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Experimental observations of typical kinds of synchronization transitions are reported in

unidirectionally coupled time-delay electronic circuits with a threshold nonlinearity and two time

delays, namely feedback delay s1 and coupling delay s2. We have observed transitions from

anticipatory to lag via complete synchronization and their inverse counterparts with excitatory and

inhibitory couplings, respectively, as a function of the coupling delay s2. The anticipating and lag

times depend on the difference between the feedback and the coupling delays. A single stability

condition for all the different types of synchronization is found to be valid as the stability condition

is independent of both the delays. Further, the existence of different kinds of synchronizations

observed experimentally is corroborated by numerical simulations and from the changes in the

Lyapunov exponents of the coupled time-delay systems. VC 2011 American Institute of Physics.

[doi:10.1063/1.3591791]

Synchronization of chaotic systems, a fundamental non-

linear phenomenon, has emerged as a highly interdiscipli-

nary research topic. Synchronization of coupled time-

delay dynamical systems, described by delay differential

equations, has become an intensive area of research in

the current literature as such systems exhibit hyper-

chaotic attractors with multiple positive Lyapunov expo-

nents. Different kinds of synchronization transitions in

coupled time-delay systems along with suitable stability

analysis have also been reported. However, experimen-

tal investigation of such synchronization transitions in

coupled time-delay systems remains poorly explored.

In this work, we will demonstrate experimentally the

existence of different kinds of synchronization transi-

tions in coupled time-delay systems using electronic

circuits.

I. INTRODUCTION

Time-delay is a veritable blackbox which can give rise

to several interesting and novel phenomena such as multi-

stable states,1 amplitude death,2 chimera states,3 phase flip

bifurcation,4 Neimark-Sacker type bifurcations,5 etc., which

cannot be observed in the absence of delay in the underly-

ing systems. Further, it has also been shown that delay cou-

pling in complex networks enhances the synchronizability

of networks and interestingly it leads to the emergence of a

wide range of new collective behavior.5,6 On the other

hand, it has also been shown that connection delays can

actually be conducive to synchronization so that it is possi-

ble for delayed systems to synchronize, whereas the unde-

layed systems do not.5 Enhancement of neural synchrony,

that is, the existence of a stable synchronized state even for

a very low coupling strength for a significant time-delay in

the coupling has also been demonstrated.7 Time-delay feed-

back has been used to generate high-dimensional, high-

capacity waveforms at high bandwidths to successfully

transfer digital information at gigabit rates by chaotically

fluctuating laser light travelling over 120 km of a commer-

cial fibre-optic link around Athens, Greece.8 Time-delay

feedback control has also been used to control pattern for-

mation in neuroscience to prevent the pathological activity

in cortical tissues.9,10

Synchronization in dynamical systems with time-delay

feedback and in intrinsic time-delay systems with=without

time-delay coupling has been receiving central importance

during the past decade both theoretically and experimen-

tally.5–28 However, experimental investigations=confirmations

of theoretical results of synchronization transitions in coupled

time-delay systems remain lagging in the available literature.

Nevertheless, experimental investigations on different kinds

of synchronization transitions in semiconductor laser systems

with a delay feedback have been carried out recently.5–21

However, experimental investigations in intrinsic time-delay

systems, whose dynamics cannot be realized in the absence of

time-delay such as the paradigmatic Mackey-Glass or Ikeda

systems, using electronic circuits remain poorly explored and

very few experimental results have been reported so far.22–25

In particular, real time anticipatory synchronization of

chaotic states using time-delayed electronic circuits with sin-

gle-humped smooth nonlinearity was demonstrated by

Voss.22 Dual synchronization of chaos in two pairs of unidir-

ectionally coupled Mackey-Glass electronic circuits with

time-delayed feedback was demonstrated in Ref. 23. These

authors have also investigated the regions for achieving dual
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synchronization of chaos when the delay time is mismatched

between the drive and response circuits. The effect of fre-

quency bandwidth limitations in communication channels on

the synchronization of two unidirectionally coupled Mackey-

Glass analog circuits was demonstrated in Ref. 24. Recently,

experimental demonstration of simultaneous bidirectional

communication between two chaotic systems by means of

isochronal synchronization was carried out using Mackey-

Glass electronic circuits with time-delay feedback.25

Further, experimental observation of both anticipated

and retarded synchronizations has been demonstrated using

unidirectionally coupled semiconductor lasers with delayed

optoelectronic feedback.21 It has been shown that depending

on the difference between the transmission time and the

feedback delay time, the lasers fall into either anticipated or

retarded synchronization regimes, where the driven receiver

laser leads or lags behind the driving transmitter laser, con-

firming the theoretical works of Voss and Masoller.29–31

Recently, we have demonstrated theoretically the transition

from anticipatory to lag via complete synchronization as a

function of the coupling delay with suitable stability condi-

tion in a system of unidirectionally coupled time-delay sys-

tems27 and its inverse counterparts in Ref. 28. Further, it was

also shown that anticipatory=lag synchronizations can be

characterized using appropriate similarity functions and that

the transitions from a desynchronized state to an approxi-

mate anticipatory=lag synchronized state are characterized

by a transition from on-off intermittency to periodicity in the

laminar phase distribution settling the skepticism on charac-

terizing anticipatory=lag synchronization using the similarity

function as discussed by Zhan et al.32

In this work, we will experimentally confirm our theoreti-

cal studies on the above synchronization transitions in unidir-

ectionally coupled time-delay electronic circuit with a

threshold nonlinearity. In our previous theoretical analysis,

Refs. 27 and 28, we have used a five segment piecewise linear

function in which the extreme segments saturate at zero at

both ends. Because of the difficulty in constructing these

extreme segments using electronic circuits, we have employed

a three segment piecewise linear function (designed using a

threshold controller) in our present study. Our experimental

results are supported by minimal numerical simulations of the

three segment piecewise linear function for completeness,

avoiding repetitions. Further, these synchronization transitions

are also corroborated by the transitions in the largest Lyapu-

nov exponents of the coupled time-delay systems and also we

have established that both types of (direct and inverse) syn-

chronization cannot be observed either from excitatory or

from inhibitory coupling alone, which have not been pre-

sented in our previous theoretical analysis.

