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a b s t r a c t

The possibility of controlling the Calvin cycle has paramount implications for increasing the production of
biomass. Multistationarity, as a dynamical feature of systems, is the first obvious candidate whose control
could find biotechnological applications. Here we set out to resolve the debate on the multistationarity of
eywords:
ultistationarity

alvin cycle
lgebraic geometry

the Calvin cycle. Unlike the existing simulation-based studies, our approach is based on a sound mathe-
matical framework, chemical reaction network theory and algebraic geometry, which results in provable
results for the investigated model of the Calvin cycle in which we embed a hierarchy of realistic kinetic
laws. Our theoretical findings demonstrate that there is a possibility for multistationarity resulting from
two sources, homogeneous and inhomogeneous instabilities, which partially settle the debate on multi-
stability of the Calvin cycle. In addition, our tractable analytical treatment of the bifurcation parameters

esign

ifurcation parameters
iomass can be employed in the d

. Introduction

The development of techniques for increasing plant biomass
olds the promise of engineering plants which can be used for pro-
uction of biofuels in a sustainable carbon-neutral fashion. Plant
iomass is the outcome of complex biochemical reactions reflect-

ng the necessity for balancing conflicting demands for resources
o maintain cell vitality and function with those to support growth.
lant growth depends on the uptake and assimilation of inor-
anic nutrients and the photosynthetic assimilation of carbon
ioxide (CO2) via the Calvin cycle (Stitt and Krapp, 1999). This
O2-assimilating pathway takes place in the chloroplast of pho-
osynthetic plant cells yielding carbon skeletons necessary for

aintenance of the entire plant metabolism. Therefore, under-
tanding the mechanisms of the Calvin cycle can propel the design
f techniques for manipulation of its efficiency.
The study of cell metabolism has traditionally focused on deter-
ining the factors that influence metabolic rates, at levels of

oth metabolic pathways and the whole organism (Heinrich and
chuster, 1996). Although there has been a significant progress in
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m Muehlenberg 1, 14476 Potsdam, Germany. Tel.: +49 331 567 8630.
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of validation experiments.
© 2010 Elsevier Ireland Ltd. All rights reserved.

the structural analysis of metabolic pathways in order to under-
stand and predict the distribution of cellular fluxes (Palsson, 2000;
Schuster et al., 2000; Grimbs et al., 2007), addressing the prob-
lem of efficient biomass production requires elucidation of the
dynamical properties of plant metabolic models. The question
arises as to whether there exists a qualitative dynamical feature
of plant-specific metabolic pathways which results in possibilities
for increasing the production of biomass.

Multistationarity is a qualitative feature of systems, character-
ized by the existence of multiple positive steady states, with great
potential for application in biotechnology. Biological entities (i.e.,
genes, proteins), biochemical pathways, and cells operate in one of
multiple exclusive states at any given time. For instance, a gene can
either be expressed or not expressed, glycolysis and gluconeogen-
esis represent mutually exclusive metabolic states, and a stem cell
may be at an undifferentiated state or committed to differentiat-
ing to a particular lineage (Chatterjee et al., 2008). As pointed out in
Prigogine and Nicolis (1967), there are at least two sources for mul-
tistationarity: (1) instabilities with respect to space-independent
(homogeneous) perturbations, whereby the system goes from one

to another homogeneous steady state, which may or may not be
stable, and (2) instabilities with respect to space-dependent (inho-
mogeneous) perturbations, when the diffusion plays a crucial role by
increasing the manifold of possible perturbations. From a biotech-
nological perspective, altering the control of multistationarity in

dx.doi.org/10.1016/j.biosystems.2010.10.015
http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
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iological systems offers means for manipulating the outcome of a
articular biochemical process.

Given a stimulus, the control of a biological switch, character-
zed with two stable steady states, is established via perturbation
f the stimulus’ concentration: When it changes over a threshold
alue, the entire system undergoes a transition from one to the
ther stable state, without residing in an in-between state due to
he instability of the latter. The stimulus which exhibits such a prop-
rty is referred to as bifurcation parameter. Bifurcation parameters
an be endogenous or exogenous to the system. Typical endogenous
ifurcation parameters include the kinetic parameters associated
ith a particular biochemical reaction, while exogenous param-

ters include conservation relations of some chemical element.
e note that the response of individual biochemical reactions to

hanges in the bifurcation parameter is continuous and graded;
owever, the combination of these graded responses gives rise to
bistable (switching) behavior.

For experimental validation of bistability, one relies on the
hreshold property for the applied stimulus: The threshold concen-
rations of the stimulus for the two possible transitions between
he steady states (from the first to the second steady state and
ice versa) are different. Therefore, two response curves can be
enerated by adding/subtracting small increments of the stimu-
us, resulting in a hysteresis diagram. However, such experimental
pproaches on a population level could have contradicting results;
amely, the compounded effect of the individual bistable cellu-

ar responses may appear graded for the population itself. The
ontrast between population and single cell levels has been illus-
rated experimentally in a number of systems, including Xenopus
evis oocytes (Bagowski et al., 2001, 2003). We point out that the
xperimental set up for monitoring the photosynthetic response in
lants may be further hindered by the heterogeneous population
f cells in a leaf or a rosette, since not all cells demonstrate photo-
ynthetic capacity. However, experimental approaches relying on
solated chloroplasts may prove useful in the study of the existence
f multistationarity in photosynthetic processes.

