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Abstract

Background: Inferring regulatory interactions between genes from transcriptomics time-resolved data, yielding

reverse engineered gene regulatory networks, is of paramount importance to systems biology and bioinformatics

studies. Accurate methods to address this problem can ultimately provide a deeper insight into the complexity,

behavior, and functions of the underlying biological systems. However, the large number of interacting genes

coupled with short and often noisy time-resolved read-outs of the system renders the reverse engineering a

challenging task. Therefore, the development and assessment of methods which are computationally efficient,

robust against noise, applicable to short time series data, and preferably capable of reconstructing the

directionality of the regulatory interactions remains a pressing research problem with valuable applications.

Results: Here we perform the largest systematic analysis of a set of similarity measures and scoring schemes

within the scope of the relevance network approach which are commonly used for gene regulatory network

reconstruction from time series data. In addition, we define and analyze several novel measures and schemes

which are particularly suitable for short transcriptomics time series. We also compare the considered 21

measures and 6 scoring schemes according to their ability to correctly reconstruct such networks from short time

series data by calculating summary statistics based on the corresponding specificity and sensitivity. Our results
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demonstrate that rank and symbol based measures have the highest performance in inferring regulatory

interactions. In addition, the proposed scoring scheme by asymmetric weighting has shown to be valuable in

reducing the number of false positive interactions. On the other hand, Granger causality as well as

information-theoretic measures, frequently used in inference of regulatory networks, show low performance on

the short time series analyzed in this study.

Conclusions: Our study is intended to serve as a guide for choosing a particular combination of similarity

measures and scoring schemes suitable for reconstruction of gene regulatory networks from short time series

data. We show that further improvement of algorithms for reverse engineering can be obtained if one considers

measures that are rooted in the study of symbolic dynamics or ranks, in contrast to the application of common

similarity measures which do not consider the temporal character of the employed data. Moreover, we establish

that the asymmetric weighting scoring scheme together with symbol based measures (for low noise level) and

rank based measures (for high noise level) are the most suitable choices.

Background

Recent evidence from fully-sequenced genomes suggests that organismal complexity arises more from the

elaborate regulation of gene expression than from the genome size itself [1]. It is not surprising that

determining the interactions between genes, which gives rise to particular system’s function and behavior,

represents the grand challenge of systems biology [2]. In addition to structural information about the

regulatory interactions, a comprehensive understanding of the dynamic behavior of these interactions

requires specification of: (1) the type of regulation (i.e., activation or inhibition) [3], (2) kinetics of

interactions [4], and (3) the specificity of the interactions with respect to the investigated tissue and/or

stress condition [5]. The elucidation of a complete network of regulatory interactions parameterized with

kinetic information leading to a particular gene expression is, at present, still a challenging task even for

well–studied model organisms whose networks have been partially assembled either for few selected

processes and conditions or at the genome-wide level [6–9].

The ever-increasing throughput in experimental manipulation of gene activity coupled with the methods
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for quantitative assessment of transcriptome, proteome, and metabolome have begun to identify the effects

of individual transcription factors, binding ligands, and post-translational modifications on regulated

genes [10]. Moreover, such high-throughput transcriptomics data sets can be used to identify gene

regulatory modules and entire networks. Understanding the complex network of gene regulatory

interactions from a given transcriptome read-out necessitates the design, analysis, and testing of

network-inference methods (so-called reverse engineering methods). These methods operate on two types

of data sets from: (1) static perturbation experiments whose read-out is a pseudo steady-state expression

level, and (2) time-resolved experiments yielding time series of gene expression.

Transcriptomics time series data hold the promise of identifying the dynamics of the key genes mapped

into putative interactions and kinetic laws; consequently, the temporal information must not be neglected

by the applied method for reverse engineering of gene regulatory networks. However, despite the decreasing

costs of experiments relying on high-throughput technologies, systems biology studies still produce

relatively short time series [11], largely due to the problems with gathering a big enough sample material

and designing more complex experiments. In addition, time-resolved biological experiments usually involve

sampling at irregular rates in order to capture processes spanning different time scales. These two

challenges require a careful assessment of the existing methods for network inference from transcriptomics

time series data. Moreover, most of the developed methods have been applied directly on real time series

data without a prior assessment of their discerning capacity on a difficult synthetic benchmark [12].

The analysis of short time series is affected by the type of employed data representation. For instance,

some approaches transform the discrete time series into continuous representations by different fitting

methods; in addition, few studies have already considered transforming real valued time series into

data-adaptive representations, including: symbols, strings, and trees (for a review, see [13]). Therefore, the

extent to which a chosen data representation may affect the accuracy of the inferred networks should also

be examined when assessing the strengths and weaknesses of different reverse engineering methods.

The simplest approach for network inference from time series data relies on applying similarity

measures [12,14–27]. Methods borrowed from Bayesian inference [28–32], regression analysis [33], and

econometrics models (e.g., Granger causality [34–37]) have also been applied in this context. Although

there are already two valuable reviews of methods for gene regulatory network (GRN) reconstruction from

3



transcriptomics time series data [11,12], we believe that there is a need for a careful assessment of the

existing reverse engineering methods based on similarity measures operating on short time series data.

For this purpose, we first divide the existing similarity measures (Table 1) into four classes based on the

representation on which they operate, namely: vectors, random variables, models (e.g., Granger causality),

and symbols. We term the basic pairwise measures as simple, in comparison to their conditional and

partial variants. The outcome of applying a similarity measure can further be refined via six scoring

schemes: IDentity (ID), Algorithm for the Reconstruction of Accurate Cellular NEtworks (ARACNE),

Context Likelihood of Relatedness (CLR), Maximum Relevance / minimum redundancy NETwork

(MRNET ), Time Shift (TS), and Asymmetric WEighting (AWE). The similarity measures and scoring

schemes are schematically presented in Fig. 1.

We study the performance of the relevance network algorithm for GRN reconstruction, applied to

synthetic gene expression data sets, and compare the capability of different combinations of 21 measures

and 6 scoring schemes to detect/predict true and eliminate false links. A description of the data sets and

the general definitions of the methods used in this study are given in detail in the Methods section.

Our contributions include: (1) an extensive systematic review and a comparison study which could serve as

a basis for selecting a reverse engineering method based on a combination of a similarity measure and a

scoring scheme suitable for a given expression data; in this context, we investigate not only the pairwise

similarity measures, but also, where applicable, their respective conditional and partial variants; (2)

introduction of approaches that are novel or borrowed from other fields, but have not yet been encountered

in the field of network reconstruction; and (3) definition of a novel information-theoretic measure, the

residual mutual information, and evaluation of its performance in unraveling gene regulatory interactions.

Results

We investigate the performance of the relevance network algorithm applied to gene expression time series

from a network of 100 genes in E.coli under optimal sampling conditions (noise-free, with an uniform

sampling in time). Interpolation has not been applied to the time series at this point. We show and discuss

the receiver operating characteristic (ROC) curves deduced for the basic algorithm with identity (ID)

scoring scheme in combination with all measures included in our investigation, and for the five additional

scoring schemes – CLR, ARACNE, MRNET , TS and AWE – with selected measures. Subsequently,
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since optimal sampling conditions are never achieved, the performance of the similarity measures and

scoring schemes is additionally investigated on noisy data. The role of sampling and interpolation on the

performance is discussed as well. Moreover, the influences of network properties (e.g., size and degree) are

shown using two additional networks, a yeast network composed of 100 genes from S.cerevisiae and a

network of 200 genes from E.coli.

Identity scoring scheme

The basic relevance network algorithm (scoring with unit matrix) is used to compare the performance of all

measure’s classes.

Measures operating on vectors: Additional file 1, Figure S1 shows the efficiency of the reconstruction of links

based on classical distance measures and the dynamic time warping. In general, none of these measures is

able to avoid false positives on a larger scale without loosing most of the true interactions. On the other

hand, the ROC curves are rather flat for high false positive rates, which implies that these measures could

be useful initially to determine connections which are not present in the network. All of the curves shown

in Additional file 1, Figure S1 are smooth, meaning that the prediction of links is not very sensitive to the

explicit choice of the threshold. From this analysis, we can discriminate that the Ls norm (with s = 10,

equating the length of the time series) performs best in reconstructing the network. These results

outperform the Euclidean (L2 norm) and the Manhattan (L1 norm) distance, which can be explained by

the fact that the Ls weights large distances more heavily. The dynamic time warping fails for the

investigated data, which is most likely a result of the coarse sampling and the complexity of the network.

Measures operating on random variables: Furthermore, the ID scoring scheme is evaluated using several

measures which employ time series represented via random variables. In particular, we examine in detail

the performance of correlation and information-theoretic measures.

In the case of the linear Pearson correlation (PC) coefficient, as shown in Fig. 2(a), we obtain almost

identical results from the simple and the conditional (CPC) measure, although the CPC is expected to

eliminate indirect interactions. However, this does not mean that there are no indirect links wrongly

deduced by the linear PC. The problem here is rooted in the estimation of the conditional probabilities,

which is barely reliable for 10 time points.
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Even if a basic significance test is included — for example the data is reshuffled 100 times, then the

measures for the randomized series are calculated, and the results are compared to those obtained from the

original time series — the results do not change significantly (Additional file 1, Figure S2). The partial

Pearson correlation, on the other hand, shows better results for low false positive rates, but looses its

accuracy when high true positive rates are reached. Additionally, the results obtained from the PPC are

less significant (in terms of the reshuffled time series). Removing links which have no significant values of

the correlation leads to an almost random prediction from the partial Pearson correlation.

As we cannot infer self-regulation by analyzing the similarity of expression series, the diagonal of the

correlation matrix was set to zero in our computations above (by definition it is one).

Comparing the reconstruction efficiency of the linear PC with that of the rank correlations (diagonal equals

to one), we observe that the ROC curve shown in Fig. 2(b) is smoother for the Pearson correlation than

the curves obtained from the rank correlations. Hence Pearson’s correlation measure is less sensitive to the

choice of the threshold, whereas the rank correlations can achieve a slightly better overall performance.

Next, we investigate the efficiency of the ID scoring scheme considering information-theoretic measures. In

general, we observe that the resulting reconstruction strongly depends on the method chosen for the

estimation of entropies. Here we present the results obtained using the R-package ”infotheo” (in particular

the Miller-Madow asymptotic bias corrected empirical estimator) since, for short time series, it yields

better estimates of the entropy than the R-package ”entropy”. Besides the basic pairwise mutual

information (MI), we also investigated the conditional mutual information (CMI) and the residual mutual

information (RMI) in order to reduce the number of false positive links. All these measures result in ROC

curves which are more or less discontinuous. This is a finite size effect, as the time series are very short,

and thus the estimation of the MI (entropies) becomes problematic.