In particular, in this manuscript, we experimentally

demonstrate the transition from anticipatory to complete and

then from complete to lag synchronizations as a function of

the coupling delay, for a fixed set of other system parame-

ters, in a unidirectionally coupled piece-wise linear time-

delay electronic circuit. Further, we will also show the

existence of their inverse counterparts, that is, the transition

from inverse anticipatory to inverse lag synchronizations via

inverse complete synchronization, with inhibitory coupling.

The importance of inhibitory coupling and its intrinsic role

in neural synchrony are discussed in Refs. 28, 33, and 34.

Furthermore, we will also show that neither inverse complete

synchronizations can be realized with an excitatory coupling

nor direct=conventional synchronizations can be realized

with an inhibitory coupling as a result of the nature of the

nonlinear function and the parametric relation obtained from

the stability analysis using the Krasvoskii-Lyapunov stability

theory. Numerical simulations are presented in confirmation

with the experimental results, and the transitions in the spec-

trum of Lyapunov exponents of the coupled time-delay sys-

tems also confirm the observed synchronization transitions.

The plan of the paper is as follows. In Sec. II, we present

the details of the delay dynamical system under considera-

tion and the experimental implementation of the system

using an appropriate analog electronic circuit. Unidirection-

ally coupled time-delay system and its circuit details are dis-

cussed in Sec. III. In Sec. IV, we analyze the different

synchronization manifolds and identify the conditions for

the stability of the synchronized states of unidirectionally

coupled time-delay systems. In Sec. V, we demonstrate

experimentally the existence of anticipatory, complete, and

lag synchronizations with excitatory coupling and their

inverse counterparts with inhibitory coupling are discussed

in Sec. VI, along with their numerical confirmation. Finally

in Sec. VII, we summarize our results.

II. THE SCALAR DELAYED CHAOTIC SYSTEM WITH
THRESHOLD NONLINEARITY

We consider the following first-order time delay differ-

ential equation (DDE) describing the delay feedback

oscillator

dx

dt
¼ �axðtÞ þ bf ½xðt� sÞ�; (1)

where a and b are the positive parameters, x(t) is a dynamical

variable, f(x) is a nonlinear activation function, and s is the

time delay. The function f(x) is taken to be a symmetric

piecewise linear function defined by Ref. 35

f ðxÞ ¼ Af � � Bx: (2a)

Here

f � ¼
�x� x < �x�;
x �x�� x �x�;
x� x > x�

(
(2b)

where x* is a controllable threshold value and A and B are

the positive parameters. In our analysis, we chose x*¼ 0.7,

A¼ 5.2, B¼ 3.5, a¼ 1.0, and b¼ 1.2. It may be noted that

for jxj > x�, the function f(x) has the negative slope—B and

it lies in all the four quadrants of the f—x plane (Fig. 1(a)).

The figure reveals the piecewise linear nature of the function.

Experimental implementation (see below) of the function

f(x) is shown in Fig. 1(b) in the form of voltage characteristic

Uin vs Uout of the nonlinear device unit ND of Figs. 2 and 3.

This function f(x) employs a threshold controller for

flexibility. It efficiently implements a piecewise linear func-

tion. The control of this piecewise linear function facilitates
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controlling the shape of the attractors. Even for a small delay

value, this circuit system exhibits hyperchaos and can pro-

duce multi-scroll chaotic attractors by just introducing more

number of threshold values, for example, a square wave. In

particular, this method is effective and simple to implement

since we only need to monitor a single state variable and

reset it, if it exceeds the threshold and so has potential engi-

neering applications for various chaos-based information

systems.

A. Experimental setup

The system described by Eq. (1) with the nonlinear

function f(x) is constructed using analog electronic devices.

The circuit (Fig. 2) has a ring structure and comprises of a

diode based nonlinear device unit (Fig. 3) with amplifying

stages (OA2 and OA3), a time delay unit (Fig. 4) with a buffer

(OA4), and an amplifying stage (OA5). The dynamics of the

circuit in Fig. 2 is represented by a DDE of the form

R0C0

dUðtÞ
dt
¼ �UðtÞ þ F½kf Uðt� TdÞ�; (3)

where U(t) is the voltage across the capacitor C0, U(t � Td)

is the voltage across the delay unit (DELAY), and Td is the

delay time and F[kf U(t � Td)] is the static characteristic of

the ND.

In order to analyze the above circuit, we transform it

onto the dimensionless oscillator [Eq. (1)] on the basis of the

following relations by defining the dimensionless variables

and dimensionless parameters as

xðtÞ ¼ UðtÞ
Us

; t̂ ¼ t

R0C0

; s ¼ Td

R0C0

: (4)

A nonzero Us is chosen such that ND(Us)¼Us. In addition,

the other parameters and variables are described by the rela-

tions kf ¼ 1þ ðR8
R7
Þ ¼ b, V1¼V2¼ 0.7 V, A¼ (R6=R4), and

B¼ (R6=R5). These relations reveal that the circuit equation

(3) is identical to Eq. (1) with a¼ 1.0. Without loss of gener-

ality, t̂ is treated as t itself in our further analysis.

