SNRMAX found in Fig. 5, can be accounted from
the effect of α on the amplitude S of the orbit in
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Fig. 5. Variation of SNRMAX as a function of α for sys-
tems 1–3. For α = 1 the three systems become the symmetric
double-well system.
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Fig. 6. (a)–(c) Variation of the amplitude of the output
signal (represented by continuous lines) and the noise back-
ground (represented by dashed lines) of systems 1–3 respec-
tively for two values of α = 0.5 and 1.5 for a range of values
of the noise intensity D. The values of the parameters are
ω2

0 = 1, β = 0.5, f = 0.38 and ω = 0.05.

left-well in the absence of noise and the variation
of the amplitude of the orbit and noise background
in the noise driven systems. In Fig. 2(b), the ampli-
tude (S) of the orbit in the left-well in the absence
of noise decreases with increase in α in systems 1
and 3 but increases in system 2. Figures 6(a)–6(c)
show the variation of S and N of systems 1–3 for
two values of α for a range of noise intensity D. It
is noted that SNR is not maximum at the value of
D at which S becomes maximum. For example, in
system 1 for α = 0.1, 1, and 5, S is maximum at
D = 0.175, 0.15 and 0.125 respectively while SNR
is maximum at D = 0.123, 0.152 and 0.171, respec-
tively. As pointed out in [Gammaitoni et al., 1989]
the amplitude is an independent measure of SR.
S decreases with increase in α in systems 1 and 3
and increases with α in system 2 not only in the
absence of noise [Fig. 2(b)] but also in the presence
of noise (as shown in Figs. 6(a)–6(c) for two values
of α). In system 1 for a wide range of values of D
including DMAX, we notice S(α = 1.5,D) < S(α =
0.5,D) while N(α = 1.5,D) > N(α = 0.5,D).
That is, for a fixed value of D,S(N) decreases
(increases) with α. Therefore, SNRMAX decreases
with α. In system 2 the left-well potential widens
[Fig. 1(b)] and both S and N increase with α. How-
ever, the increase in S is much higher than the
increase in N . SNRMAX is thus found to increase
with α. In system 3, even though the left-well equi-
librium point moves away from the origin with α,
the depth increases and the combined effect makes
the signal amplitude of noise-free case to decrease.
Consequently, as shown in Fig. 6(c) for a wide
range of noise intensity S(α2,D) < S(α1,D) while
N(α2,D) > N(α1,D) where α2 > α1. The noise
background also increases. Thus SNRMAX decreases
with α.

In the symmetric system at D = DMAX, almost
periodic switching between both wells with period
T/2 occurs where T = 2π/ω is the period of the
input signal f sinωt. This characteristic property
of SR is destroyed by the asymmetries. Figure 7
shows x versus t for the symmetric and asymmetric
systems at D = DMAX. In Fig. 7(a), correspond-
ing to the symmetric system (α = 1), the trajec-
tory spends almost T/2 time duration in one-well
before switching to the other well. In all asym-
metric systems, for α < 1 the time spent in the
region x > 0 is relatively larger than in the region
x < 0, while the reverse effect is observed for α > 1
[Figs. 7(b)–7(g)].
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Fig. 7. Time-series plots of systems 1–3 at DMAX, i.e. SNR is maximum. The DMAX values are the following: (a) α = 1
(symmetric system), DMAX = 0.152; (b) System 1, α = 0.02, DMAX = 0.11; (c) System 1, α = 300, DMAX = 0.172;
(d) System 2, α = 0.5, DMAX = 0.096; (e) System 2, α = 1.5, DMAX = 0.268; (f) System 3, α = 0.5, DMAX = 0.101;
(g) System 3, α = 1.5, DMAX = 0.271.
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3. Effect of Asymmetries on the
Probability Distribution of
Normalized Residence Time and
Mean Residence Time

In this section we analyze the influence of asym-
metries on the probability distribution of the
normalized residence time and the mean residence
time. The residence time TR in a well is defined as
the duration of time the system resides in one well
before switching to the other one. TR of the left-well
and the right-well are calculated over 105 transi-
tions from one well to another one. Then the nor-
malized residence times TR/T where T = 2π/ω are
calculated. In Figs. 8–10 probability distributions
of normalized residence time of left- and right-wells
of the symmetric system (α = 1) and of system 1
for α = 0.02 and 300 respectively for three values of
noise intensity D are given. The figures demonstrate
the effect of α on P (TR/T ). When α = 1 (Fig. 8) the
following features of P (TR/T ) are observed: (i) The
P (TR/T ) of the left-well and the right-well are iden-
tical for any value of D > Dc. (ii) For a value of D
just above Dc, P (TR/T ) is very wide and exhibits
a sequence of Gaussian-like peaks centered around
TR/T = n + 1/2, n = 0, 1, 2, . . . i.e. about half

integer multiples of period T of the periodic driving
force. (iii) As D increases further, the range of TR/T
decreases and the P (TR/T ) profile moves towards
the minimum value of TR/T . (iv) At D = DMAX,
the P (TR/T ) of both left-well and right-well have a
Gaussian peak centered at TR/T = 1/2.