We find a quite different behavior of the ROC curves, as shown in Fig. 2(c), in specific regions of the ROC

space. The simple mutual information results in a flat and comparatively smooth ROC curve for high false

positive rates. This means that the measure allows removing about 60% of the false positives, by loosing

approximately 10% of the true links. An even better performance in the same ROC space region can be

achieved using the residual mutual information, which we proposed as a partial mutual information

measure to distinguish indirect from direct (linear) relationships between triplets of genes. In contrast to

this, the conditional MI results in a more discontinuous curve for high fpr: here, the ratio of the true and

false positive rate is nearly the same as observed for a random prediction. In principle, the CMI is stricter
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in removing indirect links as it also can detect nonlinear interactions. However, the conditional

probabilities cannot be estimated sufficiently well from 10 time points. Hence, the conditional MI fails for

(the investigated) short data sets in the region of high false positive rates.

Additionally, when looking at the region of low fpr, we observe that the ROC curve of the simple MI

becomes more discontinuous than for the high fpr. The true positive rate decreases significantly for slightly

reduced threshold values, in the region around 30% and 15% of the false positives. This is manifested as

jumps in the curve due to which this measure is rather sensitive to the choice of the threshold if low false

positive rates are to be achieved. In contrast to this, the residual mutual information results in a smoother

curve for low false positive rates than the simple MI, indicating that the measure is less sensitive to the

choice of threshold, although the curve exhibits smaller jumps as well. In the region of fpr < 10% the

performance of the RMI decreases slightly compared to the simple measure. The conditional mutual

information on the other hand, achieves only very low false positive rates, which also lead to low true

positive rates (up to about 5%). Tuning the threshold to allow for slightly higher values of the fpr the

ROC curve of the CMI immediately jumps to 50% of false positives. Hence, the region between about 3%

and 50% of false positive links is not achievable using the considered conditional measure.

We also implemented a basic significance test for the mutual information measures by reshuffling the time

series 100 times, calculating the measure for the randomized series, and comparing the results to those

obtained for the original time series. The associated ROC curves are shown in Additional file 1, Figure S3.

With respect to the significance, the reconstruction efficency of the simple and, in particular, the residual

mutual information decreases, since the inferred degree of interaction for most of the gene pairs is not

significant in the specified sense. In contrast to this, with the significance test, the quality of the prediction

obtained from the CMI increases slightly, but its overall performance is still deficient.

That evaluation leads to the conclusion that (from the MI measures) only the simple and the residual

mutual information can provide a sufficient reconstruction efficiency using the IDentity scoring scheme.

This holds true only in the case that we do not rely on the simple significance test.

Investigating the performance of the coarse-grained measures on the short gene expression time series, we

obtained ROC curves which look almost the same as expected for a complete random linking in the

network, as illustrated in Additional file 1, Figure S4. Even though the coarse-grained measures are in

principle promising for the inference of interdependency from time series of intermediate length, they are

not applicable in our case. The reason for this is the limited number of available time points which makes
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not only the estimation of the MI, but also the identification of a proper time lag a very challenging task.

Interpreting the CCIR as a distance, and not as a similarity measure, leads to an increase of the inferred

true positives. However, the predictive power of the measure remains very low.

Model-based measures: The evaluation of the ID scoring scheme using model-based measures (Granger

causality in this case) leads to an almost random prediction of links (the associated ROC curves are shown

in Additional file 1, Figure S5). Hence, the Granger causality (GC) measure is not suitable for the

reconstruction of GRN , when only very short gene expression time series are available. This is due to the

fact that the results of the GC index depend strongly on the model estimation. An AR model has to be

estimated for the given data set, whose order is determined based on the Akaike information criterion.

However, this seems to be insufficient, since the AIC usually requires a higher order model (due to the

high variability of the data), whereas the expression time series are in general very short.

Measures operating on symbolic dynamics: Next, we use the principle of order patterns to derive symbol

sequences from the time series [38]. As already shown in general nonlinear time series analysis, the symbol

based measures show a good overall performance in reverse engineering.

The ROC curves (Fig. 2(d)) obtained for these measures are rather smooth and flat for false positive rates

larger than 30%, which means that only a small portion of links is lost when reducing the false positive

rates down to this value. Consequently, the results are robust to the choice of threshold in this particular

region of the ROC space. However, the ROC curves become less smooth for lower values of the false

positive rates. This implies that false positive rates smaller than 20% are barely possible to achieve. The

best overall performance has been found here for the combination of symbol sequence similarity and

mutual information of the symbol sequences (SySimMI), as well as for the mutual information of the

symbol sequences (SyMI). The latter outperforms the simple MI of the time series themselves, as the

length of the series used to estimate the measure is much longer in the case of the symbolic dynamics.

Additionally, the conditional entropy of the symbol vectors obtained from pairs of time points shows

results similar to the SySimMI and the SyMI in a wide range of the ROC space.

Symmetric scoring schemes – CLR, ARACNE and MRNET

Next, we evaluate the possibility for reconstruction of the underlying E.coli (sub)network based on the

three modifications of the relevance network algorithm (Algorithm 1, given in the Methods section) as
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implemented in the ”minet”-package, namely the CLR, the ARCANE and the MRNET . All three

algorithms represent extensions of the basic relevance network approach, to the effect that they introduce

additional scoring rules for the pairwise weighting of the interactions in order to reduce the amount of links

that are falsely detected.

In Additional file 1, Figure S6, we present the results, in terms of the ROC curves, which we obtain using

the different scoring schemes and in all cases the default weights of the pairwise interactions, namely, the

squared Spearman’s correlation for every set of pairs. As the algorithms implemented in the ”minet” are

designed to reduce the number of false positives, high false positive rates (of more than about 50%) do not

occur here, unless all interactions are set as links. Moreover, the MRNET and the CLR result in ROC

curves which are not smooth, meaning that their capability to reconstruct particular links is limited and

strongly dependent on a proper choice of the threshold τ . The ARACNE, on the other hand, is restricted

to an almost fixed fpr-tpr value.

Asymmetric scoring schemes – TS and AWE

As none of the previously described scoring schemes is able to indicate directionality from symmetric

measures, we include in this study, and to our knowledge for the first time in GRN reconstruction, an

evaluation of the performance of the Time Shift (TS) as a symmetry-breaking scoring scheme. We show

the results of this modification of the relevance network algorithm removing the links which are falsely

detected by the CLR (measure: µρ) or the AWE (measure: µSI
T ). However, unraveling the directionality

of interaction (between pairs of genes) using the correlation of the delayed time series has shown to

decrease the maximal achievable true positive rates.

The slope of the ROC curves (shown in Fig. 2(e)) indeed does not change much in comparison to the

results of the CLR and the AWE scoring scheme. Moreover, if combined with the Pearson correlation of

the delayed time series, the ROC curve obtained from the CLR becomes considerably smoother (compared

to the curve shown in Additional file 1, Figure S6) and hence, the prediction is less sensitive to the choice

of a threshold. The same does not hold true for the ROC curve obtained from the application of the TS

scoring scheme in addition to the AWE. Instead, this curve becomes flatter and is slightly shifted towards

lower false positive rates in comparison to the corresponding curve in Fig. 2(f). This implies that, while for

low fpr the curve looks basicly the same, in the intermediate range of the ROC space (fpr about 0.15 to
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0.45) similar tpr values can be obtained for lower fpr. However, in the range of high fpr, the maximal

achievable tpr value is lower. Hence, true positive rates of approximately 80% can be achieved with lower

costs, as the according number of false positives is in general smaller when the TS scoring scheme is used.

On the other hand, as already mentioned, the quality of the link detection becomes worse for higher false

positive rates (more than about 40%) compared to the corresponding results of the AWE itself. The true

positive rate in the ROC curve in Fig. 2(e) is almost constant in this region of the ROC space.

Similar to the TS, the AWE scoring scheme aims at breaking symmetries and thus allows extraction of

information about the directionality of interaction from symmetric measures. However, a detailed

comparison of the reconstruction efficiency of the AWE using different symbolic dynamics measures shows

that in contrast to the TS scoring scheme, AWE does not decrease the maximal achievable true positive

rates. Instead, the ROC curves, as shown in Fig. 2(f), become more flat for high false positive rates

compared to the curves obtained for the basic algorithm with the ID scoring scheme using symbolic

dynamics (Fig. 2(d)). Hence true positive rates of more than 80% are achievable by the AWE algorithm

with much lower costs than with the ID scoring scheme. On the other hand, the ROC curves obtained

from AWE are more steep for low false positive rates. This implies that here true positive rates up to

approximately 45% can be achieved with false positive rates of less than 10%. Furthermore, the curves

shown in Fig. 2(f) are much smoother in comparison to those in Fig. 2(d), indicating that the

reconstruction is less sensitive to the choice of a particular threshold.

Influence of noise

In general, noise-free expression measurements cannot be achieved in real experiments: In fact,

intermediate and high noise level are not rare. Thus, in order to account for stochasticity in the time

series, and particularly to establish the robustness of the ranking of the investigated similarity measures,

we additionally evaluate the ROC curves for noise intensity of 0.3.

As expected, the measures which failed in the noise-free case (e.g., DTW , CMI, the coarse-grained

information rate, and the Granger causality measures) did not improve their performance, as shown in

Additional file 1, Figure S7. On the other hand, the measures based on vectors yield very robust results

with respect to noise (Additional file 1, Figure S7). However, since the performance of these measures was

already insufficient in the noise-free case, its general overall ranking does not improve significantly.

We additionally noticed that the measures which performed best in the case of optimal sampling
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conditions, such as MI, RMI, correlation and symbol based measures differ in their robustness against

noise, as illustrated in Fig. 3. For example, the reconstruction efficiency of the simple and the conditional

Pearson’s correlation slightly decreases, while that of partial Pearson’s correlation slightly increases.

Hence, all three measures result basically in the same ROC curves, meaning one can abandon the more

computationally intensive calculation of partial and conditional Pearson’s correlation under these

circumstances. Furthermore, MI and RMI both lose their accuracy as noise increases, and the

corresponding ROC curves resemble those of the Pearson’s correlation. However, the relation between both

measures stays the same (RMI performs slightly better than MI).