The approximate time delay TD is given by

Td ¼ n
ffiffiffiffiffiffi
LC
p

; n�1; (5)

where n is the number of LC filters in Fig. 4.

The experimental circuit parameters are: R1 ¼ 1 kX,

R2 ¼ R3 ¼ 10 kX, R4 ¼ 2 kX, R5 ¼ 3 kX, R6 ¼ 10:4 kX
(trimmer-pot), R7 ¼ 9:9 kX, R8 ¼ 2:1 kX (trimmer-pot),

R9 ¼ R10 ¼ 1 kX, R11 ¼ 10 kX, R12 ¼ 20 kX (trimmer-

pot), R0 ¼ 2:68 kX (trimmer-pot), C0¼ 100 nF, Li¼ 12 mH

FIG. 1. (Color online) The nonlinear function f(x). (a) Plot of the piecewise

linear function f(x) given by Eq. (1). (b) Measured characteristic curve of the

nonlinear unit ND from Fig. 3, Uin vs Uout. Vertical scale 2 V=div., horizon-

tal scale 1 V=div. FIG. 2. Circuit block diagram of the delayed feedback oscillator with a non-

linear device unit (ND), a time delay unit (DELAY) and a lowpass first-

order R0 C0 filter. U(t) is the voltage across the capacitor C0 and U(t - Td) is

the voltage across the delay unit (DELAY).

FIG. 3. Nonlinear device unit (ND):

Circuit implementation of the nonlinear

activation function with amplifying

stages (OA2 and OA3).
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(i¼ 1, 2,…, 11), Ci¼ 470 nF(i¼ 1, 2,…, 10), and n¼ 10.

From Eq. (5), we can see that Td¼ 0.751 ms, R0C0¼ 0.268

ms, so that the time-delay s � 2:8 for the chosen values of

the circuit parameters. The delay time can be simply varied

by using the variable resistance R0. In our circuit, lA741s
are employed as operational amplifiers. The constant voltage

sources, V1 and V2, and the voltage supply for all active

devices are fixed at 612 V. The threshold value of the three

segments involved in Eq. (2) can be altered by adjusting the

values of voltages V1 and V2.

For the above choice of the circuit parameters, the

values of the dimensionless parameters turn out to be

b ¼ kf ¼ 1þ ðR8
R7
Þ � 1:212, A¼ (R6=R4)¼ 5.2, B ¼ ðR6=R5Þ

� 3:467, and the delay time s ¼ 2:8.

B. Results

To start with, Eq. (1) has been numerically integrated

with the chosen nonlinear function f(x) for the parameter val-

ues a¼ 1.0, b¼ 1.2, s ¼ 2:8, x*¼ 0.7, A¼ 5.2, and B¼ 3.5,

with the initial condition x¼ 0.9 in the range t 2 ð�s; 0Þ. A

one-band chaotic attractor is shown in Fig. 5(a)(i) for

s ¼ 1:33, while for s ¼ 2:8 a double-band hyperchaotic

attractor is obtained (Fig. 5(a)(ii)). The corresponding exper-

imental results are shown in Figs. 5(b)(i) and 5(b)(ii) for the

values of the parameter R0 ¼ 5640 X (in this case

s ¼ Td=R0C0 � 1:331) and R0 ¼ 2680 X (now s ¼ Td=R0C0

� 2:8022), respectively. The experimental results are in

good agreement with the numerical ones and also in their

corresponding parameter values.

The system described by Eqs. (1) and (2) exhibit multi-

ple positive Lyapunov exponents for large values of the

delay time, a typical feature of time-delay systems. The

seven maximal Lyapunov exponents for the above parameter

values as a function of the time-delay s in the range

s 2 ð1; 10Þ are shown in Fig. 6, which are evaluated using

the procedure of Ref. 36. Now it is evident from the maximal

Lyapunov exponents that the single band chaotic attractors

shown in Figs. 5(a)(i) and 5(b)(i) for the value of delay time

s ¼ 1:33 and the resistance R0 ¼ 5640 X, respectively, have

one positive Lyapunov exponent, while the double band cha-

otic attractor shown in Figs. 5a(ii) and b(ii) for the value of

the delay time s ¼ 2:8 and the resistance R0 ¼ 2680 X,

respectively, has two positive Lyapunov exponents corrobo-

rating its hyperchaotic nature. We will demonstrate in the

following sections that the existence of different kinds of

synchronization transitions in the hyperchaotic regime in

coupled systems.

III. COUPLED TIME DELAY SYSTEMS WITH
THRESHOLD NONLINEARITY

Now let us consider the following set of unidirectionally

coupled first-order delay differential equations:

dx

dt
¼ �a1xðtÞ þ b1f xðt� s1Þ½ �; (6a)

FIG. 4. Circuit implimentation of the time delay unit with a buffer (OA4) and an amplifying stage (OA5).

FIG. 5. (Color online) (a) Phase portraits of chaotic attractors from Eqs. (1)

and (2) for the parameters a¼ 1, b¼ 1.2, A¼ 5.2, B¼ 3.5, and x*¼ 0.7: (i)

one-band chaos for s ¼ 1:33 and (ii) double-band chaos for s ¼ 2:8. (b)

Phase portraits of chaotic attractors from the circuit (Fig. 2), U(t - Td) against

U(t), vertical scale 2 V=div., horizontal scale 0.2 V=div.: (i) one band chaos

for R0 ¼ 5640 X and (ii) double band chaos for R0 ¼ 2680 X.

