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Abstract. In this paper, we study the complete synchronization of a class of

time-varying delayed coupled chaotic systems using feedback control. In terms
of Linear Matrix Inequalities, a sufficient condition is obtained through using

a Lyapunov-Krasovskii functional and differential equation inequalities. The

conditions can be easily verified and implemented. We present two simulation
examples to illustrate the effectiveness of the proposed method.

1. Introduction. In this paper, we address the complete synchronization of a class
of time-varying delayed chaotic systems. Chaos synchronization is a basic focus in
nonlinear science due to its extensive applications in secure communications, biolog-
ical science, neural networks, automatic control, etc. Since the 1990s, chaos control
and synchronization have sparked increasing interest of many researchers, and many
schemes have been developed. The readers are referred to the review monographs
[1],[6], where the authors presented the main ideas involved in the field of chaos
synchronization as well as many potential applications. So far, a lot of research on
this subject has been done, and many fundamental results have been reported on
synchronization and control of chaotic systems by scholars from physics, engineer-
ing, biology, and mathematics, etc. Various control schemes have been developed
to synchronize chaotic systems such as drive-response, coupling control, adaptive
control, feedback control, observer-based control, impulsive control, intermittent
control, to name some typical ones.

Many delayed systems in various research fields including biology, chemistry,
nonlinear optics, economics, and epidemiology, have been found to be chaotic. For
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instance, in hardware implementation, time delays occur due to finite switching
speeds of communications. Time delay may lead to some complex dynamic behav-
iors such as chaos, oscillation, divergence, and instability. There are rather few
reports on the synchronization for chaotic systems with time-varying delays. In
[12], Lu et al. proposed an adaptive scheme for stabilization and synchronization
of chaotic Lure systems with time-varying delays using the invariant principle of
functional differential equations. While in [22], Zhen et al. proposed to use sliding
model control to achieve synchronization for time-varying chaotic systems. The
sliding model synchronization controller is designed to satisfy the external distur-
bance vector with an unknown upper bound. In this paper, we obtain some criteria
for synchronization of systems with coupling time-varying delays using feedback
control. The derived conditions for the synchronization can be easily verified.

2. Problem formulation and preliminaries. Consider the following chaotic
system with time-varying delays:

dxi(t)

dt
=

n∑
j=1

aijxi(t) +

n∑
j=1

bijfj(xj(t)) +

n∑
j=1

cijfj(xj(t− τj(t))),

xi(t) = ϕi(t),−τ ≤ t ≤ 0, i = 1, · · · , n,
(1)

where fi, i = 1, · · · , n, are nonlinear functions; τi(t) ≥ 0, i = 1, · · · , n, are the the
time-varying delays with τi(t) ≤ τ in which τ is a positive constant.

For model (1), we can write it in the following matrix-vector form:

dx

dt
(t) = Ax(t) +Bf(x(t)) + Cf(x(t− τ(t)))

x(t) = ϕ(t),−τ ≤ t ≤ 0,

(2)

where x(t) = (x1(t), · · · , xn(t))T , ϕ(t) = (ϕ1(t), · · · , ϕn(t))T , A = (aij)n×n, B =
(bij)n×n, C = (cij)n×n.

Assume that the nonlinear functions fi, i = 1, · · · , n, are bounded and satisfy
Lipschitz’s condition:

H: fi, i = 1, · · · , n, are bounded functions defined on R and satisfy

|fi(x)− fi(y)| ≤ li|x− y| (3)

for all x, y ∈ R, where li are positive constants, i = 1, · · · , n.
For convenience, let AT , A−1, λm(A), λM (A) represent the transpose, inverse,

minimum eigenvalue, and maximum eigenvalue of a square matrix A, respectively.
The vector norm is Euclidian, denoted by ||.||. And A > 0 (< 0,≤ 0,≥ 0) represents
a symmetrical positive (negative, semi-negative, semi-positive) definite matrix A.

Let the chaotic system (2) be the master system and its unidirectionally coupled
copy

dy

dt
(t) = Ay(t) +Bf(y(t)) + Cf(y(t− τ(t))) + u(t)

u(t) = K(x(t)− y(t))

x(t) = φ(t),−τ ≤ t ≤ 0,

(4)
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be the slave system, where K = diag(k1, · · · , kn) and u(t) is a feedback control to
be designed.

Let e(t) = y(t)− x(t) be the error between the two systems. Complete synchro-
nization between the master and slave systems means that e(t) → 0, as t → ∞ .
By systems (2) and (4), we have the following error system:

de

dt
(t) = −(K −A)e(t) +B(f(y(t))− f(x(t)))

+C(f(y(t− τ(t)))− f(x(t− τ(t)))).

