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Using a model system of FitzHugh-Nagumo type in the excitable regime, the similarity between

synchronization of self-sustained and noise-induced oscillations is studied for the case of more than

one main frequency in the spectrum. It is shown that this excitable system undergoes the same

frequency lockings as a self-sustained quasiperiodic oscillator. The presence of noise-induced both

stable and unstable limit cycles and tori, as well as their tangential bifurcations, are discussed. As the

FitzHugh-Nagumo oscillator represents one of the basic neural models, the obtained results are of

high importance for neuroscience. VC 2011 American Institute of Physics. [doi:10.1063/1.3659281]

One of the basic models in neuroscience is the FitzHugh-

Nagumo oscillator, which describes the excitable dynam-

ics of a single neuron. In the excitable regime, under the

influence of noise the model demonstrates the phenom-

enon of Coherence Resonance: the oscillations become

coherent at certain noise intensity. It is well known that

such oscillations can be synchronized by an external

harmonic force and even mutual synchronization may

appear when a pair of non-identical oscillators is coupled.

Using numerical simulations and electronic experiments,

we show that the noise-induced oscillations with few main

frequencies in excitable systems of the FitzHugh-Nagumo

type demonstrate a kind of synchronization which obeys

the same scenario as the synchronization of deterministic

self-sustained quasiperiodic oscillations. This enables us

to predict the existence of stable and unstable noise-

induced limit cycles and tori which should possess similar

tangential bifurcations as in the case of quasiperiodic

oscillations.

I. INTRODUCTION

Synchronization is a fundamental phenomenon in non-

linear sciences1 which takes place in a wide range of fields:

mechanics,2 electronics,3 biology4 and neuroscience,5,6

chemistry,7,8 Earth sciences,9–11 economics,12 sociology,13

etc. Synchronization can be observed in different types of

dynamic regimes: periodic, quasi-periodic, chaotic, and sto-

chastic. In this paper, we consider synchronization through

frequency-locking mechanisms. We analyze the route to syn-

chronization of noise-induced coherent oscillations in excita-

ble systems with one and more main peaks in the Fourier

spectrum and compare it with the case of periodic and quasi-

periodic self-sustained oscillations in deterministic systems.

We show that in the case of noise-induced oscillations

the synchronization route through frequency locking is quite

similar to the route observed in deterministic self-sustained

oscillations in both periodic and quasi-periodic cases. As the

saddle-node bifurcations of limit cycles and invariant tori

underly the synchronization mechanism in the deterministic

case, we assume that noise-induced stable and saddle limit-

cycles and tori may exist in an excitable system under the

influence of noise as well and undergo saddle-node

bifurcations.

II. THE ROLE OF SADDLE-NODE BIFURCATION
IN SYNCHRONIZATION OF PERIODIC AND
QUASI-PERIODIC OSCILLATIONS THROUGH
THE FREQUENCY LOCKING

First, we briefly review the route to synchronization in

deterministic self-sustained oscillators. As is well known, a

saddle-node bifurcation of limit cycles is the underlying

mechanism of frequency locking in the case of a quasi-

harmonic oscillator (e.g., a van der Pol oscillator) under

external harmonic force in the case of a small external

amplitude,1

€x� ðk� x2Þ _xþ x ¼ Aex sin xext: (1)

Here x is a dynamic variable, k is a control parameter, Aex

and xex are the amplitude and the frequency of the external

harmonic force, respectively. When the oscillations are not

synchronized, an ergodic two-dimensional torus exists in the

phase space of (1) (Fig. 1(a)). Inside the synchronization

region of the parametric plane, the phase space has the struc-

ture shown in Fig. 1(b). There are two limit cycles (stable

and unstable) on the surface of the former two-dimensional

torus. The transition from synchronization to desynchroniza-

tion goes through a tangential bifurcation of these limit

cycles.

There is a useful approach to treat the bifurcational

analysis in this case, namely, via phase reduction. Here, the

phase difference between the oscillations of the quasi-a)Electronic mail: s.v.astakhov@gmail.com.
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harmonic self-sustained oscillator and the external force is

considered,

_u ¼ �Dþ b
q

sin u: (2)

Here, u is the phase difference between the self-sustained

oscillations and the external harmonic force, D ¼ x2
ex�1

2xex
, q is

the amplitude of oscillations in Eq. (1), b ¼ Aex

2xex
. Hence, limit

cycles are represented by fixed points and a two-dimensional

torus by a closed invariant curve in the 2p-periodic phase

space of the reduced system. Therefore, the tangential bifur-

cation of the limit cycles is represented by a saddle-node

bifurcation of the fixed points (Fig. 2).