FIG. 6. The seven maximal Lyapunov exponents kmax of the time-delay sys-

tems (1) and (2) for the parameter values a¼ 1, b¼ 1.2, x*¼ 0.7, A¼ 5.2,

B¼ 3.5, and s 2 ð1; 10Þ.
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dy

dt
¼ �a2yðtÞ þ b2f yðt� s1Þ½ � þ b3f xðt� s2Þ½ �; (6b)

where a1 ¼ a2 > 0 are the positive constants, b1 6¼ b2 contrib-

utes to the parameter mismatch resulting in coupled non-

identical systems, b3 is the coupling strength, s1 is the

feedback delay, and s2 is the coupling delay. The nonlinear

function f(x) is of the same form as in Eq. (2).

Now to analog simulate the coupled time-delay systems

(Eqs. (6)) and to demonstrate experimentally the existence of

different types of synchronizations, a unidirectionally coupled

time-delay electronic circuit is constructed as shown in the

block diagram of Fig. 7. One of the electronic oscillator cir-

cuits is used as the drive system, while the other structurally

identical circuit is used as the response system with some pa-

rameter mismatches. The drive voltage (U1(t)) after the delay

line in the drive system is fed back to the nonlinear part

(ND1) of the drive system and a fixed R1C1 filter with time

delay to generate chaotic=hyperchaotic oscillations. Simi-

larly, the response circuit with a nonlinear part (ND2), a delay

line, and a fixed R2C2 filter is capable of generating chaot-

ic=hyperchaotic oscillations. The signal after the nonlinear

function of drive is used as the transmission signal, which is

unidirectionally transmitted through the lowpass filter (R3C3),

delay line, and nonlinear part to the response circuit. All the

parameters need to be matched between the drive and the

response circuits, whereas the parameters of the nonlinear

activation functions of the drive, the response, and the cou-

pling are to be fixed according to the parametric relation

obtained from the stability analysis (given below in Sec. IV).

The state equations of the coupled electronic circuit

(Fig. 7) can be written as

R1C1

dU1ðtÞ
dt

¼ �U1ðtÞ þ f ½k1f U1ðt� T1dÞ�; (7a)

R2C2

dU2ðtÞ
dt

¼ �U2ðtÞ þ f ½k2f U2ðt� T2dÞ�

þ f ½k3f U1ðt� T3dÞ�; (7b)

where the variables U1 and U2 correspond to the output

variables of each circuit. By defining the new normalized

variables as x ¼ U1

Us
, y ¼ U2

Us
, t̂ ¼ t

R1C1
, s1 ¼ T1d

R1C1
¼ T2d

R2C2
and

s2 ¼ T3d

R3C3
, one can check that the circuit equation (7) is iden-

tical to Eq. (6) with a1¼ a2¼ 1.0, k1f¼ b1, k2f¼ b2, k3f¼ b3,

and t̂! t.

Before demonstrating the experimental results and the

corresponding numerical confirmation of various synchroni-

zations in the coupled time-delay systems (6) and (7), we

deduce a sufficient stability condition, using the Krasovskii-

Lyapunov theory, valid for different synchronization mani-

folds. After choosing the appropriate parameter values

satisfying the obtained stability condition, we will demon-

strate the existence of anticipatory, complete and lag syn-

chronizations as a function of the coupling delay s2 for

excitatory coupling and their inverse counterparts for inhib-

itory coupling in the same system both experimentally and

numerically. It is to be noted that neither inverse synchroni-

zations can be realized with excitatory coupling nor

direct=conventional synchronizations can be realized with

inhibitory coupling as a result of the nature of the nonlinear

function and the parametric relation between b1, b2, and b3

obtained from the stability analysis.

IV. SYNCHRONIZATION MANIFOLD AND ITS
STABILITY CONDITION

Consider the direct synchronization manifold D¼ xs2�s1

�y¼0 of the coupled time-delay equation (6) with excitatory

coupling þb3f xðt�s2Þ½ �; b3>0; (correspondingly the inverse

complete synchronization manifold becomes

D¼ xs2�s1
þy¼0 with the inhibitory coupling �b3f

xðt�s2Þ½ �;b3>0; in Eq. (6b)), where xs2�s1
¼ xðt�ðs2 �s1ÞÞ,

which corresponds to the following distinct cases:

1. Anticipatory synchronization (AS) occurs when s2 < s1

with yðtÞ ¼ xðt� ŝÞ; ŝ ¼ s2 � s1 < 0, where the state of

the response system anticipates the state of the drive system

synchronously with the anticipating time jŝj. In contrast, in

the case of the inverse anticipatory synchronization (IAS),

the state of the response system anticipates exactly the

inverse state of the drive system, that is, yðtÞ ¼ �xðt� ŝÞ.
2. Complete synchronization (CS) results when s2 ¼ s1 with

y(t)¼ x(t); ŝ ¼ s2 � s1 ¼ 0, where the state of the response

system evolves in a synchronized manner with the state of

the drive system, while in the case of inverse complete

synchronization (ICS), the state of the response system

evolves exactly identical but inverse to the state of the

drive system, that is, y(t)¼ – x(t).
3. Lag synchronization (LS) occurs when s2 > s1 with

yðtÞ ¼ xðt� ŝÞ; ŝ ¼ s2 � s1 > 0, where the state of the

response system lags the state of the drive system in

FIG. 7. Circuit block diagram of the

coupled delayed feedback oscillator.