The reconstruction efficiency for the symbol based measures decreases significantly as well, which holds

true in particular for the mutual information of symbol sequences (as noise affects the inference of a

symbol sequence using order pattern, as well as the binning process for MI calculation). However, apart

from that, the ROC curves obtained for the symbol based measures are more continuous for noisy data

than those in the noise-free case, which implies that the reconstruction process in this case is less

influenced by the choice of a particular threshold.

A similar behavior is observed for the rank correlation coefficients. However, the shape of the curves

appears more robust under the influence of noise than it is the case for the symbol based measures. Hence,

the rank based measures represent the most suitable similarity measures to study the interrelation among

short time series at high noise levels.

Finally, we observe that the CLR and the AWE are the most robust scoring schemes with respect to noise,

whereas ARACNE fails for short and noisy time series.

A detailed analysis on the reconstruction efficiency of the top-ranking measures and scoring schemes under

various stochastic conditions is considered in the Discussion section. Additionally, the performance as a

function of the length of the time series and the noise intensity can be found in the Additional files.

The role of interpolation and sampling

Due to the fact that time-resolved gene expression data are usually quite coarsely sampled, general

assumptions upon what happens between two time points cannot be made. This problem becomes obvious

when unequally sampled data are used (Additional file 1, Figure S8).

Although the interpolation at the beginning of the time series (where the time points are rather close)

seems to be sufficient, it does not accurately capture the dynamics of the expression time series when the

distance between the time points becomes larger. Hence, by interpolating the gene expression data sets,

11



artifacts are introduced, which will be further reflected in the results of the particular measures of

interdependency. In order to avoid these artifacts, we renounce the interpolation in this comparison study,

even though this leads to less significant results for almost all measures, as they operate far below the limit

of their theoretically defined preconditions. However, we have observed that the overall results (ROC

analysis) are typically equal or even better when interpolation is not included, especially when

non-uniformly sampled time series are considered. Additional file 1, Figure S9 illustrates this effect

exemplary for the simple mutual information.

However, some measures, such as the Granger causality used in this study, as well as several scoring

schemes (e.g., the Time Shift), are explicitly time dependent. Hence, they require uniformly sampled data,

meaning that an interpolation is needed if only non-uniformly sampled data is available. This is in general,

the case in GRN reconstruction.

However, most of the well performing reconstruction tools in our study are not explicitly time-dependent,

which means they do not require a specific time sampling. This implicates that they are not very sensitive

concerning the spacing on the time axis. Our results, as shown in Additional file 1, Figure S10, illustrate

that a non-uniform sampling for these tools can even improve the quality of the reconstruction, since a

larger period of the dynamics is captured.

The role of the network topology

In general, the underlying network and its properties are not known prior to the reconstruction process.

However, the available experimental and theoretical research has suggested that gene regulatory networks

most likely are characterized with scale-free properties [39]. Therefore, we compare the reconstruction

efficiency of the relevance network approach for various subnetworks of E.coli’s and S.cerevisiae’s

regulatory networks, as described in details in the Methods section (subsection on Synthetic data sets).

These networks (Additional file 1, Figure S14) differ in size, average degree and clustering coefficient.

Nevertheless, we observe that the performance of the top-ranking measures, such as the symbol based

measures, rank correlations, MI and RMI do not depend on the network topology: Very similar ROC

curves are obtained for all of the network types analyzed, as shown in Fig. 4 (this also pertains for several

other measures, as shown in Additional file 1, Figure S11). The performance in the range of low fpr was

improved for most of the measures for increased average degree of the nodes. However, at the same time,

the performance in the range of high fpr was usually decreased. In general, the largest differences in the

reconstruction efficiency occur for the conditional Granger causality and partial Pearson correlation, where
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the quality of the reconstruction decreases significantly for an increased number of nodes (e.g., E.coli

network with 200 nodes) and an increased clustering coefficient, as in the S.cerevisae network.

Discussion

The observation of the ROC curves does not always allow conclusions on the overall performance of a

measure or scoring scheme. Therefore, we further compare the described modifications of the relevance

network algorithm in terms of ROC statistics (we focus on the algorithm as illustrated in Algorithm 1,

without consideration of additional statistical significance due to the lack of a suitable null model). As an

example, we evaluate the ROC statistics from time series with uniform sampling (without performing an

interpolation) for the network of 100 genes of E.coli.

ROC statistics for noise-free data

To evaluate and rank the overall performance of all approaches under study we calculate three common

summary statistics from ROC analysis: the area under the ROC curve (AUC(ROC)), the Y ouden index

and the area under the Precision/Recall curve (AUC(PvsR)) as explained in the Methods section.

Furthermore, as the modifications of the algorithm implemented in the “minet” package are commonly and

widely used approaches for GRN reconstruction, we use the results which gave the best performance in

order to establish a benchmark for the comparison of the different measures and scoring schemes. In

Table 2 we provide an overview of the results from the summary statistics for the different measures

(mutual information and correlation estimation), and scoring schemes implemented in the R-package

“minet”. Based on these results, we define a measure combined with a particular scoring scheme to be

• well performing for short expression data sets (evaluated on the synthetic data in this case) if:

AUC(ROC) > 0.8,

Y OUDEN > 0.5 and

AUC(PvsR) > 0.05,

• sufficiently performing if

0.8 > AUC(ROC) > 0.7,

0.5 > Y OUDEN > 0.4 and

0.05 > AUC(PvsR) > 0.03

• and deficient otherwise.
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By calculating the summary statistics in the noise-free case, as shown in Fig. 5, we conclude that several

information-theoretic measures (simple and residual MI), correlations (simple and conditional Pearson’s,

as well as Spearman’s) and measures based on symbolic dynamics (SyMI and SySimMI) perform

sufficiently well in combination with the basic relevance network algorithm (IDentity scoring scheme).

Here, it stands out that the simple Spearman correlation performs better than the simple Pearson

correlation, and SyMI is better than the simple MI. This is due to the fact that symbol and rank based

measures are less sensitive to finite size effects and the distribution of data.

The modifications of the relevance network algorithm in the “minet” package having best performance in

the reconstruction of GRN from short data sets, are the CLR and the MRNET (“minet” is based on

Spearman’s correlation in this case). Here the AUC(ROC) indicates almost no change compared to the

basic algorithm with identity scoring (measure: Spearman’s correlation), while the Y OUDEN index

decreases for the CLR and increases for the MRNET . However, the opposite is true for the AUC(PvsR).

The overall performance of the CLR (in terms of the considered summary statistics) is slightly better than

those of the MRNET (CLR scoring scheme was used to set the benchmarks). Moreover, the measures

combined with the TS scoring scheme perform sufficiently well. However, the summary statistics do not

change much compared to the results obtained for the same measures using the ID. In contrast, the

asymmetric weighting yields a significant increase among all the summary statistics compared to the

performance of the same measures using only the identity scoring scheme.

Hence, in the noise-free case, we obtain the following ranking of measures with the highest capability to

detect true and eliminate false positive links:

1. µSI
T AWE + TS (scoring by µS),

2. µSI
T AWE + TS (scoring by µP ),

3. µSI
T AWE,

4. µI
T AWE,

5. µS
T AWE and

6. µS CLR.

The asymmetric weighting (AWE) significantly improves the prediction at this point, since it breaks the

symmetry of a particular measure based on topological consideration and, therefore, reduces the number of
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false positive links. Hence the AWE (measure: µSI
T ) clearly shows the best performance when short time

series are considered (the results become slightly better if Time Shift is applied in addition).

ROC statistics for noisy data

In order to account for stochasticity in the time series as well as to establish the robustness of the

investigated (top-ranked) similarity measures against noise, we evaluate additionally their performance for

two different noise intensities, namely 0.3 (Fig. 6) and 0.5 (Additional file 1, Figure S12).

Only those measures which perform sufficiently well in the noise-free case (measures operating on random

variables and symbolic dynamics) are tested. In particular, we examine the Pearson’s (µP (x, y)),

Spearman’s (µS(x, y)) and Kendall’s (µK(x, y)) correlation coefficients as well as the symbol based

measures µS
T , µI

T , µSI
T , and µH

T using the ID scoring scheme. Additionally, we investigate the performance

of CLR, MRNET , ARACNE, AWE and TS scoring schemes based on the same measures as in the

noise-free case.

Under the influence of noise, the quality of the results of the symbol based measures (in particular µI
T )

decreases. As noise strongly influences the process of symbol assigning, it can principally enhance or

distort the information content. The direction of the influence is not predictable a priori, but in the

presence of strong noise, symbols are no longer reliable (if no additional information on the influence of the

noise is provided). On the other hand, measures operating on random variables are rather robust against

noise (the best results in these cases have been achieved using rank correlations).

The ARACNE has proven to be very sensitive with respect to noise. In contrast to this, the asymmetric

weighting (compared to the results of the ID using the same measure) still performs well within the given

limits, as it is only based on topological considerations, and it is not influenced by the presence of noise.

Furthermore, to investigate how noise influences the reconstruction efficiency, we calculated the area under

the ROC curve and the Y OUDEN index as a function of the noise intensity for the 5 combinations of

similarity measures and scoring schemes which performed best in the noise-free case, namely the symbolic

measures and the asymmetric scoring schemes, mentioned in the previous section. Additionally, we

compared the results to those obtained for time series of different lengths (i.e., 8 and 20 time points). We

conclude that for short time series, the capability of the measures and scoring schemes to detect true and

at the same time eliminate false positive links depends both on the number of time points and the noise

intensity (Additional file 1, Figure S13). However, this dependence is small compared to the differences in

the reconstruction efficiency between the various measures. Moreover, the sensitivity against noise is
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reduced with increased length of the time series (which corresponds to the usage of order pattern of higher

dimension). In general, we observe a decrease in the reconstruction efficiency if the noise levels increase or

the length of the time series decreases. For the short time series used in this study, however, these

dependencies are not monotone.

Conclusions

By performing an extensive comparison analysis of the reconstruction efficiency of the relevance network

algorithm using 6 scoring schemes and 21 different measures, we showed that with a suitable choice of a

measure and a scoring scheme, this approach is applicable to short time series to gain knowledge about the

underlying gene regulatory networks which differ in various properties. However, most of the currently

used measures have highly limited capabilities, as the number of time points of the gene expression data is

usually not sufficient to infer the underlying structure of the network. This in turn make the distinction

between direct and indirect interactions an even more challenging task.

