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a b s t r a c t

The recent years have seen the emergence of graph theoretical analysis of complex, functional brain
networks estimated from neurophysiological measurements. The research has mainly focused on the
graph characterization of the resting-state/default network, and its potential for clinical application.
Functional resting-state networks usually display the characteristics of small-world networks and their
eywords:
unctional networks
emantic priming
400

statistical properties have been observed to change due to pathological conditions or aging.
In the present paper we move forward in the application of graph theoretical tools in functional connec-

tivity by investigating high-level cognitive processing in healthy adults, in a manner similar to that used
in psychological research in the framework of event-related potentials (ERPs). More specifically we aim
at investigating how graph theoretical approaches can help to discover systematic and task-dependent
differences in high-level cognitive processes such as language perception. We will show that such an

hat t
approach is feasible and t

. Introduction

The brain and its network structure are one of the most chal-
enging research subjects in (cognitive) neuroscience. The recent
ast saw substantial developments of tools to analyze, describe
nd statistically classify networks by means of graph theory. It
as been demonstrated that to a large extent graph theoretical
easures could already be applied to brain networks either on

natomical and functional levels revealing characteristic network
eatures and different organizational scales (Bullmore and Sporns,
009). The research in functional connectivity with human sub-

ects has mainly focused on the investigation of properties of
he resting-state/default network, i.e. when participants are not
erforming any particular task (Stam and Reijneveld, 2007). Rest-

ng state networks display small-world characteristics, which have
een observed to change in pathological conditions (Stam et al.,
006; Supekar et al., 2008) or during aging (Micheloyannis et al.,
009; Fair et al., 2009; He and Evans, 2010). These observations
ight have clinical applications.
In the present paper we advance in the research on func-
ional brain connectivity by applying graph theoretical tools
o high-level cognitive processes in healthy adults. We aim to
xplore whether graph-theoretical tools can be used to identify
ask-dependent differences in the functional brain activity from

∗ Corresponding author. Tel.: +49 331 977 2013.
E-mail address: schinkel@physik.hu-berlin.de (S. Schinkel).

165-0270/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2011.02.018
he results coincide well with the findings from neuroimaging studies.
© 2011 Elsevier B.V. All rights reserved.

neurophysiological measurements. Given electroencephalographic
(EEG) data recorded during two different experimental conditions,
we investigate whether their corresponding functional networks
are significantly different of each other. The purpose of this paper
is twofold – firstly we want to investigate whether we can repli-
cate (classical) findings of ERP research using a graph theoretical
approach and secondly, whether such measurements can provide
additional information that have not been investigated by classical
ERP analysis.

In comparison to other studies of functional connectivity, this
paper features two main technical novelties. (i) We use joint recur-
rence plots (JRPs), to estimate dynamical inferences (functional
links) between the individual nodes of the network, in our case
the electrodes used for recording the EEG. This allows us to study
the cerebral activity in the sensor (electrode) space while being less
prone to artifacts caused by volume conduction. (ii) We do investi-
gate network characteristics over a wide range of thresholds rather
than for a fixed threshold, scanning through the levels of organiza-
tion of the underlying network, ranging from full synchronization
to complete segregation.

The main result of our study is that we can indeed replicate
findings from functional imaging studies that convincingly argue
that the process under investigation, the N400 component (see Sec-

tion 2.3), does not reflect an isolated process but rather the sum of
multiple, distributed processes.

The paper is organized as follows: the next section will famil-
iarize the reader with some basic concepts of functional network
analysis. The semantic priming experiment will be outlined in Sec-

dx.doi.org/10.1016/j.jneumeth.2011.02.018
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:schinkel@physik.hu-berlin.de
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ig. 1. Examples of networks: an undirected network (a) states only the presence
lso provides a direction to that connection. Furthermore, a weighted network (c) a

ion 2.3. After presenting the key results in Section 3, we will
onclude with a short discussion and an outlook.

. Materials and methods

.1. Complex networks

A network is, in the most general definition, a set of elements
nodes or vertices) with connections (links or edges) between them
Boccaletti et al., 2006; Newman, 2003; Costa et al., 2007; Arenas
t al., 2008).

