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A coupling phase is deemed to be crucial in stabilizing behavior in nonlinear systems. In this paper, we study
how the coupling phase influences the delay-induced oscillation death (OD) in coupled oscillators. The OD
boundaries are identified analytically even in the presence of the coupling phase. We find that OD only occurs for
a coupling phase belonging to a certain interval. The optimal coupling phase, under which the largest OD island
forms, is characterized well by a power law scaling with respect to the frequency. The coupling phase turns out to
be a key parameter that determines a delay-induced OD. Furthermore, the controlling role of the coupling phase

generally is proved to hold fairly for networked delay-coupled oscillators.
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I. INTRODUCTION

Collective emergent behaviors are omnipresent in biology,
chemistry, and physics. To characterize such phenomena,
systems of coupled nonlinear oscillators provide one of the
basic models for performing the studies [1-5]. A typical
collective behavior is oscillation death (OD), which refers to a
phenomenon that coupled oscillatory systems stop oscillating
and asymptotically go to a fixed point. OD is of interest
and importance because it is expected to play a constructive
role in realizing important functions of many real systems,
such as synthetic genetic networks [6,7] and yeast [8].
Generally, a parameter mismatch [9-13] or a time-delay
coupling [14-16] is the typical requisite condition for OD
to occur in coupled nonlinear oscillators. Besides the above
two general conditions, dynamic coupling [17] or conjugate
coupling [18,19] also can induce OD behavior.

OD induced by delay was realized by Reddy er al
[14-16] and immediately was observed in an experiment
of electronic circuits [20]. Since then, considerable interest
arose in delay-induced OD. Furthermore, for instance, it was
recognized experimentally in coupled living oscillators [21],
thermo-optical oscillators [22], and lasers [23]. Recent papers
proposed many forms of delayed coupling, which can lead
to OD, such as distributed delays [24], partial time-delay
coupling [25], gradient time-delay coupling [26], and integra-
tive time-delay coupling [27]. OD in delay-coupled networks
also has received increasing attention [28,29]. All the papers
about delay-induced OD demonstrate that delayed coupling
can nicely ensure the stability of the fixed point, which is
unstable in the uncoupled system. Recently, delayed coupling
also was shown to be effective in stabilizing the inherently
unstable periodic orbit in two coupled oscillators [30].

Now, the importance of delay-induced OD is uncovered
gradually, and, so far, all the previous papers have been
restricted to real coupling strength. By introducing the phase
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of coupling, the coupling could even become complex, which
is termed phase-dependent coupling [3,4]. The importance of
the coupling phase has been indicated well in optical systems
with delayed feedback control where the feedback phase is
supposed to be related to the phase of the complex electric
field [3,4]. An experimental realization of such a complex
coupling scheme is feasible by tuning the distance between
the integrated tandem laser and an external Fabry-Pérot etalon
[31]. The dynamics of phase-dependently coupled lasers has
been studied numerically in Ref. [32]. By considering different
models of coupled bursting neurons [33], the coupling phase
is verified to be important in suppressing pathological brain
rhythms. Furthermore, the coupling phase parameter recently
has been shown to be essential in organizing the system’s
dynamics, such as in refuting the odd-number limitation of
delayed feedback control [34], designing a long-term chaotic
anticipating synchronization [35], and controlling the stability
of splay states [36].

Until now, effects of the coupling phase on delay-induced
OD were not well examined, although delayed coupling is
believed to switch the stability features of a system [37].
In this paper, we explore delay-induced OD in the presence
of the coupling phase and find that the existence and the
maximization of OD islands in the parameter space can be
controlled well by the coupling phase. The coupling phase
is found to be a key parameter for the phenomenon of OD
induced by time delay.

The remainder of the paper starts from two delay-coupled
oscillators in Sec. II, and then Sec. III extends the studies to
networked delay-coupled oscillators. Finally, a conclusion and
discussions are given in Sec. IV.

II. TWO DELAY-COUPLED OSCILLATORS

Consider the following two delay-coupled Landau-Stuart
oscillators:

2;() = [1+iw — |z;(0)z;(t) + Ke[z,(t — T) — z;(1)]
(1)
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for j, s =1 or 2, where z1,z, are complex variables that
represent the state of the corresponding oscillators, w is the
frequency, K (K > 0) and 6 (—7 < 6 < ) are the coupling
strength and the coupling phase, respectively, and 7 is the
propagation delay. In the absence of coupling (i.e., K = 0),
each uncoupled oscillator performs the same limit-cycle
motion z = ¢'*’. When coupling is switched on (i.e., K > 0),
the occurrence of OD implies the conversion of stability of the
fixed point by delayed coupling.