A similar approach can be used to treat a bifurcational

analysis of the synchronization mechanisms in the case of

quasi-periodic self-sustained oscillations under an external

harmonic force,14

€x1 þ x2
1x1 ¼ ðe� x2

1Þ _x1 þ cð _x2 � _x1Þ þ C0 cosðxextÞ;
€x2 þ x2

2x2 ¼ ðe� x2
2Þ _x2 þ cð _x1 � _x2Þ:

(3)

Here, x1,2 are dynamical variables, x, e, c are control param-

eters, C0 and xex are the amplitude and frequency of the

external force. Applying the phase reduction approach one

obtains

_u1 ¼ D1 þ g sinðu2 � u1Þ �
C

x1 � D1

cos u1;

_u2 ¼ D2 þ d� g sinðu2 � u1Þ;
(4)

where u1,2 are the phase differences between the oscillations

of partial oscillators and external force, g¼ c/2, D1

¼ x2
1 � x2

2

� �
= 2xexð Þ ’ x1 � xex, d¼x2�x1.

In this case, the phase space of the reduced system

becomes two-dimensional and besides the saddle-node

bifurcations of equilibrium points there is also a tangential

bifurcation of the closed invariant curves (Fig. 3). As the

fixed points of Eq. (4) represent the limit cycles in the non-

reduced system (3) and closed invariant curves represent

two-dimensional ergodic tori, the following sequence of

bifurcations takes place. When all three frequencies are

locked (two natural frequencies of the self-sustained oscilla-

tions and one frequency of the external force), the phase

space consists of four limit cycles. Two of them are saddles,

one is stable and the other is a repeller. Then, one saddle

limit cycle approaches a stable one and another saddle limit

cycle approaches the repeller. When a simultaneous tangen-

tial bifurcation of pairs of limit cycles takes place, two two-

dimensional ergodic tori appear in the phase space. One of

them is stable and corresponds to the two-frequency oscilla-

tions in the system (two frequencies are locked and one is

unlocked) and the other is a saddle. Further variation of the

control parameter leads the saddle two-dimensional torus to

approach a stable one and their tangential bifurcation. After

the bifurcation, only a three-dimensional ergodic torus exists

in the phase space (which corresponds to three-frequency

oscillations when no frequency is locked).

In the Fourier spectrum of oscillations in such a system,

the transition from a three-dimensional torus to a pair of

two-dimensional tori corresponds to the locking of one fre-

quency. Here, we have two possible situations: (i) the exter-

nal force has entrained one of the natural frequencies and

FIG. 1. (Color online) The qualitative

phase space structure of a quasi-

harmonic oscillator under external

harmonic forcing (1): (a) outside sync-

hronization region—ergodic two-

dimensional torus; (b) inside synchroni-

zation region—stable (light, green

online) and unstable (dark, red online)

limit cycles on the surface of the former

two-dimensional torus.

FIG. 2. The phase space structure of the reduced system (2): (a) inside

the synchronization region—two fixed points (a saddle and a stable node);

(b) outside the synchronization region (no fixed points).

FIG. 3. The phase space structure of the reduced system (4) in the case of

two-frequency quasi-periodic self-sustained oscillations under a harmonic

force: (a) all frequencies are locked, four fixed points exist on the phase

plane; (b) after saddle-node bifurcations of fixed points, only one frequency

is locked, two invariant closed curves exist: stable (l1) and unstable (l2);

(c) after tangential bifurcation of the invariant closed curves, no frequency

locking.
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(ii) both natural frequencies have locked each other on some

mean frequency not equal to the external force frequency.

Another transition from two tori to four limit cycles corre-

sponds to the locking of one of the two frequencies by the

other one. Hence, one can associate the frequency locking

with a tangential bifurcation of some limit sets (whether it

would be cycles or tori depend on the number of peaks in the

Fourier spectrum).