The links between the individual elements of a network can be
ndirected, indicating that there is a symmetric connection between
wo elements (Fig. 1a), or they can be directed, indicating the pres-
nce of asymmetry in the interaction between the nodes (Fig. 1b).
urther, the links can be weighted and quantify the strength of the
onnection (Fig. 1c). Sometimes, the nodes and the links repre-
ent physical entities such as a set of computers and the cables
onnecting them, or the axonal connections between nerve cells.
inks can, however, also represent more abstract features, e.g. col-
ege students who belong to the same fraternity, or the level of
ynchronization between two dynamical systems. Real networks
erived from empirical data are usually termed complex because
hey are neither random nor regular, but possess some degree of
rganization which is not trivially observable.

A network of N nodes can be represented by a square matrix A,
alled adjacency matrix, of size N × N. Its elements Aij = 1 if there is
link connecting node i to node j. If there is no link between the

wo nodes, then Aij = 0. In undirected networks A is symmetric.
The framework of graph theory includes a set of statistical

escriptors which permit to uncover properties of networks at dif-
erent scales of organization. The density of the network �, is the
atio of existing links to the number of all possible links. The degree
f a node i, ki is the number of links that i makes to other nodes, also
eferred to as the neighbours of node i. The average degree 〈k〉 is the
verage number of connections of the nodes within the network.

In networks, the distance between two nodes i and j is quanti-
ed as the number of links crossed to travel from one to another.

f there is a link i → j (Aij = 1) then the distance dij = 1. If there is
o link between them, but it is possible to travel through another
ode s such that the path i → s → j is possible, then the distance
ij = 2, and so on. The average pathlength l is the average of all pair-
ise distance, l = 〈dij〉. Another important measure, the clustering

oefficient C, characterizes the cohesiveness of the nodes. It terms
f social networks, it captures the observation that two persons are
ore likely to be friends if they have a common friend. Formally,
he clustering coefficient denotes the ratio between the number of
riangles present in the network, and the number of possible tri-
ngles that could be formed. If the number of triangles is denoted
y N(�), and N( ∨ ) is the number of connected triplets, then the
lustering coefficient is quantified as: C = 3 × N( ∇ )/N( ∨ ). The fac-
graph

nections (links) between elements (nodes) of the network, a directed network (b)
antifies the strength of that connection.

tor accounts for the fact that each triangle contains three connected
triplets.

2.2. Functional network estimation from neurophysiological data

In order to estimate functional networks from a time-series of
measured data two key steps are required (Fig. 2). First, the dynam-
ical inferences between all pairs of nodes have to be computed
and summarised into a similarity or association matrix (Fig. 2b).
The pairwise similarity can be quantified by classical statistical
measures, e.g. linear cross-correlation or more advanced measures
based on information theory, such as Granger causality (Granger,
1969) or partial directed coherence (Baccala and Sameshima, 2001).
In the second step a threshold is applied to this matrix in order to
conserve only the relevant connections/links giving rise to a binary
network described by the adjacency matrix (Fig. 2c). This is a non-
trivial step as there are no general guidelines on how to choose the
threshold. In some studies a threshold is fixed and applied to all the
networks (e.g. Fair et al., 2009) and in other studies the threshold
is adapted such that all resulting functional networks all have the
same number of links (e.g. Schindler et al., 2008). Once the adja-
cency matrix is derived, graph analysis measures can be applied to
uncover its topological organization.

In the following we review this process in closer detail.

2.2.1. Defining dynamical similarity
Linear cross-correlation (Hogg et al., 1959) is usually the base-

line criterion to evaluate the level of dynamical similarity between
two time-series. But it may not be the optimal measure of simi-
larity for the application at hand. In a typical EEG/ERP setup the
distance between the electrodes is rather small, in the range of a
few centimetres. In a high-resolution setup using 126 or even more
electrodes, the distance sometimes is only a few millimetres. Due to
the spatial proximity and volume conduction the cross-correlation
between the neighbouring electrodes may yield very high corre-
lation values. It will therefore be very difficult to decide whether
the measured correlation is simply due to spatial proximity or does
indeed capture a functional relationship. Unfortunately, measures
quantifying true functional relationships like Granger causality or
partial directed coherence on the other hand, are not feasible for
the signals of the electrodes in an EEG experiment (sensor space)
as volume conduction counteracts their application. Those mea-
sures should be only applied in the source space, i.e. the estimated
sources of neural activity, derived from source localisation routines.