(5)

We are looking for simple conditions to guarantee that e(t) approaches to 0, i.e.,
complete synchronization.
Definition 1. Systems (2) and (6) are said to be exponentially synchronized if
there exist constants λ > 0 and M > 0 such that

||e(t)|| ≤M ‖ φ(0)− ϕ(0) ‖τ e−λt (6)

for all t ≥ 0, where ‖ φ(t)− ϕ(t) ‖τ= sups∈(t−τ,t] ‖ φ(s)− ϕ(s) ‖.
To prove the main result for exponential synchronization, we present several

lemmas first.
Lemma 1. Given any real matrices A,B,C with appropriate dimensions, and a

positive symmetric matrix C. Then, for any scalar ε > 0, the following inequality
holds:
ATB +BTA ≤ εATCA+ 1

εB
TC−1B.

Lemma 2. (Schur complement, Boyd et al. [1]). The following LMI:[
A(x) B(x)
BT (x) C(x)

]
> 0,

where A(x) = AT (x), C(x) = CT (x), and B(x) depends affinely on x, is equivalent
to one of the following conditions:
(i) A(x) > 0, C(x)−BT (x)A(x)−1B(x) > 0;
(i) C(x) > 0, A(x)−B(x)C(x)−1BT (x) > 0.

3. Synchronization criterion. In this section, using the Lyapunov method and
LMI techniques, we establish a sufficient condition for synchronization of chaotic
systems with time-varying delays. The following is the main theorem.

Theorem 1. Suppose that there exist positive constants α, β, γ and a positive
diagonal matrix P such that
(i) the following LMI holds:[

2P (K −A)− γP − 1
αB

TB − 1
βC

TC
√
αPL√

αLP In

]
> 0,

(ii) c ≡ β
γ λM (P ) max1≤i≤n{l2i } < 1;

where In is an n-order identity matrix, L = diag(li)n×n, li being the Lipschitz
constants in (3). Then, systems (2) and (6) are exponentially synchronized under
assumption H.
Proof. Consider the following Lyapunov-Krasovskii functional:

V (e(t)) = eT (t)Qe(t), (7)

where Q = P−1. It is clear that

λm(Q)||e(t)||2 ≤ V (e(t)) ≤ λM (Q)||e(t)||2. (8)
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For convenience, define

σ = sup−τ≤t≤τ{||e(t)||} , ς = sup−τ≤t≤2τ{||e(t)||}.

Because e(t) in the error system (5) is continuous, the existence of σ, ς is guar-
anteed. In the following, we take the time derivative of V (e(t)) along the trajectory
of the error system (5) and estimate it. We have

V̇ (e(t)) = 2eT (t)Q[−(K −A)e(t) +B(f(y(t))− f(x(t)))

+C(f(y(t− τ(t)))− f(x(t− τ(t))))]

≤ −2eT (t)Q(K −A)e(t) + 2eT (t)QB(f(y(t))− f(x(t)))

+2eT (t)QC(f(y(t− τ(t)))− f(x(t− τ(t))))

≤ −2eT (t)Q(K −A)e(t) +
1

α
eT (t)QBBTQe(t)

+α(f(y(t))− f(x(t)))T (f(y(t))− f(x(t))) +
1

β
eT (t)QCCTQe(t)

+β(f(y(t− τ(t)))− f(x(t− τ(t))))T (f(y(t− τ(t)))− f(x(t− τ(t))))

≤ −2eT (t)Q(K −A)e(t) +
1

α
eT (t)QBBTQe(t)

+αeT (t)L2e(t) +
1

β
eT (t)QCCTQe(t)

+βeT (t− τ(t))L2e(t− τ(t))

= eT (t)[−2Q(K −A) +
1

α
QBBTQ+ αL2 +

1

β
QCCTQ]e(t)

+βeT (t− τ(t))L2e(t− τ(t))

= eT (t)Q[−2(K −A)P +
1

α
BBT + αL2P 2 +

1

β
CCT ]Qe(t)

+βeT (t− τ(t))L2e(t− τ(t))

≤ −γV (e(t)) + eT (t)Q[γP − 2(K −A)P +
1

α
BBT

+αL2P 2 +
1

β
CCT ]Qe(t) + βeT (t− τ(t))L2e(t− τ(t)).

(9)

By condition (i), we have

V̇ (e(t)) ≤ −γV (e(t)) + βeT (t− τ(t))L2e(t− τ(t))

≤ −γV (e(t)) + β max
1≤i≤n

{l2i }||e(t− τ(t))||2.