This study could serve as a basis for the selection of a reverse engineering method for network

reconstruction, based on the combination of a similarity measure and a scoring scheme suitable for given

data. Our results showed that rank and symbol based measures (which we applied for the first time for

GRN reconstruction) have a significantly better performance in inferring interdependencies, whereas most

of the standard measures (such as Granger causality and several information-theoretic measures) fail when

short time series are considered. The residual mutual information, which we proposed in this work as a

partial mutual information measure, increased the reconstruction efficiency of the relevance network

algorithm compared to simple and, in particular, conditional mutual information.

Nevertheless, from the analysis presented here, we conclude that it is necessary to move further from the

standard similarity measures based on the time series directly, towards measures rooted in the study of

symbolic dynamics or ranks deduced from the time series, in order to increase the efficiency of the

relevance network algorithm for GRN reconstruction. Although measures based on symbolic dynamics

performed significantly well in the noise-free case, their performance was decreased as the noise level in the

system increased, and for high noise intensities it became comparable to that of mutual information. This

implied that in the presence of strong noise, rank correlations (in particular Spearman’s rank correlation)

are most efficient tools for GRN reconstruction, since their performance was not significantly affected as

the noise level increased. Additionally, we note that the results obtained for RMI, rank correlations and
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symbol based measures are robust with respect to the network topology. We also showed that an unequal

sampling of the data in general does not pose additional problems if measures are considered where

interpolation is not essential (such as the top-ranked measures in this study).

We point once again that all rank and symbol based measures described here are symmetric. This means

that the directionality of the interactions cannot be inferred, unless a symmetry-breaking scoring scheme is

considered in addition. In that direction, we showed that a novel scoring scheme, the asymmetric weighting

(AWE), which we proposed in this work stands as a valuable approach to overcome the problems of

introducing directionality in the reconstruction of the regulatory networks.

It would be interesting to compare in future the observed reconstruction efficiency of the relevance network

approach to that of other reverse engineering methods, such as the Bayesian network approach.

Methods

Our work focuses on methods for reverse engineering which operate on time-resolved gene expression

experiments (in terms of mRNA concentrations). We define a time series profile for a gene measured over n

time points as a sequence of expression values x =< x1, . . . , xn >, where each xi, 1 ≤ i ≤ n, corresponds to

a distinct time point ti. In addition, let each of the m genes be represented by r time-resolved replicates

over n time points. Here, we use the mean of r = 6 replicates, resulting in an m× n data matrix M . Let

Mi, 1 ≤ i ≤ m, denote the ith row of a matrix M , which corresponds to the time-resolved expression profile

of the ith gene.

The general reverse engineering method based on a particular similarity measure µ and a scoring scheme F

operating on the data matrix M is given in Algorithm 1.
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Input:
M , matrix with m rows (genes) and n columns (time points),
µ, similarity measure,
F , scoring scheme
Output:
m×m adjacency matrix, A, of the reconstructed network G
foreach gene i, i ∈ {1, . . . , m} do1

foreach gene j, j ∈ {1, . . . ,m}, j 6= i do2

wij ←| µ(Mi, Mj) |3

end4

end5

C : cij ← wij · fij ;6

chose a threshold τ ;7

aij ← 1 if cij > τ ;8

aij ← 0 if cij ≤ τ ;9

Algorithm 1: General reverse engineering method based on a similarity measure µ and a scoring scheme
F . fij ∈ F , cij ∈ C, aij ∈ A, and wij ∈ W , where W is the matrix obtained by applying µ on all pairs of
rows of the given data matrix M .

The evaluation of the scoring schemes and measures is generally performed in R [40] using available

packages, as noted in the manuscript. Additionally, several C routines were developed in order to improve

computational speed.

In what follows, we describe the procedure for generating the synthetic time series data, and present the

definitions of the similarity measures and scoring schemes used in the comparative analysis. Furthermore,

the details of the ROC analysis are briefly reviewed.

Synthetic data sets

The evaluation of the existing methods for reverse engineering gene regulatory networks often employs real

time-resolved expression data. However, these data include the convoluted effects of regulons (genes under

regulation by the same regulatory protein) and stimulons (genes under regulation by the same external

influence), which renders it challenging to realistically assess the performance of investigated methods.

Moreover, not every regulatory subnetwork leads to expression of the participating genes over the

measured time period and particular condition of interest. These facts lead to a lack of control when using

transcriptomics time series data sets for network inference.

Following the example of the DREAM challenge [2, 14], in this comparison study we use synthetically

generated data sets to overcome the described disadvantages. The usage of these synthetic data, in
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contrast to real measurements, enables us to directly compare the performance of different reconstruction

tools, since the topology and dynamic of the underlying network is known a priori. In particular, we use

the synthetic network generator, SynTReN [41,42], which creates synthetic transcriptional regulatory

networks by providing the edges of the network, as well as information about the interaction (activating,

repressing, or dual). Additionally, the generator produces simulated gene expression data of the associated

mRNA concentrations for each gene, based on Michaelis-Menten and Hill kinetics, which approximates

experimental expression measurements. These expression data sets are uniformly sampled in time.

In SynTReN, the levels for three types of noise are user definable: (1) biological noise, corresponding to

biological variability given by the stochastic variations in gene expression, (2) experimental noise,

corresponding to the technical variability, and (3) noise on correlated inputs, which accounts for the

influence of several activated genes on a regulated gene. Note that different noise levels are included in this

study, but we make no distinction between the strength of the three noise types.

In particular, we generate regulatory networks from the GRN of E.coli and S.cerevisiae, using the cluster

addition strategy to select a connected subgraph: In each iteration, a node is randomly chosen and added

to the graph together with all its neighbors. This strategy is chosen since it is an efficient method to

extract a subnetwork that approximates well the topology of the source network. The results presented in

this work are obtained for subnetworks of distinct sizes which differ in degree and clustering coefficient. In

particular, we investigate an E.coli subnetwork of 100 genes including 121 links where 10 of the genes code

for transcription factors. It is characterized by an average degree of 2.42 and a clustering coefficient of

0.016. Additionally, we examine two more networks: (1) An E.coli subnetwork of 200 genes (34 coding for

transcription factors) that includes 303 links and is characterized by an average degree of 3.03 and a

clustering coefficient of 0.019, and (2) a S.cerevisiae subnetwork of 100 genes (14 coding for transcription

factors) that includes 123 links and is characterized by an average degree of 2.46 and a clustering

coefficient of 0.026. The degree distributions are shown in Additional file 1, Figure S14.

Synthetic gene expression data with 10 biological (n = 10 time points) and 6 technical (r = 6) replicates

have been generated from the particular networks. We use the means of the technical replicates for the

interaction analysis. An example of a generated network (100 in E.coli used for our investigations), and the

simulated gene expression data sets are visualized in Fig. 7.
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Interpolation

Since transcriptomics time series data usually consist of expression at a few, possibly non-uniformly

sampled time points, data interpolation is often the first pre-processing step. Different techniques,

including linear [43] and nonlinear interpolation methods, such as cubic- [33] and b-splines [25] have been

applied [11]. Although these methods extend the available data, they also introduce artefacts due to

over-fitting. For this reasons, we preclude from interpolating the synthetic time series data (whenever

possible) for ranking of the used similarity measures. Nevertheless, for reason of comprehensiveness, we

consider the effect of interpolation using cubic splines on the investigated similarity measures and scoring

schemes of highest rank in absence of noise.

Similarity measures

Reverse engineering of regulatory networks relies on the inference of interrelationships among genes, based

on similarity measures. In general, given two time series x and y over n time points, a similarity measure is

given by the mapping µ : Rn ×Rn → I, where I, I ⊆ R. The so-defined pairwise similarity measure

detects (non)linear relationships between two variables, in the considered case, between two gene

expression time series. The definition allows for the measure to be symmetric, which is not commonly the

case for gene regulatory interactions. Moreover, if two genes are linked indirectly via a third gene, the

pairwise measure can not distinguish direct from the indirect relationships and hence additional false

positive links will be introduced in the network reconstruction.

Nevertheless, the definition of the similarity measure can be extended to conditional and partial measures,

incorporating the possibility to exclude the influence of a third gene. Conditional similarity measures are

more general, since they do not rely on specific assumptions on the probability distribution (deduced from

the time series associated with a discrete random variable), but estimate the distribution which in turn

impedes the computation of the measure from short time series. On the other hand, partial measures can

indicated conditional independence reliable only for multivariate Gaussian variables.

To be able to discern the direction of a putative interaction and hopefully eliminate any spurious effects,

we consider the conditional and partial variants for several of the measures detailed below. We term the

basic pairwise measures as simple, in comparison to their conditional and partial variants. An overview on

the measures included in this study is given in Table 1.
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Measures operating on vectors

Some of the standard measures used for determining gene regulatory interactions are based on the

calculation of the distance between expression time series regarded as vectors. In the following, x and y

will denote the vectors < x1, . . . , xn > and < y1, . . . , yn >, respectively. Our study includes:

Ls norm: This distance measure for vectors x and y is defined as follows:

µL =

(
n∑

i=1

|xi − yi|s
)1/s

(1)

In our study, s = 10, which corresponds to the number of available time points.

Euclidean distance: Furthermore, we consider the well-known Euclidian distance, which is a special case of

the Ls norm, with s = 2. Therefore, it is defined as

µEC =

√√√√
n∑

i=1

(x− y)2. (2)

Manhattan distance: We also study the performance of the Manhattan distance which represents the

shortest path between two points, placed on a rectangular grid, and is analogous to the L1 norm:

µMA =
n∑

i=1

|x− y|. (3)

Dynamic time warping (DTW ): In addition, we investigate the performance of the DTW , which to our

knowledge, has not been applied to the problem of gene regulatory network inference, but rather on

clustering genes expression data [43,44]. The DTW -based measure relies on finding the optimal (least

cumulative) distance mapping a given time series into a reference time series, where both sequences may

vary in time and/or speed. It was originally developed for speech recognition [45,46], but has been recently

used for different data mining tasks in medicine and bioinformatics [43,47]. The concept of DTW is

sketched in Fig. 8 for two short time series with 4 time points each. In the first step of the DTW algorithm,

local distances (e.g., Euclidean or Manhattan distance) for all pairs of time points are calculated. Then,

the time series are mapped into each other by linking various time points, such that each point is included

at least once and the sum over the lengths of all those links is minimal (optimal alignment path).