Therefore we here used a method defining the similarity matrix
based on a recurrence analysis of time series (Marwan et al., 2007).

Recurrence-based approaches have recently been shown to be a
suitable tool for the analysis of EEG data in general (Komalapriya
et al., 2009) and ERP data in particular (Schinkel et al., 2007,
2009a,b), because recurrence-based analysis is capable to cope with
rather short, noisy and instationary time series.
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Table 1
Dependence of key network measures on the threshold ε applied to the similar-
ity/association matrix: � is the network density, 〈k〉 is the average degree, l is
the average pathlength, and C is the average clustering coefficient. The associa-
tion matrix was computed from high-resolution EEG data recorded in the semantic
priming experiment (Section 2.3).

ε � 〈k〉 l C

0.5 0.2371 0.2352 1.7741 0.6592
0.6 0.0912 0.0905 3.8113 0.4931

with almost identical dynamical behaviour are connected. Hence,
almost all nodes are disconnected from each other and there are
as many network components as there are nodes. As ε decreases,
more links are included into the functional network. This leads to
ig. 2. The basic procedure for estimation of networks from time series. The pair-
r similarity matrix (b). By applying a threshold to such an association matrix a b
tatistical properties of the network.

For the estimation of the similarity matrices, we used joint
ecurrence plots (JRPs) which evaluate the simultaneous occur-
ence of recurrences in two systems and provide a generalisation of
ross-correlation. A JRP is the Hadamard product of two recurrence
lots (RPs):

Pi,j = �(εx − ||xi − xj||), i, j = 1, . . . , n (1)

An RP captures the recurrence properties of a single time series,
uch that RPi,j = 1 if the difference between the values at the time
oints xi and xj is less than a chosen recurrence threshold ε, other-
ise RPi,j = 0. A JRP is a multivariate extension of RPs that captures

he joint recurrence behaviour of two time series:

RPi,j = �(εx − ||xi − xj||) · �(εy − ||yi − yj||), i, j = 1, . . . , n (2)

here x and y are the individual time series of length n at two nodes
electrodes) x and y. � is the Heaviside step function and ε is the
ecurrence threshold or the recurrence criterion.

A joint recurrence JRPi,j = 1 is only given if
(εx − ||xi − xj||) = 1 ∧ �(εy − ||yi − yj||) = 1, that is, if both time

eries recur simultaneously. The amount of joint recurrences gives
n estimation of how similar the dynamical behaviour of two time
eries is.

For our analysis we use JRPs and a recurrence threshold criterion
hich ensures that all columns of the individual RPs have the same
umber of points. For all combinations of channels ci the JRPci,cj

ere constructed and the joint recurrence rate JRR was calculated
s:

RR = 1
N2

N∑

i,j=1

JRPi,j (3)

his approach has the advantage, that it can assess the similarity
etween channels to a larger extent than linear measures and is

ess prone to spurious similarities as the dynamical behaviour is
onsidered (Romano et al., 2005).

To cross-validate whether the findings would be obtainable with
orrelations as well, we also calculated dynamical similarities using
inear correlation between electrodes.

.2.2. Threshold selection

The selection of an appropriate threshold ε that is used to extract

n adjacency matrix from the similarity matrix for the subsequent
nalysis is far from trivial. The chosen threshold crucially impacts
he network statistics as shown in Table 1. It is usually difficult
o decide, which threshold best reflects the network properties.
0.7 0.0317 0.0315 10.6720 0.2740
0.8 0.0135 0.0134 59.0918 0.0862
0.9 0.0089 0.0088 112.5957 0.0238

Therefore we investigated the behaviour of the network over a
range of thresholds. For each binary network extracted at differ-
ent thresholds, we computed the number of network components.
A network component is a subset of the nodes which are at finite
graph distance, but have no links to nodes outside the network
component (see Fig. 3).