Two delay oscillators are coupled

through a nonlinear activation function

(ND) but with a different time delay T3d

in the coupling with a low pass first-

order R3C3 filter. U1(t) and U2(t) are the

voltages across the capacitances C1 and

C2, respectively. U(t � T1d)¼U(t � T2d)

are the voltages across the delay units of

both the coupled oscillators.
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synchronization with the lag time ŝ. However, in the case

of inverse lag synchronization (ILS), the state of the

response system lags exactly inverse to the state of the

drive system, that is, yðtÞ ¼ �xðt� ŝÞ.

Now, the time evolution of the difference system with

the state variable D ¼ xs2�s1
� y can be written for small val-

ues of D by using the evolution Eq. (6) as

_D ¼ _xs2�s1
� _yðtÞ

¼ �aDþ Af ðxðt� s2ÞÞ b1 � b2 � b3½ �
þ b2Af 0ðxðt� s2ÞÞ � Ds1

(8)

� Bxðt� s2Þ b1 � b2 � b3½ � � b2BDs1
; (9)

where f 0 ¼ df=dx and Ds1
¼ xs2

� ys1
. The above inhomoge-

neous equation can be rewritten as a homogeneous equation

of the form

_D ¼ �aDþ b2 Af 0ðxðt� s2ÞÞ � B½ �Ds1
; (10)

for the specific choice of the parameters

b1 ¼ b2 þ b3; (11)

so that the stability condition can be deduced analytically.

The synchronization manifold corresponding to Eq. (10) is

locally attracting if the origin of the above error equation is

stable. Following the Krasovskii-Lyapunov functional

approach,27,37 we define a positive definite Lyapunov func-

tional of the form

VðtÞ ¼ 1

2
D2 þ l

ð0

�s1

D2ðtþ hÞdh; (12)

where l is an arbitrary positive parameter, l > 0.

The above Lyapunov function, V(t), approaches zero as

D! 0. Hence, the required solution D ¼ 0 to the error equa-

tion, Eq. (10), is stable only when the derivative of the Lyapu-

nov functional V(t) along the trajectory of Eq. (10) is negative.

This requirement results in the condition for stability as

a >
b2

2

4l
Af 0ðxðt� s2ÞÞ � B½ �2 þ l ¼ CðlÞ: (13)

Again CðlÞ as a function of l for a given f 0ðxÞ has an abso-

lute minimum at l ¼ b2ðAf 0ðxðt� s2ÞÞ � BÞj j½ �=2 with

Cmin ¼ b2ðAf 0ðxðt� s2ÞÞ � BÞj j. Since C � Cmin ¼ b2ðAf 0j
ðxðt� s2ÞÞ � BÞj, from the inequality [Eq. (13)], it turns out

that a sufficient condition for asymptotic stability is

a > b2ðAf 0ðxðt� s2ÞÞ � BÞj j: (14)

Now from the form of the piecewise linear function f(x)

given by Eq. (2), we have,

jf 0ðxðt� s2ÞÞj ¼
0; jxj > x�

1:0; jxj � x�

�
: (15)

Consequently, the stability condition (14) becomes

a > b2ðA� BÞj j > b2Bj j along with the parametric relation

b1¼ b2þ b3. Since the deduced stability condition is inde-

pendent of the delay times s1 and s2, the same general stabil-

ity condition is valid for anticipatory, complete, and lag

synchronizations with excitatory coupling and to their

inverse counterparts with inhibitory coupling.

We remark here that if one substitutes y! ŷ ¼ �y in

Eq. (6b), then the excitatory coupling becomes an inhibitory

coupling and the inhibitory coupling becomes an excitatory

coupling due to the nature of the nonlinear function, f(x). Fur-

thermore, one obtains the parametric relation b2¼ b1þ b3

along with the same stability condition [Eq. (14)] for both the

cases of excitatory coupling with an inverse synchronization

manifold and inhibitory coupling with a direct synchroniza-

tion manifold. Therefore, to obtain both direct and inverse

synchronizations either from excitatory or from inhibitory

coupling both the parametric relations, that is b2¼ b1þ b3

and b1¼ b2þ b3 given by (11), have to be satisfied for fixed

values of the nonlinear parameters b1 or b2 and for positive

values of the coupling strength b3. The only way to satisfy

both the parametric relations and the stability condition,

a > b2ðA� BÞj j > b2Bj j, is to choose negative values for the

coupling strength b3 and this changes the nature of the cou-

pling. Hence, one cannot obtain inverse (anticipatory, com-

plete, and lag) synchronizations with excitatory coupling or

direct (anticipatory, complete, and lag) synchronizations with

inhibitory coupling for the chosen form of the unidirectional

nonlinear coupling due to the nature of the parametric relation

(11) and the stability condition (14).

V. DIRECT SYNCHRONIZATIONS WITH EXCITATORY
COUPLING

In this section, we will demonstrate the existence of an-

ticipatory, complete, and lag synchronizations as a function

of the coupling delay s2, both experimentally and numeri-

cally, for the choice of the parameters satisfying the stability

condition (14) for the case of excitatory coupling.