The theoretical analysis of multistationarity in biological sys-
ems is performed on a kinetic model comprising a set of
iochemical reactions. Therefore, any conclusions regarding mul-
istationarity of the studied system ultimately depend on the
mployed model. The general numerical approach relies on con-
ucting stability analysis of a given model through the following
teps: (1) a steady state is calculated, (2) perturbation of the sys-
em is imposed to establish the stability of the steady state, (3)
erturbation of the stimulus’ concentration is imposed to check
he transition to a new (stable) steady state. The existing studies
ocus on multistationarity (and multistability) in gene-regulatory
nd signaling networks (Kaneko and Yomo, 1994; Nakajima and
aneko, 2008; Koseska et al., 2010; Tyson et al., 2003).

Unlike gene-regulatory and signaling networks, metabolic path-
ays with capacity for multistationarity can be characterized

ntuitively as transiting between states which result in dif-
erent composition and quantity of biomass. Development of
etailed kinetic models of metabolic pathways, however, requires

nformation about the rate equations, enzyme-specific kinetic
arameters, and substrate/product regulatory mechanism. Nev-
rtheless, recently established mathematical approaches render
t possible to infer sound statements about multistationarity of

etabolic networks even when kinetic parameters are not known.
With respect to the multistationarity of a set of biochemical

eactions, two questions are crucial: (1) Do the biochemical reac-

ions have the capacity for multistationarity irrespective of the
inetic parameters? and (2) Given a (partial) set of kinetic parame-
ers, which element of the biochemical reactions can be considered
bifurcation parameter? To answer the first question, one needs

o establish a relation between multistationarity and the under-
103 (2011) 212–223 213

lying structure of the biochemical reactions. Knowing whether a
network can operate in more than one steady state only partially
addresses the multistationarity analysis, since one still has to deter-
mine the regions of the parameter space in which multistationarity
occurs. The answer to the second question pinpoints precisely these
regions.

Due to the potential for biotechnological applications of mul-
tistationarity, the question as to whether the Calvin cycle could
operate in multiple steady states is of paramount importance.
Despite the large number of models for the Calvin cycle, the analy-
sis of the existence and experimental validation of multiple steady
states in this pathway is still fragmentary, usually resulting in
contradictory conclusions. Pettersson and Ryde-Pettersson (1988)
found two steady states for their model of the Calvin cycle. How-
ever, they showed that one of these steady states is unstable and
therefore considered to be of no biological relevance, while the
remaining stable steady state was in accordance with previous
experiments (Flügge et al., 1980; Heldt et al., 1977). Poolman et al.
(2000) also demonstrated that their extension of the model of
Pettersson and Ryde-Pettersson (1988) exhibits two steady states.
Moreover, Poolman et al. (2001) attempted to experimentally ver-
ify this result; however, the two observed steady states were found
in leafs of different age and therefore have different capacities of
utilizing the produced carbohydrates (Olçer et al., 2001). It is still
unclear to which extent these results hold within one single chloro-
plast or leaf. A systematic approach was taken by Zhu et al. (2009),
using a sophisticated algorithm to find all roots of a system of poly-
nomials. The application of this approach to a simple model of the
Calvin cycle revealed 40 steady states, of which 39 were biologi-
cal infeasible due to extremely small or even negative metabolite
concentrations. Although this analysis was limited to a given set
of kinetic parameters, Zhu et al. (2009) concluded that the Calvin
cycle can operate in only one steady state.

Here we systematically analyze the capacity for multiple steady
states in a model of the Calvin cycle endowed with a hierarchy
of kinetic laws based on two mathematical approaches: Chemical
Reaction Network Theory (CRNT), together with its extension based
on elementary flux modes, and algebraic geometry. The hierarchy
of kinetic laws imposed on the set of biochemical reactions describ-
ing the Calvin cycle offers the means for determining the necessary
and sufficient conditions for the existence of two steady states in
this particular model. Moreover, we determine the set of bifurca-
tion parameters which could be helpful in experiment design for
validation of our theoretical findings. In addition, we explore the
possibility for the existence of symmetry breaking instabilities in
a slightly modified model of the Calvin cycle. Our results partially
settle the debate about the existence of multistability in a model of
the Calvin cycle and contribute an alternative interpretation of the
existing experimental data.