(10)

which implied that
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V (e(t)) ≤ V (e(τ))e−γ(t−τ)

+β max
1≤i≤n

{l2i }
∫ t

τ

e−γ(t−s)||e(s− τ(s))||2ds

≤ λM (Q)σ2e−γ(t−τ)

+β max
1≤i≤n

{l2i }
∫ t

τ

e−γ(t−s)||e(s− τ(s))||2ds.

(11)

By inequalities (8) and (11), we obtain the following:

||e(t)||2 ≤ 1

λm(Q)
[λM (Q)σ2e−γ(t−τ)

+β max
1≤i≤n

{l2i }
∫ t

τ

e−γ(t−s)||e(s− τ(s))||2ds].

(12)

Next, we prove that e(t) satisfies

||e(t)|| ≤
(

1

1− η

) 1
2

Me−
ε
2 (t−τ), t ≥ τ,

(13)

where M =
(

1
λm(Q) [λM (Q)σ2 + β

γ max1≤i≤n{l2i }ς2eγτ ]
) 1

2

, and ε is a constant satis-

fying 0 < ε < γ and η = 1
λm(Q)

1
γ−εβmax1≤i≤n{l2i }eετ < 1, noticing that λM (P ) =

1
λm(Q) . The existence of ε is guaranteed by condition (ii) of this theorem.

We also notice that inequality (13) is equivalent to the following inequality:

||e(t)|| ≤ ρ
(

1

1− η

) 1
2

Me−
ε
2 (t−τ), ρ > 1, t ≥ τ,

(14)

It is obvious that when t = τ , inequality (14) follows from (12).
Now, suppose that there exist t0 > τ and ρ0 > 1 such that

||e(t0)|| = ρ0

(
1

1− η

) 1
2

Me−
ε
2 (t0−τ),

(15)

and, for any t ∈ [τ, t0),

||e(t)|| ≤ ρ0
(

1

1− η

) 1
2

Me−
ε
2 (t−τ).

(16)

Here, it is noted that t0 is either in interval (τ, 2τ ] or (2τ,∞).
First, consider the case of t0 ∈ (τ, 2τ ]. By inequality (12), we get
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||e(t0)||2 ≤ 1

λm(Q)

[
λM (Q)σ2e−γ(t0−τ)

+β max
1≤i≤n

{l2i }
∫ t0

τ

e−γ(t0−s)||e(s− τ(s))||2ds
]

≤ 1

λm(Q)

[
λM (Q)σ2e−ε(t0−τ)

+β max
1≤i≤n

{l2i }ς2
∫ t0

τ

e−γ(t0−s)ds

]
=

1

λm(Q)

[
λM (Q)σ2e−ε(t0−τ)

+
β

γ
max
1≤i≤n

{l2i }ς2(1− e−γ(t0−τ))
]

<
1

λm(Q)

[
λM (Q)σ2e−ε(t0−τ) +

β

γ
max
1≤i≤n

{l2i }ς2
]

<
1

λm(Q)

[
λM (Q)σ2e−ε(t0−τ)

+
β

γ
max
1≤i≤n

{l2i }ς2eγτe−γ(t0−τ)
]

<
1

λm(Q)

[
λM (Q)σ2e−ε(t0−τ)

+
β

γ
max
1≤i≤n

{l2i }ς2eγτe−ε(t0−τ)
]

= M2e−ε(t0−τ)

<
ρ20

1− η
M2e−ε(t0−τ).

(17)

It is contradicted to equation (15).
Second, consider the case of t0 ∈ (2τ,∞). From inequality (12), we have

||e(t0)||2 ≤ 1

λm(Q)
[λM (Q)σ2e−γ(t0−τ)

+β max
1≤i≤n

{l2i }ς2
∫ 2τ

τ

e−γ(t0−s)ds

+β max
1≤i≤n

{l2i }
∫ t0

2τ

e−γ(t0−s)||e(s− τ(s))||2ds]

≤ 1

λm(Q)
[λM (Q)σ2e−ε(t0−τ)

+β max
1≤i≤n

{l2i }ς2
∫ 2τ

τ

e−γ(t0−s)ds

+βρ20

(
1

1− η

)
M2 max

1≤i≤n
{l2i }

∫ t0

2τ

e−γ(t0−s)e−ε(s−τ(s)−τ)ds]
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≤ 1

λm(Q)
[λM (Q)σ2e−ε(t0−τ)

+β max
1≤i≤n

{l2i }ς2
∫ 2τ

τ

e−γ(t0−s)ds

+βρ20

(
1

1− η

)
M2 max

1≤i≤n
{l2i }

∫ t0

2τ

e−γ(t0−s)e−ε(s−2τ)ds]