A. Anticipatory synchronization

For s2 < s1, the synchronization manifold D ¼ xs2�s1
� y

¼ 0 becomes an anticipatory synchronization manifold as

described above. We have fixed the value of the feedback

delay as s1 ¼ 2:8 and the coupling delay as s2 ¼ 2:5, while

the other parameters are fixed as a¼ 1.0, b1¼ 1.2, x*¼ 0.7,

A¼ 5.2, and B¼ 3.5. The value of the nonlinear parameters

are fixed as b2¼ 0.28 and b3¼ 0.92 such that both the stabil-

ity condition (14) and the parametric relation (11) are satis-

fied. All the above parameter values are fixed to be the same

except for the coupling delay s2 for the remaining part of the

study. The experimental and the numerical time series plots

of both the drive x(t) and the response y(t) systems are shown

in Figs. 8(a) and 9(a), respectively, for s2 < s1, demonstrat-

ing the existence of anticipatory synchronization. Both the

experimental and the numerical phase space plots corre-

sponding to the anticipatory synchronization manifold of the

drive and the response systems are shown in Figs. 10(a)(i)

and 10(a)(ii), respectively.

The seven largest Lyapunov exponents of the coupled

time-delay systems are shown in Fig. 11(a) as a function
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of the nonlinear parameter b2 for the anticipatory synchroni-

zation manifold. For the values of delay times s1 ¼ 2:5 and

s2 ¼ 2:8, the uncoupled systems exhibit only two positive

Lyapunov exponents as may be seen from Fig. 6. The two

positive Lyapunov exponents of the drive system remain

positive, while one of the positive Lyapunov exponents of

the response system becomes negative at b2 � 0:9 and the

second positive Lyapunov exponent becomes negative at

b2 � 0:7, confirming the existence of anticipatory synchroni-

zation for b2 < 0:7. It is to be noted that the Lyapunov expo-

nents of the coupled systems indicate the existence of

anticipatory synchronization also in the range b2 2 ð07; 058Þ

in which the stability condition (14) is not satisfied, confirm-

ing that it is only a sufficiency condition but not a necessary

one.

B. Complete synchronization

For s2 ¼ s1, the synchronization manifold D¼ xs2�s1
� y

¼0 becomes a complete synchronization manifold

FIG. 8. (Color online) Experimental time series plot of the drive U1(t) (blue)

and the response U2(t) (yellow), T1d

R1C1
¼ T2d

R2C2
¼ s1 � 2:8022, T3d

R3C3
¼ s2,

C1¼C2¼C3¼ 100 nF, R1 ¼ R2 ¼ 2680 X, and T1d¼T2d¼T3d¼ 0.751 ms

(a) anticipatory synchronization for R3 ¼ 3004 X (now s2 � 3:1007), (b)

complete synchronization for R3 ¼ 2680 X (now s2 � 2:8022), and (c) lag

synchronization for R3 ¼ 2422 X (now s2 ¼ 2:5); vertical scale 5 V=div.,

horizontal scale 1 ms.

FIG. 9. (Color online) Numerical time series plots of the drive x(t) and the

response y(t) systems for the parameter values a1¼ a2¼ 1.0, b1¼ 1.2,

b2¼ 0.28, b3¼ 0.92, A¼ 5.2, B¼ 3.5, x*¼ 0.7, and s1 ¼ 2:8 : (a) anticipa-

tory synchronization for s2 ¼ 2:5, (b) complete synchronization for

s2 ¼ 2:8, and (c) lag synchronization for s2 ¼ 3:1.

FIG. 10. (Color online) Phase space

plots of the drive x(t) and the response

y(t): (a) anticipatory synchronization, (b)

complete synchronization, and (c) lag

synchronization. Here, the top panels

correspond to experimental results for

the same values of the parameters as in

Fig. 8 and the bottom panels represent

numerical results for the same values of

the parameters as in Fig. 9.
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D¼ xðtÞ�yðtÞ¼0. Now, we have fixed the value of the cou-

pling delay as s2¼ s1¼2:8 for fixed values of the other pa-

rameters as mentioned in Sec V A. The experimental and the

numerical time series plots of both the drive x(t) and the

response y(t) systems are shown in Figs. 8(b) and 9(b),

respectively, demonstrating the existence of complete syn-

chronization between the coupled time-delay systems. The

phase space plots of both the systems corresponding to the

complete synchronization manifold are shown in Figs. 10(b).

The seven largest Lyapunov exponents (Fig. 11(b)) of the

coupled time-delay systems corresponding to the complete

synchronization manifold indicate that both the positive Lya-

punov exponents of the response system become negative

for b2<0:7, while the two Lyapunov exponents of the drive

system remain positive, confirming the existence of complete

synchronization between the drive and response systems.

Note that the coupled systems remain in a hyperchaotic state,

that is, this transition to complete synchronization is a transi-

tion from one hyperchaotic regime to another one.

C. Lag synchronization

The synchronization manifold D ¼ xs2�s1
� y ¼ 0

becomes a lag synchronization manifold for s2 ¼ 3:1 > s1

¼ 2:8. Both the time series and the phase space plots of the

coupled time-delay systems obtained using our experimental

realization are shown in Figs. 8(c) and 10(c)(i), respectively,

and those obtained using numerical simulations are shown in

Figs. 9(c) and 10(c)(ii), respectively, indicating the existence

of a lag synchronization. Again, the seven largest Lyapunov

exponents of the coupled time-delay systems shown in Fig.

11(c) for the lag synchronization manifold confirm the exis-

tence of it for b2 < 0:7.

VI. INVERSE SYNCHRONIZATIONS WITH INHIBITORY
COUPLING

Now we consider the inhibitory coupling,

�b3f xðt� s2Þ½ �, in Eq. (6b) instead of the excitatory coupling

þb3f xðt� s2Þ½ � to demonstrate the transition from inverse an-

ticipatory to inverse lag synchronization via an inverse com-

plete synchronization as a function of the coupling delay s2

for the same values of parameters as in the Sec. V.