For a very high ε in the functional network only those nodes
Fig. 3. The concept of network components: nodes that have links only among
each other but not to nodes from another network component and are therefore
filled with the same colour. Nodes that have no links are considered as network
components of size one (blank nodes).
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ig. 4. Schematic of one experimental trial. The rather long interval between prime
f the prime in the processing of the target-related EEG.

merging of network components until only one network com-
onent remains. The interesting question here is how quickly this
erging happens as the threshold is lowered, and if there is a differ-

nce in the network component formation between the functional
etworks derived from the two experimental conditions.

Notice that although the terminology is similar, a network com-
onent must not be confused with an ERP component, which
enotes a particular spatio-temporal pattern in the recorded EEG
ata.

.3. Semantic priming study

10 young adults (1 male and 9 female) aged 19–38 (mean 23.6;
D 5.4 years) participated in a semantic priming experiment. All
ere right-handed (mean handedness index: +98 according to
ldfield (1971)), monolingual native speakers of German and gave
ritten consent to the experiment. Subjects received either pay-
ent or course credits. The EEG was recorded from 126 Ag/AgCl

lectrodes (impedances ≤5 k�) at a sampling rate of 1000 Hz
sing a BrainAmp DC amplifier (Brain Products GmbH, Munich,
ermany). All electrodes were initially referenced to an electrode
n the left mastoid (A1) and converted off-line to linked-mastoid
eference. The EEG data was bandpass filtered from 1 to 30 Hz. Trials
ith artifacts or a wrong response were excluded from the analysis.

The subjects were presented with a prime word that was either
synonym of a following target word or an unrelated noun. The

xperimental setup was as follow, after a 1000 ms blank screen
inter-trial-interval) a fixation point appeared for 1000 ms, which
as then replaced with the prime. The prime was presented for
50 ms follow by another blank screen (1000 ms) before the target
as shown for 1000 ms. Finally a feedback screen was shown for

00 ms informing the subject if they where to slow or gave a wrong
esponse. If the response was correct no explicit feedback was given
Fig. 4). We used the rather long stimulus onset asynchrony of

ig. 5. Grand average ERPs locked to stimulus onset (a) and locked to the subject’s resp
nalysis are highlighted in the plots. For the reference window we chose the 200 ms prece
mmediately before the response (button press).
target was chosen in order to avoid the inclusion of potentials evoked by the onset

1000 ms in order to avoid the inclusion of potentials evoked by
the onset of the prime in the processing of the target-related EEG.

The stimulus material was taken from Hohlfeld et al. (2004). In
total subjects had to read 240 items, 120 in each condition. Sub-
jects had to indicate by a button press with either the right or left
hand, whether the presented word was synonymous or not. The
response hand was changed midway during the experiment. The
high degree of semantic relatedness of synonymous words as com-
pared to the unrelated words strongly modulates N400 component.
The N400 component reflects the retrieval of semantic word infor-
mation from long term memory (Kutas and Federmeier, 2000) and
its integration into the semantic context provided by the prime
word. If this semantic retrieval and integration is easy as for syn-
onymous words, the N400 amplitude is small, whereas it is large
(about 5 �V) when there is no such context as in the case of unre-
lated prime words. Recent studies found that the N400 does not
reflect the activity of a clearly localised brain system process but
rather reflects the activity of distributed neuron ensembles that act
as functional units (Pulvermüller, 1996, 2001). According to the lit-
erature all studies found effects involving the left middle temporal
gyrus (MTG) but also other sources. For semantic priming manip-
ulations inferior frontal effects are also reported, but there is less
consistency in these effects as compared to the involvement of the
MTG (see Lau et al., 2008, for a review).

For the network estimation and subsequent analysis we focused
on two time windows. The first window (pre-stimulus window)
ranging from 200 ms pre-stimulus to stimulus onset was chosen as
a reference for the comparison (Fig. 5).

For the critical part of the analysis the data was response-locked.

The subject’s response, the button press participants had to pro-
vide, and not the stimulus onset was used to align the individual
EEG segments (epochs). The window chosen here, the N400 win-
dow, ranges from 200 ms before response the button press until
the response. This window captures the time of divergence of the

onse (b) at a centro-parietal site (CPZ). The two time windows considered in the
ding the stimulus presentation, for the N400 window we used the 200 ms window
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ig. 6. Topology of the grand average ERP for the difference primed − unprimed
ondition in the N400 window, the same window that was subjected to the network
omponent analysis (Fig. 7).

wo ERPs waveforms (Fig. 6) until the response was given. For the
unctional network analysis we deliberately chose to lock the data
o the subject’s response, to counteract latency jitter. Latency jitter
efers to the effect that the trial-to-trial variability can be consid-
rably large which can distort the ERP waveform and potentially
ead to broad, low-amplitude waveforms. Locking the data to the
esponse thus effectively limits the impact of latency jitter.