Keeping this association in mind, we can explain the

bifurcation scenario of synchronization in a system which

possesses self-sustained oscillations even with a larger num-

ber of N independent frequencies, e.g., in an ensemble of

quasi-harmonic self-sustained oscillators. For example, one

can apply the phase reduction approach to a chain of van der

Pol oscillators with open boundaries (x0: x1, x6: x5),

€xiþx2
i xi¼e 1� x2

i

� �
_xiþ c ð _xi� _xi�1Þþð _xi� _xiþ1Þð Þ;

i¼ 1;…;5 (5)

to obtain its phase description,

_ui¼Diþ
c
2

sinðui�ui�1Þþ sinðui�uiþ1Þ
� �

; i¼ 1;…;5;

(6)

where ui describes the phase dynamics of the i-th oscillator,

Di corresponds to the difference between the natural fre-

quency of the i-th oscillator and some normalized value

(e.g., 1), and c is a coupling coefficient. As the time deriva-

tive of the phase ui gives the frequency xi, one can obtain

the bifurcation diagram shown in Fig. 4.15 Here, each fre-

quency locking can be associated with a tangential bifurca-

tion in the phase space of Eq. (5).

III. SYNCHRONIZATION OF NOISE-INDUCED
COHERENT OSCILLATIONS IN AN EXCITABLE
MODEL SYSTEM

Let us consider FitzHugh-Nagumo oscillator16 under the

influence of white Gaussian noise,

e dx
dt ¼ x� x3

3
� y;

dy
dt ¼ xþ aþ DnðtÞ:

(
(7)

We choose the following values of control parameters:

e¼ 0.01 and a¼ 1.05. Then system (7) is in an excitable

state. It has been shown17 that there is a value of noise inten-

sity D for which system (7) generates the mostly coherent

oscillations (i.e., the ratio of the height of the main peak in

the power spectrum to its width is maximal). This phenom-

enon is called “Coherence Resonance” (CR). In the CR

regime, the oscillations of Eq. (7) are very similar to the

oscillations of a noisy quasi-harmonic oscillator (e.g., the

van der Pol oscillator under the influence of external Gaus-

sian noise). However, there is an important qualitative differ-

ence in the phase space structure of these systems. The

FitzHugh-Nagumo oscillator in the excitable state does not

have a stable limit cycle (only a stable focus), while self-

sustained quasi-harmonic oscillators are characterized by a

stable limit cycle.

Nevertheless, the oscillations in Eq. (7) in the coherence

resonance regime can be synchronized18 (both external and

mutual synchronization) through frequency locking. As the

coherence resonance regime captures the main features of a

limit cycle (the trajectories starting from the initial condi-

tions picked in the neighborhood of a bounded region tend to

this region, and oscillations characterized by a certain aver-

aged frequency can be synchronized), we call it noise-
induced limit cycle. Therefore, we could extrapolate our

association of frequency locking with a tangential bifurca-

tion to the case of synchronization of noise-induced oscilla-

tions through a frequency entrainment mechanism. However,

if this association is correct, synchronization of noise-

induced oscillations with more than one main frequency

should obey the same scenario as in case of deterministic

quasi-periodic oscillations reviewed in Sec. II. This will be

clarified in the following.

Let us analyze a system of two interacting FitzHugh-

Nagumo type oscillators in an excitable regime under exter-

nal white Gaussian noise and an external harmonic force

applied to one of the oscillators,

_x1 ¼ a1ðb� cx1 � y1Þ þ Cðx2 � x1Þ þ
ffiffiffiffiffiffi
2D
p

nðtÞ
þAex cosðxextÞ;

_y1 ¼ d x1 � Fðy1Þð Þ;
_x2 ¼ a2ðb� cx2 � y2Þ þ Cðx1 � x2Þ þ

ffiffiffiffiffiffi
2D
p

nðtÞ;
_y2 ¼ d x2 � Fðy2Þð Þ;

8>>>><
>>>>:
FðyÞ ¼ ay3 þ cy;

(8)

where a1,2, b, c, d, a, c are control parameters, C is the cou-

pling coefficient, n(t) is a source of white Gaussian noise

with intensity D, Aex, and xex are the amplitude and the fre-

quency of the external force, respectively. The coupling

introduced in system (8) is different from the one introduced

in Ref. 18 in order to meet an electronic model presented in

Fig. 7. We choose the following values of the parameters:

a1¼ 10�4, a2¼ 1.25 � 10�4, b¼ 4.395, c¼ 100, d¼ 104,

a¼ 2.22 � 10�5, c¼�1.61 � 10�3, D¼ 10�9, and vary the

FIG. 4. Mean frequencies versus coupling coefficient in system (6). The

value of hxi i is given by the right-hand side of Eq. (6) averaged over the

integration time interval.
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external harmonic force amplitude Aex and frequency xex.