The Landau-Stuart model, as a standard form of the super-
critical Hopf bifurcation, has been considered as a paradigm
for oscillators [2]. Already, rich dynamics in the model of
coupled Landau-Stuart oscillators have been investigated ex-
tensively. Especially, the Landau-Stuart limit-cycle oscillator
successfully has served as a typical model for studying the OD
phenomenon in the field of nonlinear dynamics for more than
two decades [9-27]. In order to make it easier to compare our
papers with the previous papers [14—16], the Landau-Stuart
model also is employed in this paper.

Already, the OD state z; = zp = 0 is an equilibrium point
of the coupled system (1), thus, the delayed coupling simply
converts its stability from unstable to stable or vice versa.
To obtain stability domains of an OD state, a linear stability
analysis of Eq. (1) around the origin (z; = zo = 0) can be
carried out. Assuming that the linear perturbations vary as e*,
we get the following stability matrix:

1 —Kel® +i
M=< . o
K619€7M

Keiee—kr
), (2)

1 —Ke' +iw
where A is the eigenvalue of M. If all real parts of the
eigenvalues of the stability matrix M are negative, OD can
occur. Mainly following the procedures of Reddy ez al. [14,15]

and Dodla et al. [16], the two boundary curves of OD regions
are derived as

0+ COS_l (K co[s(Gfl)
w—K sin6 — /K> — (K cos 6 — 12
T 46 —cos! (el

w—Ksin9+\/K2—(Kc050—1)2’

TI(K’G) =

3)
n(K.0) =

which is reduced to the results in Ref. [14] when 6 = 0.

Obviously, the coupling phase 6 is involved to form death
critical curves. As a first insight into the two critical curves
given by Eq. (3), we have shown results for 6 = —0.17 and
0 =0.17 in Fig. 1. w = 10 is fixed. The OD regions are
enclosed by the intersected area determined by the two critical
curves of 71(K,0) (the solid line) and 7, (K ,6) (the dotted line).
These theoretical OD regions have been checked well by our
numerical results represented by the open circles, which are
obtained from numerically integrating the coupled system (1).
For other parameters, we get similar results.

Next, we investigate the effect of the coupling phase on OD
islands by calculating the two critical curves for different 6’s
in Eq. (3). Furthermore, Fig. 2 shows several OD islands for
different coupling phases in the parameter space [, log,,(K)].
w = 10. We find that the OD islands monotonically shrink
with increasing the coupling phase 6 from zero and first grow
and then shrink with decreasing the coupling phase from zero.
Since OD is a special in-phase state, the changing behavior
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FIG. 1. The OD islands of the coupled system (1) in the parameter
space [1, log,,(K)] for § = —0.1x (the left one) and 6 = 0.1x (the
right one). w = 10 is fixed. The OD regions are enclosed by the two
critical curves 7,(K,0) and 7,(K,6). The open circles represent the
numerical results, which well confirm the theoretical prediction.

of the OD regions can be understood intuitively from the
different coupling mechanisms induced by the coupling phase.
Specifically, for the zero coupling phase 8 = 0, the coupling is
attractive, which is assumed to prefer an in-phase state; on the
contrary, for the coupling phase of 0 = 7 (or 6 — —m), the
coupling is repulsive [38], which generally tends to produce
an antiphase state. Thus, it is natural to observe that the OD
islands vary the way as shown in Fig. 2.

To quantify the above size variation, let S(6) denote the area
of an OD island on the plane [z, log;,(K)] for the coupling
phase 6. Obviously, S(8) = 0 implies that a delay-induced OD
is impossible, and S(f) > 0 means that OD can be induced
by suitable parameter sets of (7,K). The larger S(@), the
larger the OD region. Generally, there is no simple way
to analytically derive S(0), which, however, can easily be

54
i0=10

FIG. 2. (Color online) The OD islands of the coupled system
(1) in the parameter space [, log,,(K)] for 6 = —0.47w, —0.057,
—0.027, 0, 0.057, and 0.17, respectively, w = 10. All the OD
islands, which have been proved by the direct numerical experiments,
come from Eq. (3). The OD boundaries are indicated by the different
colors and styles of lines.
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FIG. 3. (Color online) (a)-(d) The OD island area S(0) of
coupled system (1) vs the coupling phase 6 for w = 10, 5, 4, and
2, respectively. The maximum point S(6,,) at the optimal phase 6,
is indicated by blue triangles, and the two critical points with 8 and
6" are indicated by red stars and green circles. OD only is possible
for6” <6 <6 .