We tested the following hypothesis: within the window imme-
iately preceding the response, the experimental manipulation
primed × unprimed) should elicit a difference between both con-
itions that reflects the experimental manipulation. In contrast we
hould not be able to observe a difference in pre-stimulus window.

. Results
The analysis was done on the averaged data. For each subject
e averaged the EEG data within each condition and estimated the

imilarity matrix in the pre-stimulus and the N400 window.

Primed threshold:0.730 

ig. 7. Sample network component distribution for an exemplary subject in the N400 w
ssociation matrix is the same in both conditions. Nodes (electrodes) in the same colo
omponent (i.e. a network component with only one member) are blank. It can be seen, t
ne network components “absorbs” all nodes in the network, whereas in the unprimed
maller, distributed network components.
ce Methods 197 (2011) 333–339 337

For a first impression, we investigated whether a qualitative
effect can be observed. Fig. 7 shows the colour-coded network com-
ponents according to their distribution on the head. The primed and
the unprimed condition clearly differ in qualitative terms. With
primed items we observed a behaviour that is most adequately
described as global synchronization where one large network
component dominates the dynamics. The unprimed items (N400
condition) elicit a different and more complex behaviour. Here the
network component structure is more elaborate, revealing a larger,
lateralized network component along with several smaller network
components.

We then investigated whether this effect is statistically sig-
nificant. For this we computed the total number of network
components in the networks while lowering the threshold from
1.0 to 0.5. During this process the network structure is bound to
shift from one extreme state – total segregation – to the oppo-
site extreme – global synchronization. For a threshold of 1, which
requires identity of the nodes in order to be clustered together, all
nodes form a cluster of their own, resulting in as many clusters as
there are electrodes. This is the state of total segregation. The lower
the threshold, the more nodes will be clustered together until only
one single cluster remains. This is the state of global synchroniza-
tion. This state can be understood as a kind of default or resting
state in which no particular processing is dominant. This in turn
means, that the higher the threshold at which this state emerges,
the closer the underlying system, in our case the brain, is to the
default state. As complexity emerges in-between those two states,
it is of interest for our analysis, whether the path of this transition
is different between the two conditions examined.

The analysis was performed using four functional networks
extracted from the EEG data: a window of pre-stimulus data
(200 ms previous to stimulus onset) in both conditions (primed
and unprimed) and in the N400 windows of both conditions as
described above. We find that the number of network components
drops in both conditions and windows as the threshold is low-
of clusters is similar in both conditions, primed and unprimed. A
permutation test, the non-parametric counterpart of the classical
t-test (Good, 2005), applied to the average number of network com-
ponent across subjects, did not reveal any significant differences

Unprimed threshold:0.730 

indow for primed (left) and unprimed items (right). The threshold applied to the
ur belong to the same network component. Nodes that form a distinct network
hat in the case of primed items a pattern of global synchronization emerges, where

condition a larger, lateralized network component is present along with various
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(a) pre-stimulus window
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Fig. 8. The comparison for similarity matrices based on joint recurrence. Significant differences (upper panels) between the 2 conditions for a wide threshold range can be
found in the N400 window (right panel), whereas no such differences are found in the pre-stimulus interval (left panel). The p-value of a sliding permutation test is plotted
in the upper panels.
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(a) pre-stimulus window

ig. 9. The evolution of the number of network components found in the network v
nd the N400 window (right panel). For definition of the similarity matrix linear cr

etween the primed and unprimed condition in the pre-stimulus
nterval for all thresholds considered (Fig. 8a).