Here, we use the DTW as implemented in the R-package “dtw” [48–50], with the Euclidean as point-wise

local distance, and different step patterns which indicate the local constraints of the alignment paths. We

include three different step patterns, namely
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• symmetric1

µWi,j
=min(µWi,j−1 + µEci,j

, µWi−1,j−1+

µEci,j , µWi−1,j + µEci,j ),
(4)

• symmetric2

µWi,j =min(µWi,j−1 + µEci,j , µWi−1,j−1+

2µEci,j , µWi−1,j + µEci,j ),
(5)

• and asymmetric

µWi,j
=min(µWi−1,j

+ µEci,j
, µWi−1,j−1+

µEci,j
, µWi−1,j−2 + µEci,j

),
(6)

to find an optimal alignment. Here µEC denotes the local (Euclidean) distance, and the measure µW the

cumulative distance (representing the minimum sum of local distances along the alignment paths).

The resulting matrix of cross-distances D contains the pairwise calculated distance measures (µEC , µL,

µMA, or µW , as defined above) and is, in all cases, normalized by the largest value occurring in the matrix

as follows:

Dnorm = D/ max(D). (7)

The similarity measure is then defined by:

µD = 1−Dnorm. (8)

Measures operating on random variables

Despite the representation of the expression time series as vectors, time series x =< x1, . . . , xn > can be

associated with a discrete random variable X with probability distribution p(x), x ∈ X that is

approximated by the frequency via standard binning arguments. This representation allows to calculate

several widely used similarity measures, such as correlation and information-theoretic measures. Note that

the temporal information is lost by this representation of time series data. We first review the most

commonly used measures in detail:
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Pearson correlation: This similarity measure quantifies the linear relationship between the random variables

X and Y , corresponding to two time series x and y:

µP (x, y) =
E[(X − E[X])(Y − E[Y ])]

E[(X − E[X])2] · E[(Y − E[Y ])2]
, (9)

where E denotes expectation

E[X] =
n∑

i=1

(xip(xi)). (10)

If the variables are independent, the correlation coefficient is µp = 0, but the opposite is not true, as this

coefficient is sensitive mainly to linear dependencies. Note that µP receives values in the interval [−1, 1]

and is symmetric.

Conditional Pearson correlation (CPC): By using the conditional expectation value

E[X|Y ] =
n∑

i=1

(xip(xi|y)), (11)

where p(x|y), x ∈ X, y ∈ Y is the conditional probability distribution, one can provide the following

definition for CPC:

µP (x, y|z) =

E[((X − E[X|Z])(Y − E[Y |Z]))|Z]
E[((X − E[X|Z])2)|Z] · E[((Y − E[Y |Z])2)|Z]

.
(12)

Thus, the conditional correlation among the time series x and y of the corresponding genes, eliminating the

influence of all other genes is defined as

µc
P (x, y) = min

zk 6=x,zk 6=y
µP (x, y|zk). (13)

Partial Pearson correlation: Analogously, one could also consider

µp
P (x, y) = min

zk 6=x,zk 6=y
µP ((x, y) · zk), (14)

where

µP ((x, y) · z) =

E[Res(x(z))Res(y(z))]
E[Res(x(z))2] · E[Res(y(z))2]

=

µP (x, y)− µP (x, z)µP (y, z)√
(1− (µP (x, z))2)(1− (µP (y, z))2)

.

(15)
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The residuals are calculated following Eq. (16) making a linear regression of x (respectively y) depending

on z:

Res(x(z)) = (x− E[X]))−
E[((X − E[X])(Z − E[Z]))]

E[(Z − E[Z])2]
(z − E[Z]).

(16)

Rank correlations can be used as a more general measure of interdependence, not restricted to a linear

relationship. Even though they measure a different type of relationship than the product moment

correlation coefficient, like the previous correlation measures, these are also defined in the interval [−1, 1].

Spearman’s rank correlation: This type of correlation is based on the rank distribution of the expression

values:

µS(x, y) =

E[(R(x)− E[R(x)])(R(y)− E[R(y)])]
E[(R(x)− E[R(x)])2] · E[(R(y)− E[R(y)])2]

,
(17)

where R(x) is the rank of x.

Kendall’s rank correlation: Another rank correlation is

µK(x, y) =
2(nc − nd)
n(n− 1)

, (18)

with nc being the number of concordant pairs, and nd the number of discordant pairs of the rank sets.

It is common to regard the rank correlation coefficients (especially Spearman’s rank correlation) as

alternatives to Pearson’s coefficient, since they could either reduce the amount of calculation or make the

coefficient less sensitive to non-normality of distributions. Nevertheless, they quantify different types of

association.

Unlike most of the measures discussed here, the correlation measures do not only provide an information

about whether two genes are interacting, but also whether it is an activating or repressing relationship. As

the latter information is outside of the interest of the current study, only the absolute value (respectively

the square) of the correlation coefficient is taken into account.

Additionally to the correlation, information-theoretic measures are also defined using random variables as

relevant representation for expression time series.

24



Mutual information: One of the most commonly used measures for inferring interdependencies between two

subunits of a system is the mutual information (MI) [16]. Intuitively, MI measures the information

content that two random variables X and Y share. The simple mutual information can then be

expressed in terms of the marginal entropies H(X) and H(Y ), and the joint entropy H(X, Y ) using the

definition of the Shannon entropy

H(X) =
n∑

i=1

p(xi)log(p(xi)), (19)

which quantifies the uncertainty associated with a random variable. Hence the simple MI is defined as

µI(x, y) = H(X) + H(Y )−H(X, Y ). (20)

It includes also non-linear interrelations, but same as the other simple measures, the simple MI cannot be

used to distinguish between direct and indirect relations.

Conditional mutual information: However, if we replace the marginal and joint entropies by the conditional

analogs, H(X|Z), H(Y |Z) and H(X, Y |Z), we can eliminate the influence of a third variable Z. Hence, we

calculate the minimal information shared by the time series x and y of two genes conditioned on each zk,

k = 1, . . . , m. Thus the conditional—sometimes also referred to as partial [51]—mutual information

(CMI) can be written as:

µc
I(x, y) = min

zk 6=x,zk 6=y
µI(x, y|zk), (21)

where

µI(x, y|z) = H(X|Z) + H(Y |Z)−H(X,Y |Z). (22)

The degree of interaction is indicated by the values of µI or µc
I normalized by the largest value occurring

among all pairs of genes.

Mutual / conditional coarse-grained information rate: Another approach based on information-theoretic

aspects are the coarse-grained measures. Here, instead of approximating the exact entropies of time series,

relative measures of “information creation” are used to study the interrelationship of two (sub)systems.

Thus, for this purpose, the calculation of coarse-grained entropy rates [52] is used to replace the

approximation of the Kolmogorov-Sinai entropy (metric entropy of a dynamical system): First, a time lag

lmax is determined such that
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µI(x(t); x(t + l′)) ≈ 0, ∀ l′ ≥ lmax, (23)

among all analyzed data sets. Then, the coarse-grained information rate (CIR) is given by the norm of the

mutual information

µC(x) =

||µI(x(t); x(t + l))|| =
∆l

lmax − lmin + ∆l

lmax∑

l=lmin

µI(x(t); x(t + l)).

(24)

Usually the parameter lmin and ∆l (difference between consecutive time lags) can be set to one, and thus

the CIR becomes

µC(x) =
1

lmax

lmax∑

l=1

µI(x(t); x(t + l)). (25)

Hence, the mutual coarse-grained information rate (MCIR) is defined as

µm
C (x; y) =

1
2lmax

lmax,l 6=0∑

l=−lmax

µI(x(t); y(t + l)) (26)

whereas the conditional coarse-grained information rate (CCIR) as

µc
C(x|y) = µC0(x|y)− µC(x), (27)

with

µC0(x|y) =
1

lmax

lmax∑

l=1

µI(x(t); x(t + l)|y). (28)

Finally, a normalization by the largest value occurring among all pairs of genes is performed. These

(normalized) coarse-grained information rates are then used to indicate the degree of interaction.

Model-based measures

Granger causality: A rather new approach for inferring gene regulatory networks is the Granger causality

(GC). Given the time series x and y, two linear autoregressive (AR) models are estimated, both including

the past of x, and additionally, one of them including the past of y. In order to determine the optimal
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order q of the AR model, which denotes the number of past time points which have to be included, we use

the function “VARselect” from the R-package “vars” [53,54] based on the Akaike information criterion

(AIC) [55]. The AIC is a measure of the goodness of a fit of an estimated statistical model, deduced as a

tool for model selection. In the general case, the AIC is defined as:

AIC = 2u− 2 log(L), (29)

where u is the number of parameters in the statistical model, and L is the maximized value of the

likelihood function for the estimated model.

With properly selected AR models, the part of the variance in the data which is explained by one model in

comparison to the other one, provides an information on the causal relationship. This comparison can be

formulated in terms of an index.

Thus the Granger Causality index, denoted by µG for the simple linear measure, as defined in [34,35]

via the covariance σ, is:

µG(y → x) = log
σ(u1t, u1t)
σ(u2t, u2t)

(30)

and can be inferred from the AR models:

xt =
q∑

i=1

a11ixt−i + u1t (31)

xt =
q∑

i=1

a21ixt−i +
∑

i

a22iyt−i + u2t, (32)

where a11i, a21i and a22i are the parameters of the models and u1t, respectively u2t represents white noise.

Conditional / partial Granger causality: As for the previous measures, we use the conditional and partial

(linear) Granger causality measures (CGC and PGC) as defined in [34,35], in order to identify existing

indirect relationships. Hence, the AR models are formulated as

xt =
q∑

i=1

a11ixt−i +
∑

i

a12izt−i + u1t, (33)

xt =
q∑

i=1

a21ixt−i +
∑

i

a22iyt−i +

∑

i

a23izt−i + u2t, (34)

for the conditional, and, in addition,
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zt =
q∑

i=1

a31izt−i +
∑

i

a32ixt−i + u3t, (35)

zt =
q∑

i=1

a41ixt−i +
∑

i

a42iyt−i +

∑

i

a43izt−i + u4t, (36)

for the partial Granger causality, with a11i, a12i, a21i, a22i, a23i, a31i, a32i, a41i, a42i and a43i being the

parameter of the models and u1t, u2t, u3t and u4t representing noise terms.