obtained numerically. The numerical results are depicted in
Figs. 3(a)-3(d) with w =10, 5, 4, and 2, respectively. In
Figs. 3(a)-3(c), S(0) can always gain its maximum value
S(On) [S(Oy) > 0] at an optimal coupling phase 0y, (0y < 0)
and monotonically decreases from S(6)) to zero by altering
6 from 6y to 6 (or to 67). A delay-induced OD only is
possible for 6 < 6 < 6;F. We find the lower the frequency w,
the narrower this interval. For a sufficiently low frequency
w, the interval will vanish completely, i.e., S(6) =0 for
—m < 6 < 7 [Fig. 3(d) for w = 2]. This observation implies
that OD can be induced by a delay only if w is beyond a
critical value w, (w, > 2), whose value is given below. These
critical behaviors indicate that the delay-induced OD can be
controlled by the coupling phase. Note that 67, 6, and 6
are different for different w’s (Fig. 3).

In Fig. 4(a), we further plot the numerical calculations of
6 and 6 vs w, which are indicated by solid squares and open
squares, respectively. It can be seen that 61 and 6 originate
from the same critical point (w.,6.). With a further increase
in w from w,, the value of 8} (§7) monotonically increases
(decreases) and asymptotically approaches 7 (—7). Then, the
largest death interval (97,6") is assumed to be (=%.3)asw
goes to infinity.

In fact, the largest death interval of (—7%,%) can be
confirmed analytically. OD can occur in the coupled
system (1) only if all eigenvalues of the associated character-
istic equation have negative real parts, which, in turn, implies
that the real part of the trace of the stability matrix M [Eq. (2)]
should be negative, i.e., 2(1 — K cos 0) < 0. Because the
coupling strength always is positive (i.e., K > 0), cos 6 >
% > 0 holds. Thus, the necessary condition for the OD state
is =7 < 6 < 7, which proves that the largest death interval

T 7T
cannot be beyond (=%.%).
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FIG. 4. (Color online) (a) The two critical coupling phases 6_
(open squares) and 6} (solid squares) and the optimal coupling phase
Ou (open circles) vs w from the numerical calculation results of Fig. 3.
The red (outward) line comes from Eq. (4), which well predicts
6. and 6. The minimum point is highlighted by a green triangle
with (w.,0,) = (2.27,—0.26r). The blue (inside) line is the fit by
Oy = aw? with o &~ —2.19 and B &~ —1.16. The three horizontal
dashed lines from top to bottom are & = 7, 0, and — 7, respectively.
(b) The log-log plot of —8,, vs w, which shows a perfect power law
scaling. The blue line is a linear fit.

Next, we give a prediction of 6 and 6. From Fig. 4(a),
it can be seen that, for the occurrence of OD, the frequency
w should be beyond a certain threshold w,;,(6). This value
can be worked out from the intersection condition of the two
critical curves, Eq. (3). By comparing the forms of the two
curves, Eq. (3), and supposing that they have, at least, one
intersection point, wm;,(#) is obtained analytically as

(7 +26)\/K? — (K cos 6 — 1)
K cos 971)
K

Wmin(6) = min
©) { m—2cos™!(

[r —2 cos™! (£e2f=1)] K sin 0
K cos 971) ’
K

T =2 cos*l(

1
} ; (4)

cos 6

K >

where —5 < 6 < 7. This resultis plotted by the red (outward)
line in Fig. 4(a), which shows a fairly good coincidence
with the previous numerical calculations of 6 and 6. The
highlighted green triangle is the minimum of the red line with
the value of (w.,6,) = (2.27,—0.2677). w, = min[wyir(0),
—7% < 6 < Z]. The smallest threshold w. = wyin(6,) = 2.27
is much lower than in the case of the zero coupling phase
with the threshold wy,,(60 = 0) = 4.1812 numerically found
in Ref. [15]. The existence of the critical frequency w, can
be explained physically. From a physical point of view, a low
frequency w corresponds to a long period of the system. If
the frequency is too low, the system has an extremely long
period, thus, the delayed effect of coupling could be too weak
to induce an OD state.