=
1

λm(Q)
[λM (Q)σ2e−ε(t0−τ)

+
β

γ
max
1≤i≤n

{l2i }ς2(e−γ(t0−τ) − e−γ(t0−2τ))

+βρ20

(
1

1− η

)
M2 max

1≤i≤n
{l2i }

1

γ − ε
(e−ε(t0−2τ) − e−γ(t0−2τ))]

≤ 1

λm(Q)
[λM (Q)σ2e−ε(t0−τ)

+
β

γ
max
1≤i≤n

{l2i }ς2(e−γ(t0−τ) − e−γ(t0−2τ))

+βρ20

(
1

1− η

)
M2 max

1≤i≤n
{l2i }

1

γ − ε
(e−ε(t0−2τ) − e−γ(t0−2τ))]

≤ 1

λm(Q)
[λM (Q)σ2e−ε(t0−τ)

+
β

γ
eγτ max

1≤i≤n
{l2i }ς2e−ε(t0−τ)

+βρ20

(
1

1− η

)
M2eετ max

1≤i≤n
{l2i }

1

γ − ε
e−ε(t0−τ)]

≤ [M2 +
ρ20

1− η
M2η]e−ε(t0−τ)

<
ρ20

1− η
M2e−ε(t0−τ).

(18)

The above result is contradicted to the assumption (15). Thus, inequality (14)
is correct,so (13) is correct, i.e., the systems (2) and (6) are exponentially synchro-
nized. The proof is complete. �

Let α = β = 1. Then, we have the following corollary.
Corollary 1. Suppose that there exist a diagonal matrix P = diag(p1, · · · , pn) > 0

and a positive γ, such that
(i) the following LMI holds:[

2P (K −A)− γP −BTB − CTC PL
LP In

]
> 0;

(ii) c ≡ 1
γ max1≤i≤n{pi}max1≤i≤n{l2i } < 1;

where In is an n-order identity matrix, L = diag(li)n×n and li being the Lipschitz
constants in (3). Then, the systems (2) and (6) are exponentially synchronized
under the assumption H.
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Figure 1. Transient behavior of x2 in Example 1.

4. Simulations. In this section, we provide two examples to demonstrate that the
new results on synchronization of chaotic systems are effective.

Example 1. Consider the following chaotic master system (shown in Fig. 1):

dx

dt
(t) = Ax(t) +Bf(x(t)) + Cf(x(t− τ(t))),

(19)

where

A =

[
−1 0
0 −1

]
, B =

[
1 + π

4 20
0.1 1 + π

4

]
, C =

[
−1.3

√
2π

4 0.1

0.1 −1.3
√
2π

4

]
,

τ(t) = 1 + 2sin2t, and f(x) = 0.5(|x+ 1| − |x− 1|). Let its response system be

dy

dt
(t) = Ay(t) +Bf(y(t)) + Cf(y(t− τ(t))) +K(x(t)− y(t)),

(20)

where K = diag(k1, k2). For a small enough scalar ε > 0, let P = I, γ = β + ε,

α =
√

439.0741, β =
√

2.3837 in Theorem 1. When k1 > 21.498, k2 > 21.498, the
conditions in Theorem 1 are satisfied. Thus, systems (19) and (20) are synchronized.
Fig. 2 and Fig. 3 show the error curves of e1 and e2 with the initial conditions
ϕx1(s) = ϕx2(s) = 0.5, ϕy1(s) = ϕy2(s) = 0.48. From those graphs, one observes
that the synchronization between two systems are achieved effectively.
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Figure 2. Error e1 in Example 1.

Example 2. Consider the following master chaotic system (shown in Fig. 4):

dx

dt
(t) = ax(t) + cf(x(t− τ(t))),

(21)

where a = −0.16, c = 0.2,, τ(t) = 25 + sin2t, and

f(x) =


0, |x| ≥ 4

3
−1.5x− 2, − 4

3 < x− 0.8
x, |x| ≤ −0.8
−1.5x+ 2, 0.8 < x < 4

3 .

(22)

Let the response system be

dx

dt
(t) = ax(t) + cf(x(t− τ(t))) + k(x(t)− y(t)).

(23)

Choosing α = γ = 1, β = 0.25, P = 1, we can see that all of the conditions of
Theorem 1 are satisfied when k > 1.868. The error curve with the initial conditions
ϕx(s) = 0.9, ϕy(s) = 0.8, and the feedback strength k = 1.9, is shown in Fig. 5.
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Figure 5. Error e in Example 2.
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