Using the Eqs. (33) and (34), the conditional Granger causality index is then defined as:

µc
G(y → x) = min

zk 6=x,zk 6=y
µG(y → x|z), (37)

where

µG(y → x|z) = log
|σ(u1t, u1t)|
|σ(u2t, u2t)| (38)

and, using the Eqs. (33) to (36), the partial Granger causality index is

µp
G(y → x) = min

zk 6=x,zk 6=y
µG((y → x) · z), (39)

where

µG((y → x) · z) =

log
σ(u1t, u1t)− σ(u1t, u3t)σ(u3t, u3t)−1σ(u3t, u1t)
σ(u2t, u2t)− σ(u2t, u4t)σ(u4t, u4t)−1σ(u4t, u2t)

.
(40)

The degree of interaction is indicated by the Granger causality index normalized by the largest value

occurring among all pairs of genes.

Measures operating on symbolic dynamics

Despite the promising applications of interaction measures based on symbolic dynamics in various fields,

they have not yet been employed for reverse engineering gene regulatory networks. For instance, in

standard nonlinear time series analysis, the usage of symbolic dynamics to uncover patterns of interactions,

especially from short data sets [56], has proven as a valuable tool. Therefore, we explore the potential of
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symbolic dynamics for the problem at hand by using the principle of order patterns. By this principle, as

described in [38], the time series are transformed into symbol sequences. An order pattern π of dimension δ

is defined by the discrete order sequence of the time series x and has the length δ. Hence, the time series

can be symbolized using order patterns following:

(xk, xk−l1 , ..., xk−lδ−1) → πk, (41)

where l is the time lag. In terms of gene regulatory network reconstruction, we need to choose a certain

number of time points and rank them according to their expression value in order to obtain the order

pattern. Then, each possible ordering corresponds to a predefined symbol.

This concept is illustrated in Fig. 9 for time series composed of n = 4 time points. As we are dealing with

very short time series here, we consider all possible combinations of the chosen number of time points. For

instance, for the time series of length n = 4 and an order pattern of dimension δ = 3, we define symbols

(order patterns πk) for the following groups of time points: (1, 2, 3), (1, 2, 4), (1, 3, 4) and (2, 3, 4), shown in

the left panels of Fig. 9. Next, we define a symbol sequence

S(i) = (π(i)
k1

, ..., π
(i)
kT

) (42)

where π
(i)
k denotes the order pattern obtained for gene i from the k-th group of time points and

T =
n!

δ!(n− δ)!
(43)

is the length of the symbol sequence.

In this work, we usually choose the dimension δ such that the length T becomes maximal, given a time

series of length n (i.e., δ = 5 for n = 10). However, if the symbol sequences are calculated for longer time

series, this approach is not applicable anymore. This is due to the fact that calculations in R are not

possible because of the fast growing length of the symbol vectors. Hence, we use for the time series of 20

time points order pattern of dimension 6 instead of the dimension 10, which would lead to the symbol

vector of maximal length.

Symbol sequence similarity: Using the above described approach, we infer the interdependency of two genes

as follows: Given a certain number δ of time points we define a vector P containing all possible

permutations of the ranking, and assign a symbol (order pattern πk) to each of them. Next, we define a

vector P̄ , using the same symbols as for P , but assigned to the reversed ranking. Now, we count the pattern
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overlap of two symbol sequences S(i) and S(j) to evaluate the symbol sequence similarity, p1, assuming

both time series are interrelated (Eq. (44)), respectively p2 if we assume anti-interrelation (Eq. (45)).

p1 =
δ!∑

k=1

∑T
t=1(S

(i)
t = Pk ∧ S

(j)
t = Pk)

T
(44)

p2 =
δ!∑

k=1

∑T
t=1(S

(i)
t = Pk ∧ S

(j)
t = P̄k)

T
(45)

We choose the maximal value of the two frequencies p1 and p2

µS
T = max(p1, p2) (46)

to define the symbol sequence similarity (SySim).

Mutual information of symbol vectors: We calculate the mutual information of the symbol vectors

(SymMI) of maximal length by:

µI
T = µI(S(i), S(j)). (47)

In addition, we consider the mean of the symbol sequence similarity and the mutual information

(of the symbol vectors) (SymSimMI)

µSI
T =

1
2

(
µS

T

max(µS
T )

+
µI

T

max(µI
T )

)
. (48)

This is further extended to include symbolic dynamics based on a slope comparison (order patterns for

pairs of time points), where we consider

• the symbol sequence similarity for pairs (µS
T pairs) as a similarity measure

• and the conditional entropies for pairs (µH
T pairs) as a distance measure, with

µH
T = H(S(i), S(j))/H(S(i)).

A novel measure — the residual mutual information

Estimating entropies from short time series is imprecise, hence the estimation of the mutual information

and, in particular, its conditional counterpart, suffers the same disadvantage. On the other hand, the

simple mutual information is not able to distinguish between direct and indirect links. Therefore, in order

to overcome the encountered problem, we propose a novel partial measure — the residual mutual

information (RMI) defined as:
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µr
I(x, y) = min

zk 6=x,zk 6=y
µI((x, y) · zk), (49)

where

µI((x, y) · z) =H(Res(x(z))) + H(Res(y(z)))−

H(Res(x(z)), Res(y(z))),
(50)

analogously to the idea of partial correlation (the residuals are calculated in the same way as for the partial

correlation in Eq. (16)). The degree of interaction in the complex network is then indicated by the values

of µr
I , normalized by the largest value occurring among all pairs of genes.

Applied to short data sets, we expect that the residual mutual information performs much better in

discriminating indirect links than the conditional MI, as we can abandon the estimation of additional

conditional probabilities. Hence, the measure is more robust to effects of small sample size. Furthermore,

we expect that the RMI’s performance ranges between those of the simple and the conditional mutual

information for long time series, since in contrast to the CMI, we eliminate here only the linear influence

of the variable Z on X and Y . We postpone the confirmation of this claim for further theoretic analysis.

Scoring schemes

Once a chosen similarity measure has been applied on a given data matrix, there are several possibilities to

score the resulting “weights” of putative interactions. In this sense, a scoring scheme F is a matrix of

dimensions m×m. Let W denote the matrix obtained by applying µ on all pairs of rows of a given data

matrix M , for wij ≥ 0, ∀i, j. The scores from a given scoring scheme and similarity measure can then be

represented by a matrix C calculated from the Hadamard element-wise product of W and F , such that

cij = wij · fij .

To unravel the linkage of genes we apply the relevance network algorithm (Algorithm 1) using different

scoring schemes and measures. In principle, all of the measures can be combined with any scoring schemes,

but we restrict our investigations to the most commonly used.

IDentity (ID)

The identity scoring scheme corresponds to the basic relevance network [26] approach: Given a specific

measure, a particular threshold τ is set in order to account for “true” links between elements in the
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network. The matrix F is the unit matrix (fij = 1) in this case. Therefore, for a symmetric similarity

measure, the identity scoring scheme cannot infer directionality of interactions. We test the performance of

all measures mentioned above in combination with this scoring scheme.

Context Likelihood of Relatedness (CLR)

As a second type of scoring scheme, often used for the reconstruction of GRN , we consider the CLR,

which is an extension to the basic relevance network approach. Once weights wij have been assigned for

each pair of genes according to the strength of interaction inferred from a particular measure, a score is

derived, related to the empirical distribution of the values in W . Thus, the matrix F obtains the form

fij =
√

A2
i + A2

j , (51)

Ai = max
(

0,
1
σi
− w̄i

wijσi

)
, (52)

Aj = max
(

0,
1
σj
− w̄j

wijσj

)
, (53)

where w̄i (w̄j) and σi (σj) are the mean and standard deviation of the empirical distribution of wik (wjk),

k = 1, . . . , m. The links having cij < τ (with cij = wij · fij and τ a predefined threshold) are removed for

the network reconstruction.

Here, we use the CLR as implemented in the R-package “minet” [57,58], which uses either the simple

mutual information or a squared correlation matrix (Pearson’s, Spearman’s or Kendall’s) to

measure the strength of interaction among genes. We note that the CLR algorithm cannot infer

directionality from symmetric measures.

Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE)

Furthermore, we investigate the Algorithm for the Reconstruction of Accurate Cellular NEtworks, referred

to as ARACNE, and include its performance in the current comparison study. The ARACNE is based on

the data processing inequality, which states that post-processing cannot increase the amount of

information. Hence it follows that:

µI(xi, xk) ≤ min(µI(xi, xj), µI(xk, xj)), (54)
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when gene i and k are not directly linked, but this goes through j, where xi, xj and xk are the expression

time series of these genes. In this manner, the algorithm discriminates indirect links. ARACNE is a

relevance network algorithm as illustrated in Algorithm 1 as well. First, weights wij (normalized to the

interval [0, 1]) are assigned to each pair of nodes. Then the scoring scheme operates as follows: For each

triplet of nodes the edge having the lowest weight will be removed (its weight is set to zero), if the

difference between the two lowest weights is above a threshold τd, as that interaction is interpreted as

indirect. In this manner, the matrix F obtains the form:

fij =
{

0, if (wij ≤ wjk ≤ wki) ∧ (|wij − wjk| > τd)
1, otherwise .

(55)

Moreover, the ARACNE removes all edges satisfying cij < τ , where τ is a predefined threshold.

As for the CLR algorithm, we rely on the “minet”-package, using the simple mutual information or a

squared correlation matrix to determine the weights. By default, the two thresholds are set to zero.

The ARACNE does not distinguish the direction of a link from a symmetric measure as well.

Maximum Relevance / minimum redundancy NETwork (MRNET )

As another example of a relevance network algorithm, we consider the Maximum Relevance / minimum

redundancy NETwork (MRNET ) [59]. This scoring scheme performs series of supervised maximum

relevance / minimum redundancy (MRMR) gene selection procedures, where the expression of each gene

in turn plays the role of the target output y = xi, with V = x\xi being the set of the expression data of the

input variables, and x the set of the expression levels of all genes. Given the set M of selected variables

and pairwise weights wij|M , the criterion updates M by choosing the variable

xMRMR
j = arg max(sj), xj ∈ V \M, (56)

that maximizes the score

sj = uj − rj , (57)

where rj = 1
|M |

∑
xk∈M wjk is a redundancy term, and uj = wji is a relevance term. This scheme therefore

assigns higher rank to direct interactions, whereas indirect interactions (redundant information with the
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direct ones) should receive lower rank. Thus, the matrix F is defined as:

fij =
max [(wji −Bj) , (wij −Bi)]

wij
, (58)

Bi =
1
|M |

∑

xk∈M

wik, (59)

Bj =
1
|M |

∑

xk∈M

wjk. (60)

Finally, all edges whose score cij lies below a predefined threshold τ will be removed.