The chosen noise intensity value corresponds to the CR re-

gime in each interacting oscillator in Eq. (8).

The Fourier spectra of the oscillations in Eq. (8) are

presented in Fig. 5. As one can see from Figure 5, the same

frequency locking mechanism indeed appears in the case of

three main frequencies. Increasing Aex, one unlocks the fre-

quency of the first oscillator entrained by the second one and

then the external harmonic force locks the frequency of the

first oscillator. Our parametrical study of Eq. (8) yields the

bifurcation diagram shown in Fig. 6. As is easy to see, this

bifurcation diagram is topologically equivalent to the one

obtained for the deterministic van der Pol oscillators in the

phase approach.14 Using the analogy between self-sustained

periodic oscillators and noise-excitable systems in CR and

associating frequency entrainment with a tangential bifurca-

tion of invariant limit sets, the transition from C to T
3 in Fig.

6 can be explained as follows. In region C, the phase space

of Eq. (8) contains four noise-induced limit cycles: two are

saddles, one is stable and the other is a repeller. The transi-

tion from region C to region T2 corresponds to simultaneous

tangential bifurcations between saddle and stable and

between saddle and repeller noise-induced limit cycles. As a

result, two noise-induced two-dimensional tori appear: a

stable torus and a saddle torus. The oscillations on the stable

noise-induced two-dimensional torus are characterized by

two frequencies and two main peaks in the Fourier spectrum

(Fig. 5(a)). Approaching the border between T2 and T3

makes the noise-induced tori approach each other and a

transition from T2 to T3 corresponds to their tangential bifur-

cation, resulting into a noise-induced three-dimensional torus

FIG. 5. (Color online) The Fourier spectrum evolution for system (8) calculated for variables x1 (dark grey, blue in color) and x2 (light grey, red in color).

Here, x1,2 are mean frequencies of the first and second subsystems, respectively; xex is frequency of the external forcing; Aex is amplitude of the external forc-

ing: (a) Aex¼ 10�5 (lower region T2 in Fig. 6); (b) Aex¼ 4 � 10�5 (region T3 in Fig. 6); (c) Aex¼ 6 � 10�5 (region T3 in Fig. 6); (d) Aex¼ 8 � 10�5 (upper region

T2 in Fig. 6).

FIG. 6. (Color online) The bifurcation diagram of system (8). Region C:

one main frequency in the spectrum, both frequencies of noise-induced

oscillations entrained by an external harmonic force. Regions T2: two main

frequencies in the spectrum, either one oscillator is synchronized by the

external force at a frequency which differs from that of the other oscillator,

or both oscillators are mutually synchronized at a frequency different from

external forcing frequency. Regions T3: three main frequencies in the spec-

trum, no synchronization in the system.
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in the phase space and three main frequencies in the spec-

trum (Fig. 5(b)).

IV. EXPERIMENT

We confirmed our results experimentally, using the elec-

tronic scheme presented in Fig. 7. The experimental setup is

represented by two coupled subsystems. Each subsystem is

based on the original scheme proposed by FitzHugh and

Nagumo.16 However, to model the N-characteristic of the non-

linear element, we used an operational amplifier. Hence, the

partial subsystem consists of the capacitors C, C1, the inductor

L, the resistor R, the nonlinear element with N-characteristic

and the adder based on an operational amplifier LF412. Volt-

age Vc and noise are applied to the adder. The nonlinear ele-

ment is also based on an operational amplifier LF412.

As is clearly seen from Fig. 7, the scheme is symmetric,

as it is represented by two almost identical coupled subsys-

tems. The only difference between the subsystems is the

value of inductance L: L¼ 9 mH for the first subsystem and

L¼ 11 mH for the second one. An external harmonic signal

is applied to the adder of the first subsystem. The coupling

between subsystems is realized through a capacitor Cc,

whose capacity value can be varied. The signals from each

subsystem are directed to different input channels of the

spectrum analyzer.