A. Inverse anticipatory synchronization

As discussed above, the inverse synchronization mani-

fold D ¼ xs2�s1
þ y ¼ 0 becomes an inverse anticipatory syn-

chronization manifold for s2 < s1. For the same values of all

the parameters as in Sec. V A, the coupled time-delay system

(6) exhibits an inverse anticipatory synchronization in the

presence of inhibitory coupling as shown in Figs. 12(a) and

13(a). The experimental and numerical phase plots of the

coupled time-delay system corresponding to the inverse antic-

ipatory synchronization manifold are shown in Figs. 14(a)(i)

and 14(a)(ii), respectively. The seven largest Lyapunov expo-

nents of the coupled systems corresponding to the inverse an-

ticipatory synchronization manifold are shown in Fig. 15(a)

as a function of the nonlinear parameter b2. The two largest

positive Lyapunov exponents of the drive system remain unal-

tered in their values, while that of the response system

become negative for b2 < 0:7, confirming the existence of

inverse anticipatory synchronization between the coupled

time-delay systems with inhibitory coupling.

FIG. 11. The seven largest Lyapunov exponents of the coupled time-delay

systems (6) for the same values of parameters as in Fig. 9 for (a) anticipatory

synchronization manifold, (b) complete synchronization manifold, and (c)

lag synchronization manifold.

FIG. 12. (Color online) Experimental time series plots of the drive U1(t)
(blue) and the response U2(t) (yellow), T1d

R1C1
¼ s1, T2d

R2C2
¼ s1, T3d

R3C3
¼ s2,

C1¼C2¼C3¼ 100 nF, R1 ¼ R2 ¼ 2680 X, and T1d¼T2d¼T3d¼ 0.751

ms: (a) inverse anticipatory synchronization for R3 ¼ 3004 X, (b) inverse

complete synchronization for R3 ¼ 2680 X, and (c) inverse lag synchroniza-

tion for R3 ¼ 2422 X; vertical scale 5 V=div., horizontal scale 1 ms=div.
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B. Inverse complete synchronization

An inverse complete synchronization manifold is

obtained for s2 ¼ s1. The time series plot of both the drive

and the response variables obtained from experimental real-

ization is depicted in Fig. 12(b) and those obtained from nu-

merical simulation are shown in Fig. 13(b) illustrating the

existence of inverse complete synchronization. The experi-

mental and numerical phase space plots of the coupled time-

delay systems corresponding to the inverse complete syn-

chronization manifold are depicted in Figs. 14(b)(i) and

14(b)(ii), respectively. The seven largest Lyapunov expo-

nents of the coupled time-delay systems (Fig. 15) confirm

the existence of inverse complete synchronization indicated

by a change in the signs of both the positive Lyapunov expo-

nents of the response system for b2 < 0:7, while that of the

drive system remain unchanged.

C. Inverse lag synchronization

Again, for s2 > s1, the synchronization manifold

D ¼ xs2�s1
þ y ¼ 0 becomes an inverse lag synchronization

FIG. 13. (Color online) Numerical time series plots of the drive x(t) and the

response y(t) systems for the parameter values a1¼ a2¼ 1.0, b1¼ 1.2,

b2¼ 0.28, b3¼ 0.92, A¼ 5.2, B¼ 3.5, x*¼ 0.7, and s1 ¼ 2:8: (a) inverse an-

ticipatory synchronization for s2 ¼ 2:5, (b) inverse complete synchroniza-

tion for s2 ¼ 2:8, and (c) inverse lag synchronization for s2 ¼ 3:1.

FIG. 14. (Color online) Phase space

plots of the drive x(t) and the response

y(t) for the same parameter values as in

Figs. 9 and 8: (a) inverse anticipatory

synchronization for s2 ¼ 2:5, (b) inverse

complete synchronization for s2 ¼ 2:8,

and (c) inverse lag synchronization for

s2 ¼ 3:1.

FIG. 15. The seven largest Lyapunov exponents of the coupled time-delay

systems (6) for the same values of parameters as in Fig. 9 for (a) inverse an-

ticipatory synchronization manifold, (b) inverse complete synchronization

manifold, and (c) inverse lag synchronization manifold.
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manifold. The experimental and the numerical time series

plots, indicating the existence of inverse lag synchronization,

of both the drive and response systems are shown in Figs.

12(c) and 13(c), respectively. The corresponding phase space

(of inverse lag synchronization) plots are also depicted in

Figs. 14(c)(i) and 14(c)(ii), respectively. The seven largest

Lyapunov exponents of the coupled time-delay systems cor-

responding to inverse lag synchronization manifold are

shown in Fig. 15(c) again as a function of b2. The two posi-

tive Lyapunov exponents of the drive system remain posi-

tive, while that of the response system become negative for

b2 < 0:7, confirming the existence of inverse lag synchroni-

zation between the coupled time-delay systems.