The numerical calculations of the optimal coupling phase
Oy also are presented in Fig. 4(a) by the open circles. We see
that ), monotonically increases as w increases and approaches
zero for infinitely large w. Here, it is impossible to analytically
deduce the explicit function of 6y, on w. Interestingly, by the
numerical fit between —6), and w in the log-log plot [see
Fig. 4(b)], we find the following power law relation:

Oy = aw”, )
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with o &~ —2.19 and B &~ —1.16, which is plotted by the blue
(inside) line in Fig. 4(a).

III. NETWORKED DELAY-COUPLED OSCILLATORS

More interestingly, the controlling effects of the coupling
phase on the delay-induced OD can be extended to a network
of delay-coupled oscillators. Let us consider a network of N
delay-coupled Landau-Stuart oscillators,

i0

. . 2 K@
z;(0) = [1+iw — |z;(0)*1z;(1) + 7.
J

N
x Y grlzslt — ) — 70, (6)
s=1

s#J

where j =1, ...,N.The coupling topology is governed by g
as follows: If oscillators j and s are connected by a link, then
8js = &j = 1; otherwise g;; = g,; = 0. Self-connections are
not allowed, that is, g;; =0. And d; =YV _, g, is the
degree of node j. Let A;’s be the eigenvalues of the net-
worked matrix G = (5*)yy, ordered as 1.0 =1, > A, >
e Z AN 2 —1.0[28].Alinear stability analysis of Eq. (6) can
be carried out around the OD state z; =z, = --- = zy = 0.
After some algebraic manipulations, the stability of the OD
state is determined by the following N characteristic equations:

A=14iw—Ke + Kexje™, (7

where j = 1,2,...,N. By exploring the qualitative depen-
dence of Re(1) on Aj, it can be analyzed that the final OD
regions only are determined by the two extreme values of
A1 (A1 = 1) and A y. The OD regions finally are determined by
the following four critical curves:

0+ COS_l (K 0015(971)

T,(K,0) = ;

w— K sin 6 — /K2 — (K cos 6 — 1)2
27'L’+9 —COSil K cos 6—1

(K,0) = %) ,

w— K sin 0 + /K2 — (K cos 6 — 1)2 ®
21 46 — cos ™! (KLl

.’:C(Kae) = a ’

w— K sin 6 — /(Kiy)? — (K cos 6 — 1)2
0+ COS_] K cos 6—1
(K0) (%)

w— K sin 6+ /(Kiy)?> — (K cos 6 — 12

Clearly, for a given network, its smallest eigenvalue Ay
of the corresponding matrix G completely characterizes the
OD regions. The validity of Eq. (8) has been tested by many
numerical experiments with networks of different topologies,
which coincide with our theoretical analyses very well. In the
numerical simulations of networked delay-coupled oscillators,
the coupling phase 0 is found to play a similar role as in the
two delay-coupled oscillators of Eq. (1). In what follows, we
exemplarily study one type of regular network and one type of
irregular network, respectively.

For a regular network, here, we consider a typical ring
network with a nearest-neighbor connection, for which the
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FIG. 5. (Color online) The OD islands of the coupled system
Eq. (6) with a ring network for different coupled oscillators N. The
OD islands remain unchanged for all the ring networks with even
nodes N. For the odd values N, the OD regions are enclosed by four
critical curves when N < 9, and two curves otherwise, and as N —
00, the OD boundaries approach that for the even N. 6§ = —0.17
and w = 10 are fixed. The four critical curves are indicated by the
different colors and styles of lines.

smallest eigenvalue Ay of the network matrix can be obtained
analytically as follows:

—1.0, if N is even,
Ay = {cos [(l — %) n] , if N is odd. ®)

Then, by calculating the four critical curves in Eq. (8) with
6 = —0.17 and different N’s, the OD islands are shown in
Fig. 5. All ring networks with even N nodes have the same
OD island. In the case of odd N, the OD islands decrease as N
increases and approach that of even N as N approaches infinity.
This behavior is similar as in the case of the zero coupling
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FIG. 6. (a)-(d) The OD island area S(6) vs the coupling phase
0 for a ring of delay-coupled Landau-Stuart oscillators with N =
3,5, 7, and 9, respectively, w = 10. The structure is quite similar to
that in Fig. 3.
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FIG. 7. (Color online) (a) The OD islands of the coupled system
Eq. (6) with the irregular network for different coupling phases 6.
The OD boundaries are indicated by the different colors and styles
of lines. A schematic of the irregular network structure is depicted
in the upper-right corner. (b) The OD island area S(0) vs 6 for the
irregular network used in (a). Also, the structure is quite similar to
that in Fig. 3. @ = 10 is fixed.

phase 6 = 0 observed in coupled limit-cycle oscillators [16]
and in coupled chaotic Rossler oscillators [29]. To reveal the
effect of the coupling phase on the OD regions, the simulation
results of S(@) vs 6 are provided in Figs. 6(a)-6(d) for N =
3, 5,7, and 9, respectively. These patterns strongly resemble
the structures in Fig. 3, which affirm the importance of the
coupling phase for control in the regular network.