We fixed the following values of voltages Vc1¼ 2.39 V,

Vc2¼ 2.84 V and the coupling capacity: Cc¼ 42.37 pF.

Then we changed the amplitude and frequency of the exter-

nal harmonic signal to observe frequency lockings with the

help of a spectrum analyzer. The experimentally obtained

bifurcation diagram is shown in Fig. 8. It is clearly seen that

our electronic experiment proves the results of our numerical

studies.

V. ENSEMBLE OF EXCITABLE MODEL SYSTEMS

In Sec. II, we also mentioned a sequence of frequency

lockings in an ensemble of non-identical van der Pol oscilla-

tors. If our assumption that noise-induced limit cycles and

tori demonstrate bifurcations similar to the deterministic

ones is correct, then a similar sequence of frequency lock-

ings has to be expected in an ensemble of five non-identical

(in ai) excitable systems under external noise in the vicinity

of coherence resonance. To clarify this, we consider the fol-

lowing system:

_xi ¼ aiðb� cxi � yiÞ þ C xi �
P5

j¼1 xj

� �
þ

ffiffiffiffiffiffi
2D
p

nðtÞ;
_yi ¼ d xi � FðyiÞð Þ;

(

FðyÞ ¼ ay3 þ cy:

(9)

We fix the following values of control parameters:

a1¼ 10�4, a2¼ 1.1 � 10�4, a3¼ 1.25 � 10�4, a4¼ 1.35 � 10�4,

a5¼ 1.5 � 10�4, b¼ 4.395, c¼ 100, d¼ 104, a¼ 2.22 � 10�5,

c¼�1.61 � 10�3, D¼ 10�9. Here, the noise level D corre-

sponds to the CR regime in each subsystem. Then we

increase the value of the coupling coefficient C. The tree-

like diagram similar to the one in Fig. 4 is shown in Fig. 9.

This similarity allows us to hypothesize that there is indeed a

sequence of tangential bifurcations of noise-induced tori

which underlies a transition from one main frequency to 5

frequencies in the spectrum.

FIG. 8. (Color online) The bifurcation diagram obtained from the electronic

experiment. Region C: one main frequency in the spectrum, both frequen-

cies of noise-induced oscillations entrained by an external harmonic force.

Regions T2: two main frequencies in the spectrum—either one oscillator is

synchronized by the external force at a frequency which differs from the fre-

quency of the other oscillator or both oscillators are mutually synchronized

on the frequency different from external force frequency. Regions T3: three

main frequencies in the spectrum, no synchronization in the system.

FIG. 7. Electronic setup modeling the

dynamics of system (8).
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VI. CONCLUSION

The results presented in this paper show that noise-

induced oscillations of excitable systems which have more

than one main peak in the Fourier spectrum demonstrate a

synchronization route through frequency entrainments which

is similar to the case of deterministic quasi-periodic oscilla-

tions. As in the case of quasi-periodic oscillations, where a

sequence of tangential bifurcations of cycles and tori under-

lies the synchronization route, we hypothesize that stable

and unstable noise-induced limit-cycles and invariant tori do

exist in the phase space and perform a similar sequence of

tangential bifurcations in excitable systems.

We show such an analogy also for synchronization in

ensembles of non-identical excitable elements under the

influence of noise. This is of special practical interest. The

synchronization mechanism allows one to unlock any of the

entrained frequencies by applying an external harmonic

force at a frequency close to the natural frequency of a cer-

tain oscillator. Synchronization phenomenon plays a big role

in neuroscience, sometimes even a destructive role. In case

of Parkinson’s decease, the temporal evolution of the periph-

eral tremor rhythms corresponds to abnormal activity

between cortical motor areas.6 Epileptic seizures also can

result from synchronized neural activity.19 As the FitzHugh-

Nagumo oscillator represents one of the basic neural models,

one could be able to desynchronize a single neuron in an en-

semble by appropriately applying an external harmonic

force. It may be interesting to carry out such an experiment

in neuroscience. The combination of neuroscience and non-

linear dynamics in these experiments in future will represent

the full maturity of a field that owes its success in large part

to the valuable contributions of Frank Moss.4,5
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