VII. SUMMARY AND CONCLUSION

In this paper, we have presented experimental observa-

tions of typical kinds of synchronization transitions in a sys-

tem of unidirectionally coupled piecewise-linear time-delay

electronic circuit designed using a threshold controller. In

particular, we have shown the transition from anticipatory

synchronization to lag synchronization through complete

synchronization and their inverse counterparts with excita-

tory and inhibitory couplings, respectively, as a function of

the coupling delay and for a fixed set of other parameters. A

common stability condition valid for all these synchronized

states is deduced and it is independent of both the feedback

and the coupling delays. Further, experimental observations

are confirmed by numerical simulations and also from transi-

tions in the Lyapunov exponents of the coupled time-delay

systems. We also note that the nature of the piecewise linear

function in the proposed circuit can be easily changed by

using multiple threshold values and that multi-scroll hyper-

chaotic attractors can also be produced even for a small

value of delay time for further study and applications.
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APPENDIX

Typical regimes of bifurcations and chaos of the time-

delay system (1) and (2) can be easily summarised by the

one parameter bifurcation diagram in the ðs� xmaxÞ plane as

illustrated in Fig. 16 for the parameter values a¼ 1, b¼ 1.2,

x*¼ 0.7, A¼ 5.2, B¼ 3.5, and s 2 ð1; 10Þ. A period-

doubling bifurcation sequence to chaos is observed for an

initial range of delay values. For instance, it is clear that for

1 < s < 1:15, there is a limit-cycle attractor of period T. At

s ¼ 1:151, a period-doubling bifurcation occurs and a period

2 T limit cycle develops and is stable in the range

1:151 < s < 1:23. When the delay is increased further, the

period 2 T limit cycle bifurcates to a period 4 T attractor, and

then to 8 T, and 16 T period limit cycles. After successive

bifurcations, it forms a one-band chaotic attractor at

s ¼ 1:26. On further increase in the delay value, the system

exhibits a double-band chaotic attractor. Many bifurcation

changes in the dynamics take place at different critical val-

ues of s. Particularly, the asymptotic motion consists of cha-

otic orbits interspersed by periodic orbits (windows) as seen

from Fig. 16. For s > 5, the system exhibits a more complex

hyperchaotic motion as is evident from the fact that more

than one Lyapunov exponents are positive (see Fig. 6). A

more detailed stability and bifurcation analysis of the consid-

ered partial systems in the entire parameter regimes are al-

ready reported in Ref. 35.
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25A. Wagemakers, J. M. Buldú, and M. A. F. Sanjuán, Europhys. Lett. 81,

40005 (2008); Chaos 17, 023128 (2007).
26D. V. Senthilkumar, M. Lakshmanan, and J. Kurths, Phys. Rev. E 74,

035205(R) (2006).
27D. V. Senthilkumar and M. Lakshmanan, Phys. Rev. E 71, 016211 (2005).
28D. V. Senthilkumar, J. Kurths, and M. Lakshmanan, Phys. Rev. E 79,

066208 (2009); Chaos 19, 023107 (2009).

29H. U. Voss, Phys. Rev. E 61, 5115 (2000); Phys. Rev. Lett. 87, 014102

(2001).
30C. Masoller, Phys. Rev. Lett. 86, 2782 (2001).
31C. Masoller and D. H. Zanette, Physica A (Amsterdam) 300, 359 (2001).
32M. Zhan, G. W. Wei, and C. H. Lai, Phys. Rev. E 65, 036202 (2002).
33I. Belykh and A. Shilnikov, Phys. Rev. Lett. 101, 078102 (2008).
34S. Jalil, I. Belykh, and A. Shilnikov, Phys. Rev. E 81, 045201(R) (2010).
35K. Srinivasan, I. Raja Mohamed, K. Murali, M. Lakshmanan, and S.

Sinha, Int. J. Bifurcation Chaos Appl. Sci. Eng 21(3), (2011) (in press);

arXiv:1008.4011v1.
36J. D. Farmer, Physica D 4, 366 (1982).
37N. N. Krasovskii, Stability of Motion (Stanford University Press, Stanford,

1963); K. Pyragas, Phys. Rev. E 58, 3067 (1998).

023119-11 Synchronization in time-delay circuits Chaos 21, 023119 (2011)

Downloaded 16 Jun 2011 to 193.174.18.1. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1103/PhysRevLett.90.194101
http://dx.doi.org/10.1142/S0218127402005340
http://dx.doi.org/10.1103/PhysRevE.75.016207
http://dx.doi.org/10.1103/PhysRevE.74.016211
http://dx.doi.org/10.1209/0295-5075/81/40005
http://dx.doi.org/10.1063/1.2737820
http://dx.doi.org/10.1103/PhysRevE.74.035205
http://dx.doi.org/10.1103/PhysRevE.71.016211
http://dx.doi.org/10.1103/PhysRevE.79.066208
http://dx.doi.org/10.1063/1.3125721
http://dx.doi.org/10.1103/PhysRevE.61.5115
http://dx.doi.org/10.1103/PhysRevLett.87.014102
http://dx.doi.org/10.1103/PhysRevLett.86.2782
http://dx.doi.org/10.1103/PhysRevE.65.036202
http://dx.doi.org/10.1103/PhysRevLett.101.078102
http://dx.doi.org/10.1103/PhysRevE.81.045201
http://dx.doi.org/10.1016/0167-2789(82)90042-2
http://dx.doi.org/10.1103/PhysRevE.58.3067

	s1
	s2
	E1
	E2a
	E2b
	s2A
	E3
	E4
	E5
	F1
	F2
	F3
	s2B
	s3
	E6a
	E6b
	F4
	F5
	F6
	E7a
	E7b
	s4
	F7
	E8
	E9
	E10
	E11
	E12
	E13
	E14
	E15
	s5
	s5A
	s5B
	F8
	F9
	F10
	s5C
	s6
	s6A
	F11
	F12
	s6B
	s6C
	F13
	F14
	F15
	s7
	x0
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	F16
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33
	B34
	B35
	B36
	B37