For a general irregular network, although its smallest
eigenvalue Ay of the corresponding matrix G cannot be derived
analytically, it can be computed numerically. Once Ay is
known for an irregular network, its OD regions easily can
be obtained from Eq. (8). As an illustrated example, here, we
construct a small-size irregular network by randomly adding
three edges on an initial ring network with N = 16 nodes. A
scheme of the network topology is illustrated in the upper-right
corner of Fig. 7(a). The Ay for this irregular network is
—0.9430. Several OD islands of the irregular network for
different coupling phases are depicted in Fig. 7(a), which are
obtained by calculating the curves of Eq. (8) and are checked
by direct numerical integration. From the results shown in
Fig. 7(b), again, we find that, by tuning the coupling phase 6,
the OD islands change in a similar way as previously observed
in the two delay-coupled oscillators, Eq. (1). The pattern in
Fig. 7(b) clearly shows the crucial role of the coupling phase
in controlling OD dynamics in the irregular network.

IV. CONCLUSION AND DISCUSSIONS

In conclusion, we have shown that the coupling phase
parameter enables us to control the stability domains of
delay-induced OD in coupled oscillators. For a frequency
w beyond the critical value w,, the delay-induced OD only
is possible for a coupling phase 6 located in the interval of
(6;,67), which monotonically increases with the increase in
w and approaches (—7, 7) for sufficiently large w. The optimal
coupling phase 6y, for which the OD island is maximal,
is well characterized by a power law scaling relation with
the frequency w. The controlling function of the coupling
phase is extended to a general delay-coupled network. It is
notable that, to carry out a complete analysis, the described

results are presented in the context of coupled Landau-Stuart
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limit-cycle oscillators. Also, the generality is confirmed well
by numerical experiments of delay-coupled chaotic oscillators
with the coupling phase [35]. We expect that all findings in
this paper are of significance for the control of oscillating
dynamics and can provide a positive inducement for various
experimental studies in the future.

Finally, it is valuable to give some further discussions.

(1) The main difference between the delayed feedback
control and our method is as follows. The phenomenon
OD refers to stabilizing an unstable steady state by the
coupling between, at least, two autonomous oscillators. The
self-sustained oscillations of coupled oscillators are quenched
by the interactions between oscillators. This is quite different
from controlling an unstable focus in one delayed feedback
oscillator [39-41] where the oscillations are suppressed by
the feedback information of the system itself. Besides, the OD
regions generally depend on the number N (N > 2) of coupled
oscillators, see Eq. (8) and the results shown in Fig. 5.

(2) Our analyses have shown that the OD island is deter-
mined by three factors: the frequency w, the coupling phase 9,
and the smallest eigenvalue Ay of the networked matrix. One
may obtain the same results by starting from the delay-coupled
unstable focus without any limit cycle [4]. But, it would be
physically more significant to consider a complete model with
oscillating (periodic or chaotic) behavior, which contains all
the necessary structures to reveal the novel effects induced by
delayed coupling in real systems.

(3) The boundaries of the OD regions are derived by
performing a standard linear stability analysis of the coupled
systems around the unstable origin, whose global stability is
extremely difficult to study. In practice, to numerically check
the OD regions, random initial conditions have been adopted in
all the experiments. The employed numerical technique signals
that the OD state is not only locally, but also globally stable.
The limit cycle is completely lost in the OD regions for all the
randomly chosen initial conditions, which is supposed to be
observed generally for the system near a Hopf bifurcation.

(4) It has been identified that, besides the coupling phase 6,
the system parameter w also acts as a crucial quantity. This
parameter characterizes the period T = 2177)’ of the uncoupled
limit cycle, which also sets the intrinsic time scale of the
unstable fixed point. Hence, considering their relationship
with the time delay, the results may stand without explicit
knowledge of the system’s parameters. This constitutes our
future papers.
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