The implementation of the MRNET in the “minet”-package, which we used in our study, assigns the

weights based on the pairwise simple mutual information or a squared correlation among the time

series of two genes (normalized to the largest value occurring among the pairs). Also this algorithm is not

able to infer directionality from symmetric measures.

Time Shift (TS)

In nonlinear time series analysis, the shifting of time series is a common way to infer the directionality of

causal relationships. As the driving system by definition has to act first, shifting its time series forward in

time (relative to the time series of the response system) should increase the similarity of both time series.

Comparing the values of a particular measure for different time shifts gives then a hint on the direction of

the interaction. Thus, the time shift scoring scheme starts with a cubic spline interpolation for each pair of

genes expression time series. Then the series of the second gene is shifted against that of the first gene. If x

and y are two expression time series stored in the ith and jth row of the data matrix M , and x̃ and ỹ are

the related interpolated time series, we can then define the shifted time series as

x̃shift =
{

< x̃1, ..., x̃N+Nshift
>, if Nshift < 0

< x̃1+Nshift
, ..., x̃N >, otherwise (61)

and

ỹshift =
{

< ỹ1−Nshift
, ..., ỹN >, if Nshift < 0

< ỹ1, ..., ỹN−Nshift
>, otherwise (62)

where N is the length of the interpolated time series and Nshift is the assumed shift of ỹ versus x̃, with

Nshift ∈ Z and Nshift ∈ [−0.1 ·N, 0.1 ·N ]. Next, µ(x̃shift, ỹshift) is evaluated for all possible values of

Nshift, resulting in a vector < µ−Nshift
, ..., µNshift

> (for not significant values of µ the corresponding

entry will be set equal 0). The scoring is now given by
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fij =
{

1, if max [Sn] ≥ max [Sp]
0, otherwise , (63)

Sn = < µ−Nshift
, ..., µ0 >, (64)

Sp = < µ1, ..., µNshift
> . (65)

In case the largest significant value of the measure is obtained for a negative shift, the regulatory direction

from the first to the second gene is kept, while the opposite direction is preserved if the largest significant

value is obtained for a positive shift. Furthermore, both regulatory directions are kept, if the maximum

arises for a shift of zero or multiple opposed shift values or in the case when no significant value exists. The

scoring scheme aims at providing a hint on the directionality, because the absolute values of the calculated

correlations on the delayed time series are rather biased as the data sets are quite short.

In the next step of Algorithm 1, the information regarding the directionality are combined with the weight

of interaction inferred from a particular measure (cij = wij · fij). Hence, the weights for the unlikely

direction are set to zero in order to break symmetries, and thus reduce the number of false positives.

Finally, all edges with cij < τ are removed, where τ is a particular threshold.

We test that scoring scheme using the absolute value of of the correlation coefficients µP

(Pearson) and µS (Spearman) for pairs of the shifted expression series, where the significance level was

set to α = 0.01 and only absolute values of correlation larger 0.9 have been taken into account. The choice

of the measure to infer the weights in the first step of Algorithm 1 is independent of that and includes here

the mean of sequence similarity and mutual information of symbols, as well as Spearman’s and

Pearson’s correlation. Furthermore, this scoring scheme is applied in addition to (or after) another

scoring scheme (e.g., ID, CLR, or AWE). It is important to note that in contrast to the previously

described modifications of the algorithm, the scoring scheme we propose here allows to investigate the

directionality, also when symmetric measures are considered.

A novel scoring scheme – Asymmetric WEighting (AWE)

Most of the measures used to infer the degree of interaction between pairs of genes, such as correlations or

the mutual information, are symmetric. Hence, when applied in symmetric algorithms they are not able to

unravel the regulatory dependences, since these measures do not distinguish the direction of the

interaction. Thus, we introduce an asymmetric weighting based on topological aspects, for the complete set
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of pairwise weights obtained from a particular measure, and implement it according to Algorithm 1. In

particular, we compute a matrix of weights, where the columns represent the genes which are regulated,

and the rows stand for the genes which regulate other genes. The scoring value is then calculated by

dividing each row entry by the sum of the corresponding column values. The scoring scheme (and the

corresponding matrix F ) is defined by:

fij =

(
m∑

k=1

wkj

)−1

. (66)

Hence, the probability that the jth gene is regulated sums up to one:
m∑

k=1

ckj =
m∑

k=1

(wkj · fkj) = 1. Here,

the score indicates that how likely a gene is regulating another one depends not only on the strength of

interactions, but also on its amount.

Eventually, if cij ≥ τ the edge is introduced, otherwise it is omitted.

We test the asymmetric weighting on the matrix W inferred from the symbolic dynamics measures.

ROC analysis

In order to rank the performance of the different similarity measures and scoring schemes, we evaluate to

which extent each of them accurately reconstructs the underlying network of regulatory interactions. To

this end, we use the receiver operating characteristic (ROC) analysis [60], as it provides indices to value

the reconstruction efficiency among all the measures and scoring schemes under study. The ROC analysis

is a tool for visualizing, organizing, and selecting classifiers based on their performance in terms of a

cost/benefit analysis. For this purpose the ROC space is defined by the false positive rate, fpr, and the

true positive rate, tpr, which depict the relative trade-offs between true positives tp (benefits) and false

positives fp (costs). An overview on important quantities in ROC analysis is given in Table 3.

While discrete classifiers lead to just a single point in the ROC space, classifiers such as the similarity

measures studied in this work produce probability values of how likely an instance belongs to a certain

class. Here, the classification depends on a predefined threshold. The ROC curve is then produced by

continuously tuning this threshold, which on the other hand can be suggestive on the performance of the

measures. However, a well-defined rating is not always possible “by eye”. Therefore, different summary

statistics are common, for example the area under the ROC curve (AUC(ROC)) or the Y OUDEN index

(Y OUDEN = max(tpr − fpr)) [61]. Another standard evaluation plot in the field of the ROC analysis is
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the precision/recall graph (PvsR), which is based on the comparison between the true edges and the

inferred ones. Hence, it highlights the precision of the reconstruction, and does not suffer from the

typically large number of false positives in a gene regulatory network reconstruction. We thus give the

summary statistic using the area under the precision-recall curve (AUC(PvsR)) as well as the ROC curve.

An efficient implementation of the ROC analysis is provided by the R-package “ROCR” [62].

All ROC curves are evaluated with respect to the underlying GRN , which is a directed graph. As several

of the scoring schemes/measures do not distinguish whether the regulation is directed from gene i to gene j

or vise versa, some of the false positives will follow from the missing information on the directionality.

However, since the network under study is a sparse one, this additional false positives barely carry a weight.
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Figure 1:

Figures
Figure 1

Components of the relevance network algorithm for reverse engineering gene regulatory networks (GRN).

The measures are grouped based on the representation on which they operate. Here, the different

background colors indicate which combinations of scoring schemes and measures are studied. Altogether,

there are 50 combinations included, because some measures can be further sub-divided.

Figure 2

Figure 2:

Performance of various similarity measures (noise-free case).

(a) ROC curves obtained for the ID scoring scheme using the simple, conditional and partial Pearson

correlation (µP , µc
P , µp

P ), where the diagonal of the cross-correlation matrix is set to 0. (b) ROC curves

using the ID scoring scheme and different correlation coefficient, such as the simple Pearson correlation

coefficient, where the diagonal of cross-correlation matrix is once 0 (µP (diag0)), and another time the

diagonal is 1 (µP (diag1)). Furthermore, the ROC curves using the Spearman (µS (diag1)) and the

Kendall (µK (diag1)) correlation coefficient, where the diagonal is 1 in both cases, are shown. (c)

Evaluation of the ID scoring scheme using information-theoretic measures: simple, conditional and

residual mutual information (µI , µc
I and µr

I). (d) Evaluation of the ID scoring scheme using measures

based on symbolic dynamics: symbol sequence similarity (µS
T ), the mutual information of the symbol

sequences (µI
T ) and the mean of these both (µSI

T ), as well as the symbol sequence similarity of pairs of time

points (µS
T (pairs)) and the conditional entropy of the symbols obtained from the pairs of time points

(µH
T (pairs)). (e) The corresponding ROC curves illustrating the performance of the Time Shift scoring

scheme using the Pearson correlation µP , applied in addition to the CLR (measure: µS) and the AWE

(measure: µSI
T ) scoring scheme. (f) Performance of the AWE algorithm using the selected symbol based

measures included in the this study, for example ROC curves for the symbol sequence similarity (µS
T ), the

mutual information of the symbol sequences (µI
T ), and the mean of these both (µSI

T ).
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Figure 3:

Figure 3

Performance of various similarity measures for noisy data (noise level 0.3).

The plot shows ROC curves of (a) mutual information (µI), residual mutual information (µr
I), symbol

sequence similarity (µS
T ), mutual information of the symbol sequences (µI

T ) and the mean of these two

(µSI
T ), and (b) Pearson correlation (µP ), partial Pearson correlation (µp

P ), conditional Pearson correlation

(µc
P ), Spearman correlation (µS) and Kendall correlation (µK).

Figure 4

Figure 4:

ROC curves obtained from the reconstruction of different networks.

The results are shown for an E.coli network of 100 genes, a S.cerevisiae network of 100 gene and an E.coli

network of 200 genes using various similarity measures: (a) partial Pearson correlation µp
P , (b) conditional

Granger causality µc
G, (c) Spearman correlation µS , (d) simple mutual information µI , (e) symbol sequence

similarity µS
T , and (f) residual mutual information µr

I .

Figure 5

Figure 5:

Evaluation of the investigated scoring schemes / measures using the three different summary statistics

(noise-free case).

Similar approaches are grouped together. The first group in cyan refers to the different measures applied

together with the ID scoring scheme. The green stands for the CLR scoring scheme, the orange for the

MRNET , yellow refers to the ARACNE, magenta to the AWE and violet stands for the TS. These

colors are related to those in Fig. 1. Furthermore, blue groups together all measures applied with a

combination of scoring schemes.