Compared to symmetric system in the asym-
metric system we notice additional peaks at
TR/T = 1, 2, 3, . . . . In the symmetric system the
depths of the two wells at t = nT, n = 1, 2, . . . are
the same and are modulated by the external force
f sin ωt. Suppose, the particle is initially in the left-
well. It has higher chance to move to the right-well
when the depth of the left-well is minimum. If the
particle has crossed the left-well when its depth is
about minimum then the right-well depth at this
time (t′) is about maximum. Now the chance for
the particle to switch from the right-well is higher
when its depth becomes minimum which will hap-
pen when t = t′ + (2n + 1)T/2, n = 0, 1, 2, . . . .
Consequently, we expect peaks in P (TR/T ) at
TR/T = n + 1/2, n = 0, 1, 2, . . . for both left-
and right-wells. Like the symmetric system, in the
asymmetric systems with α < 1 we expect peaks
at TR/T = n + 1/2, n = 0, 1, 2, . . . . In addition to
these peaks in Fig. 9 for D = 0.08, we notice peaks
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Fig. 9. Same as Fig. 8 but for the asymmetric system 1 with α = 0.02.
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at TR/T = n, n = 1, 2, . . . . This can be understood.
For example, for α = 0.02 the depth of the left-well
is considerably lower than that of α = 1. As a result,
the particle in the left-well will be able to pass to
the right-well even when the left-well depth is about
maximum. If this is the case, then at this time the
right-well depth is about minimum. Since V (x) for
x > 0 is independent of α value, the chance for the
particle in the right-well is higher when the depth
of the right-well is about minimum. This will hap-
pen after integral multiples of period-T of the exter-
nal force. As a result, we expect peaks in P (TR/T )
about TR/T = 1, 2, . . . and are seen in Fig. 9 for
α = 0.02 and D = 0.08. At D = DMAX = 0.11

0

 60

 120

0  0.5 1

T
M

R

α

System-1

(a)

0

 60

 120

0 150 300

T
M

R

α

System-1

(b)

Fig. 11. Mean residence time TMR of the left-well (marked
by •) and the right-well (marked by ◦) versus α for system 1.
Continuous lines are the best curve fit. For clarity, the period
T = 125.66. . . and the half period T/2 = 62.83. . . of the
periodic input signal are represented by dashed lines. The
symbol � represents the sum of numerically calculated TL

MR

and TR
MR. For each value of α the noise intensity D is fixed

at DMAX where SNR is maximum.

the P (TR/T ) of both wells have only a single dom-
inant peak and the corresponding TR/T values of
the left- and right-wells are different. That is, the
mean residence times of both wells are different.
The characteristic properties of the left-well and the
right-well are interchanged for α > 1 compared to
α < 1 (Figs. 9 and 10). For D � DMAX, for both
α < 1 and α > 1, the distribution is too narrow
in both wells. The reason is that for large values
of noise intensity the motion is dominated by the
noise term and a very rapid switching between both
wells occurs. The above type of distinct patterns of
P (TR/T ) in both wells is observed in the two other
asymmetric systems as well.

Finally, we point out the effect of asymme-
tries on the mean residence time (TMR). As seen
in Figs. 7(b)–7(g), the asymmetric systems for each
fixed value of α at D = DMAX undergo periodic
switching between both wells but with different
periodicity for the right-well and the left-well. We
numerically calculate TMR in each well by aver-
aging over a set of 105 residence times at DMAX.
When α = 0.02, the mean residence time in the
left-well of system 1 is TL

MR = 18.92 and that
of the right-well is TR

MR = 106.06. Even though,
TL

MR �= TR
MR, we notice that TL

MR + TR
MR ≈ T .

For α = 300, T L
MR = 120.32, T R

MR = 5.12 and here
again TL

MR + TR
MR ≈ T . In the other two asym-

metric systems, the above characteristic of TL
MR

and TR
MR is found too. In system 1, as shown in

Fig. 11(a) as α decreases from α = 1, T L
MR(TR

MR)
decreases (increases) from T/2. The opposite of this
is observed when α is increased from 1 [Fig. 11(b)].
For α ∈ [0.5, 100] the deviation of TL

MR and TR
MR

from T/2 is very small. Rapid variation of them
are found for α > 100 and α 
 1. In systems 2
and 3 TL

MR and TR
MR also vary with α (Fig. 12 for
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T
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System-2

Fig. 12. Same as in Fig. 11 but for system 2.
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system 2) and both become T/2 when α = 1. In sys-
tem 2, TL

MR ≈ 172 e−1/α2
and TR

MR ≈ 172 e−α2
. In

system 3 TL
MR ≈ 171 e−1/α and TR

MR ≈ 171 e−α. We
note that the value of the scaling exponent in the
above fits is 1.

4. Conclusion

To conclude, we have shown the influence of three
types of asymmetries in the double-well Duffing
oscillator system on SR. In all three systems DMAX

increases with increase in α and is proved numeri-
cally. On the other hand, SNRMAX increases with
increase in α in systems 1 and 3 but the reverse
effect is observed in system 2. In the symmetric
system TL

MR = TR
MR = T/2 but in the asymmetric

systems TL
MR �= TR

MR, however TL
MR + TR

MR ≈ T . It
is evident from the probability distribution of the
normalized residence time of the left-well and the
right-well that, at D = DMAX the P (TR/T ) of each
well has a dominant peak at the mean residence
time and the location of the dominant peak is dif-
ferent for both wells in the asymmetrical systems.
There are asymmetric wave forms, such as symmet-
ric saw-tooth wave, rectified sine wave, rectangu-
lar waves, variable shape force, etc. which can be
generated easily and they have practical applica-
tions. Their periodicity, amplitude and asymmetry
are rather easy to control. Our study indicates that
asymmetries in the external force and noise may
also have a strong influence on the characteristics
of SR. The study of SR with asymmetric force and
noises will provide much insight on the scaling of
SNR and mean residence time and such analysis
can be performed analytically and experimentally.
These results are also important for an optimum
design of corresponding engineering applications.
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