In the N400 window the results are substantially different.
he number of network components drops as the threshold is
ecreased. For unprimed items the decay of the number of net-
ork components is far slower than for primed items and less
ronounced at higher thresholds. This can be argued to reflect the
act that in the primed condition the system is closer to the afore-

entioned default state, as the semantic processing is facilitated
y the presentation of synonymous word. In the unprimed condi-
ion on the other hand, no such facilitation was provided by the
rime. Therefore the semantic processing induces more cognitive

oad, which leads the system further away from the default state.
We again investigated whether this difference is significant by

unning a permutation test between the number of network com-
onents in both conditions at each threshold value for both time
indows. And indeed, the difference in the number of network

omponents is highly significant over a wide threshold range in
he N400 window (Fig. 8b).

.1. Benchmark comparison using linear correlation

In order to illustrate that the results of the analysis crucially

epend on the measure chosen to define the association/similarity
atrix, we ran a benchmark comparison. Analogous to the pro-

edure shown in Fig. 8 we estimated the similarity matrix and
hen investigated the formation of network components as the
hreshold decreases. In this benchmark comparison we used linear
(b) N400 window

threshold applied to the similarity matrix in the pre-stimulus window (left panel)
rrelation was used. There is no significant difference in either of the windows.

correlation. Linear correlation is the standard measure to estimate
similarities between two observations and was therefore chosen.
Due to its nature, correlation can only capture linear dependencies
in the data. The joint recurrence rate on the other hand also incorpo-
rates nonlinear aspects by investigating common characteristics in
dynamic behaviour as expressed in the recurrence properties of the
signals. Furthermore, as a recurrence approach it is less sensitive
to nonstationarities and suitable for rather short data series.

Indeed it was found that linear correlation cannot be used to
distinguish the primed from the unprimed condition in the same
fashion the recurrence approach does (Fig. 9). We therefore argue
that there are nontrivial, nonlinear interactions that are responsible
for the results observed in Fig. 8.

4. Conclusion

The present study attempted to show the feasibility of defin-
ing functional networks on the basis of the similarity of recurrence
plots by using data from a semantic priming experiment. Corre-
sponding to the general knowledge about the processes underlying
the N400, we found a distributed left-lateralized network compo-
nent pattern in the case of an N400 response (unprimed items)
whereas no such pattern could be observed for primed items.

While the N400 seems to be constituted of a larger, lateralized net-
work component along with various smaller additional network
components, the primed items showed a pattern of global synchro-
nization, which could be argued to reflect a kind of steady regime
during the processing. Additional to this qualitative result, we could
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lso quantify this observation with a straight-forward statistical
omparison, namely the number of the network components in the
rimed and unprimed cases, which verifies that this effect is stable
cross subjects.

Some points of our analysis deserve special highlighting. First of
ll, the criterion we used to construct the association matrix, the
oint recurrence rate of two nodes/electrodes, seems to be capable
f disentangling the truly functional relationships from the trivial
elationships to a large extent. By using nonlinear methods we can
nvestigate processes like the N400 in the electrode/sensor space

here linear methods fail to do so and without the need for source
econstruction or other pre-processing methods that compensate
or spatial smearing of the wave forms.

From a graph analytical point of view it has to be mentioned
xplicitly that our analysis has the advantage of circumventing the
eed of a priori selecting a threshold for the graph analysis. The
election of a threshold is usually rather arbitrary. By investigat-
ng the organization of the network over a range of thresholds we
o not investigate a single network that might, in the worst case,
ave arisen only due to an inappropriate threshold and in general
eflects only one aspect of the underlying data, but rather we inves-
igate a series of possible networks. This has the great advantage
hat we can scan the range of possible functional and hierarchical
rganizational patterns the underlying network can represent.

Summarising, we have shown, that graph theoretical measures
an be used to discriminate task-dependent differences during cog-
itive processing and additionally can provide information that
oes beyond amplitude differences. Using a functional network
pproach in connection with an advanced data analysis tool to
onstruct similarity/association matrices, we could find functional
ifferences between two experimental conditions in the sensor-
pace. We were further able to show that this difference is stable
ver subjects and highly significant. Our findings indicate that there
s some functional difference in the networks estimated from the
EG measurements. The results coincide well with the general
nderstanding of the N400 in language processing in that it is a dis-
ributed process, that is, it involves multiple network. In contrast,
he primed condition only shows the activity of a single network.
urther applications of the proposed method could help to gain a
eeper understanding of the functional networks underlying high

evel cognitive processes that are reflected in ERPs.
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