Figure 6

Summary statistics considering moderate noise (noise level 0.3).
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Figure 6:

The results for selected measures using different scoring schemes are shown. Similar approaches are

grouped together here in the same way as in Fig. 5.

Figure 7

Figure 7:

Test data set for the comparison study.

(a) The GRN of m = 100 genes in E.coli is illustrated in the lower right panel as an adjacency matrix.

Each entry marks a regulatory link between two associated genes. The upper panel shows the

corresponding expression time series (simulated in the noise-free case and normalized to values between 0

(coded in black) and 1 (coded in white)). An example of the time series of the lon gene (gene number 2),

including a spline interpolation is shown in the lower left panel. (b) The graphical representation of the

network is shown in addition.

Figure 8

Figure 8:

Illustration of the concept of dynamic time warping (DTW ).

The upper panel shows two time series x (black) and y (gray), as well as a mapping (red lines) of the time

points in x into those in y. This mapping is optimal with respect to the step pattern “symmetric2”,

meaning the sum of all incorporated local distances (represented by lengths of the red lines) is minimal,

given the constraints from the step pattern. The lower panel shows all local distances between time points

in x and y in a contour plot, where the red path is associated with the lowest value of the cumulative

distance (optimal alignment path).

Figure 9

Figure 9:

Illustration of the concept of order pattern.
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The left panels show a time series (black) composed of n = 4 time points and particular groups of 3 time

points each which are forming order pattern of dimension δ = 3 (red). The possible order pattern of that

dimension are overviewed in the right panel together with the resulting symbol sequence S for the

mentioned time series.
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Tables
Table 1 — Measures

measure “simple” (pairwise) conditional partial
Euclidean distance µEC , [63] – –

Ls Norm (here s = 10) µL, [64] (in literature s = 3) – –
Manhattan distance µMA, [64] – –

dynamic time warping distance µW , [43] – –
Pearson’s correlation µP , [65] µc

P , [22] (∗) µp
P , [23]

Spearman’s correlation µS , [66] – –
Kendall’s correlation µK , [67] – –
mutual information µI , [66] µc

I , [25] µr
I (new)

coarse-grained information rate µm
C , [52] (∗) µc

C , [52] (∗) –
Granger causality index µG, [68] µc

G, [34] µp
G, [34]

symbol sequence similarity µS
T , [38] (∗) – –

mutual information of symbol sequence µI
T , [38] (∗) – –

mean of symbol sequence similarity and µI µSI
T , [38] (∗) – –

conditional entropy of symbol sequence – µH
T , [38] (∗) –

Table 1: This table summarizes all measures of interaction included in this study. Those are marked by (∗)
which, to our knowledge, have not been applied to gene expression before.
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Table 2 — The minet algorithm

parameter (minet) AUC(ROC) Y OUDEN AUC(PvsR)
clr, mi.empirical, equalfreq 0.80 0.54 0.05

clr, mi.empirical, equalwidth 0.76 0.45 0.04
clr, mi.mm, equalfreq 0.80 0.54 0.05

clr, mi.mm, equalwidth 0.76 0.48 0.04
clr, mi.shrink, equalfreq 0.80 0.53 0.05

clr, mi.shrink, equalwidth 0.74 0.41 0.04
clr, mi.sg, equalfreq 0.80 0.54 0.05

clr, mi.sg, equalwidth 0.74 0.42 0.04
clr, pearson, none 0.78 0.49 0.05

clr, spearman, none 0.80 0.53 0.05
clr, kendall, none 0.80 0.53 0.05

mrnet, mi.empirical, equalfreq 0.82 0.59 0.04
mrnet, mi.empirical, equalwidth 0.76 0.47 0.05

mrnet, mi.mm, equalfreq 0.81 0.57 0.04
mrnet, mi.mm, equalwidth 0.77 0.46 0.05
mrnet, mi.shrink, equalfreq 0.81 0.57 0.04

mrnet, mi.shrink, equalwidth 0.73 0.39 0.04
mrnet, mi.sg, equalfreq 0.81 0.57 0.04

mrnet, mi.sg, equalwidth 0.77 0.47 0.06
mrnet, pearson, none 0.78 0.49 0.04

mrnet, spearman, none 0.82 0.58 0.03
mrnet, kendall, none 0.81 0.56 0.03

aracne, mi.empirical, equalfreq 0.76 0.52 0.01
aracne, mi.empirical, equalwidth 0.54 0.12 0.02

aracne, mi.mm, equalfreq 0.76 0.52 0.01
aracne, mi.mm, equalwidth 0.54 0.12 0.02
aracne, mi.shrink, equalfreq 0.76 0.52 0.01

aracne, mi.shrink, equalwidth 0.55 0.14 0.02
aracne, mi.sg, equalfreq 0.76 0.52 0.01

aracne, mi.sg, equalwidth 0.54 0.12 0.02
aracne, pearson, none 0.54 0.07 0.03

aracne, spearman, none 0.76 0.52 0.01
aracne, kendall, none 0.76 0.52 0.01

Table 2: Overview on the results of the summary statistics from the ROC analysis for the different parameter
(implemented scoring schemes and measures for noise level 0.0) in the minet package.
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Table 3 — ROC

true positives correctly identified true edges tp
false positives spurious edges fp
true negatives correctly identified zero edges tn
false negatives unrecognized true edges fn

positives all true edges p = tp + fn
negatives all zero edges n = tn + fp

false positive rate part of negatives set positive fpr = fp/n
true positive rate part of positives set positive tpr = tp/p
false negative rate part of positives set negative fnr = fn/p
true negative rate part of negatives set negative tnr = tn/n
recall (sensitivity) true positive rate tpr

specificity true negative rate tnr
precision positive predictive value tp/(tp + fp)

Table 3: Summary of important quantities in ROC analysis.
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Additional Files
Additional file 1 — Supplement Figures

Figure 1: Performance of the identity scoring scheme using different measures operating on vectors, in terms
of the ROC curves, where the false positive rate (fpr) vs. the true positive rate (tpr) is plotted. The results
shown here are obtained from the Euclidean distance (µEC), the Ls norm (µL) and the Manhattan distance
(µMA), as well as from the dynamic time warping (µW ) with the step pattern symmetric1, symmetric2 and
asymmetric.

Figure 2: ROC curves obtained for the ID scoring scheme using the simple, conditional and partial Pearson
correlation (µP , µc

P , µp
P ), where the diagonal of the cross-correlation matrix is set to 0, when a significance

test (by reshuffling of the time series) is applied.

Figure 3: Evaluation of the ID scoring scheme using information-theoretic measures: simple, conditional
and residual mutual information (µI , µc

I and µr
I) when a significance test by reshuffling is applied.

Figure 4: ROC curves for the mutual coarse-grained information rate (µm
C ), the conditional coarse-grained

information rate (µc
C (similarity)), and the CCIR represented as a distance (µc

C (distance)), in frames of
the identity scoring scheme.

Figure 5: (a) The ROC curves, obtained for the simple, conditional and partial Granger causality index
(µG, µc

G, µp
G) using the identity scoring scheme are shown. (b) The panel illustrates the associated results

under consideration of significance (simple significance test by reshuffling of the time series).

Figure 6: ROC curves obtained for the Spearman correlation coefficient µS using the CLR, MRNET and
the ARACNE scoring scheme.

Figure 7: Reconstruction from noisy data (noise level 0.3). ROC curves of (a) the Granger and partial
Granger causality (µG, µp

G), the mutual and conditional coarse-grained information rates (µm
C , µc

C), and
the conditional mutual information (µc

I), as well as (b) the distance measures: Ls norm, Euclidean dis-
tance, Manhattan distance and dynamic time warping with the step pattern symmetric1, symmetric2 and
asymmetric.

Figure 8: The role of interpolation and sampling: simulated expression time series of 100 equally sampled
data points (black line), the effect of (spline) interpolation (including the following data points of the original
series: 1|2|3|6|9|15|25|39|63|99, green line).

Figure 9: Artefacts introduced in the reconstruction procedure (measure: µI , scoring scheme: ID) by
interpolation of short, coarsely sampled time series. The left panel shows the corresponding ROC curves in
the noise-free case for 10 points equally sampled in time, whereas the right panel presents the same results
for 10 points, unequally sampled. The unequal sampling in time is the same as in Fig. 8.

Figure 10: ROC curves for selected measures and algorithms obtained in the noise-free case, using unequally
sampled data without interpolation. The sampling is the same as in the previous two figures, including the
following data points of a simulated series of 100 points: 1|2|3|6|9|15|25|39|63|99.
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Figure 11: ROC curves obtained from the reconstruction of an E.coli network of 100 genes, a S.cerevisiae
network of 100 gene and an E.coli network of 200 genes. (a)-(i) show the results using various similarity
measures together with the ID scoring scheme: (a) Euclidean distance µEC , (b) Manhattan distance µMA,
(c) Ls norm µL, (d) Kendall’s rank correlation µK , (e) Pearson correlation µP , (f) conditional Pearson
correlation µc

P , (g) mutual information of symbol vectors µI
T , (h) mean of symbol sequence similarity and

the mutual information of symbol vectors µS
T I, and (i) conditional mutual information µc

I . Moreover, the
results using Kendall’s rank correlation µK together with (j) MRNET , (k) CLR, and (l) ARACNE scoring
scheme are shown.

Figure 12: Summary statistics for the top-ranked measures / scoring schemes for increasing noise intensities
(noise level 0.5). Similar approaches are grouped together. The first group in cyan refers to the different
measures applied together with the ID scoring scheme. The green stands for the CLR scoring scheme, the
orange for the MRNET , yellow refers to the ARACNE, magenta to the AWE and violet stands for the
TS. Furthermore, blue groups together all measures applied with a combination of scoring schemes.

Figure 13: Summary statistics ((a), (c) and (e) area under the ROC curve, as well as (b), (d) and (f)
Y OUDEN index) for the top-ranked measures / scoring schemes as a function of the noise intensity for
varying lengths of the time series. The results in (a) and (b) are obtained from 8 time points, those in (c)
and (d) from 10 time points, and those in (e) and (f) from 20 time points.

Figure 14: (a) Illustration of the network and its degree distribution for 100 genes in E.coli. Here and in the
following figures p(k) is the frequency of nodes with total degree k, p in(k) is the frequency of nodes with
an in-degree k, and p out(k) is the frequency of nodes with an out-degree k. Futhermore, the network and
its degree distribution for (b) 100 genes in S.cerevisiae, and (c) 200 genes in E.coli are shown.
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