The paper is organized as follows: In Section 2 we briefly review
the mathematical apparatus needed for studying the relation
between the structure of the Calvin cycle and its capacity for multi-
stationarity. The hierarchy of kinetic laws embedded in the Calvin
cycle is described in Section 3. The general approach is outlined in
Section 4 and then applied in Section 5. We present our findings
for the existence of multiple steady states in a model of the Calvin
cycle for four types of kinetics: mass action, Michaelis–Menten via
mass action, irreversible Michaelis–Menten, and mass action with
diffusion kinetics, in Sections 5.1–5.4, respectively. Finally, in Sec-
tion 6, we conclude with the implications or our findings and the
necessity of a carefully tailored experiment for validation.
2. The Structure of a Model for the Calvin Cycle

The Calvin cycle consists of three phases in which there is
energy supply in form of ATP and redox elements (NADP/NADPH):
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Table 1
Biochemical reactions in a simple model of the Calvin cycle. First column gives the rate constants for the seven irreversible reactions. The biochemical reactions and their
simplifications, due to model assumptions, appear in the second and third column of the table, respectively. The names of the enzymes catalyzing these reactions are given
in the last column.

Rate const. Reactions Enzyme name

Biochemical Simplified

k1 RuBP + CO2 → 2PGA RuBP → 2PGA RuBisCO
k2 PGA + ATP → ADP + DPGA PGA → DPGA PGA kinase
k3 DPGA + NADPH → GAP + P + NADP DPGA → GAP GAP dehydrogenase
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k4 5GAP → 3Ru5P
k5 Ru5P + ATP → RuBP + ADP
k6 PGA → Sink
k7 GAP → Sink

1) carboxylation, during which the enzyme RuBisCO adds CO2 to
ibulose-1,5-bisphosphate (RuBP) to get two molecules of phos-
hoglycerate (PGA), (2) reduction, converting the obtained PGA into
,3-diphosphoglycerate (DPGA) and glyceraldehyde-3-phosphate
GAP), and (3) regeneration, which recovers RuBP after several inter-

ediate steps from ribulose-5-phosphate (Ru5P) (Berg et al., 2002).
he enzymatic reactions comprising the simple model of the Calvin
ycle are given by Zhu et al. (2009) and appear in the second column
f Table 1. We modified the reaction of the regeneration phase from
he model of Zhu et al. (2009), so that its stoichiometric coefficients
re integers. Although very unlikely to occur in reality, this reac-
ion has been included in standard textbook models of the Calvin
ycle. We assume that there is a constant supply of ATP, NADPH,
rthophosphate (P), and CO2. Therefore, by assuming constancy
f ATP to ADP and NADPH to NADP ratios, the equations can be
ewritten as in the third column of Table 1, pictorially shown in
ig. 1.

The reaction network, G, for a given set of biochemical reactions is
omposed of three sets: (1) S is a set of species given by the chemical
ompounds occurring in the biochemical reactions, (2) C includes
ll complexes, where each complex is given by the left and right side
f a reaction, and (3) R consists of reactions, indicating the trans-
ormation of the complexes. Therefore, G can be described by the
-tuple (S, C, R). For the Calvin cycle model, under the simplifying
ssumptions, the reaction network, H, is fully described by

S(H) = {RuBP,PGA,DPGA,GAP,Ru5P},
C(H) = {RuBP,2PGA,Ru5P,PGA,DPGA,GAP,5GAP,0, 3Ru5P},

here 0 is the special zero complex (denoting the sink), and the
et R(H) is given by the third column of Table 1. The number of
pecies, complexes, and reactions will be denoted by m, n, and r,

espectively. For this reaction network, m = 5, n = 9, and r = 7.

Each species is associated with a continuous variable represent-
ng the species’ concentration. We will use xs, s ∈ S, to denote these
ariables which take only non-negative values due to physiological

ig. 1. Model of the Calvin cycle. The model includes seven biochemical reactions,
hown in Table 1, on which different types of kinetic laws are imposed, as described
n Section 3.
5GAP → 3Ru5P
Ru5P → RuBP Ru5P kinase
PGA → 0 Sink capacity
GAP → 0 Sink capacity

constraints. For the Calvin cycle network, H, the variables are then
xRuBP, xPGA, xDPGA, xGAP, and xRu5P. Let a complex c ∈ C be denoted by
yc. The complex yc can be associated a vector over the set of species
S, whose entries are given by the stoichiometric coefficients with
which the species s ∈ S participate in yc. For instance, the complex
2PGA in C(H) is described by the vector y2PGA = (0, 2, 0, 0, 0), and the
vector representation for the zero complex 0 is the null vector 0
over the five species in S(H). A reaction converting a complex c into
complex c′ will be denoted by yc → yc′ , and is associated a vector
yc′ − yc . To illustrate, the reaction yRuBP → y2PGA is represented by
the vector ( − 1, 2, 0, 0, 0).

The vector representations of complexes can be gathered into
a complex matrix Y, with dimensions (m × n), while the reac-
tion vectors yield the stoichiometric matrix N, with dimensions
(m × r). In addition, each reaction can be represented by a vec-
tor where the substrate complex takes a value of −1 and the
product complex has a value of 1. Such a representation of reac-
tions gives rise to a matrix Ia of dimensions (n × r). Upon closer
observation, one may establish the trivial relation, N = YIa. For the
network of the Calvin cycle model, the matrices N and Ia are given
by:

N(H) =

⎡
⎢⎢⎢⎢⎢⎣

−1 0 0 0 1 0 0

2 −1 0 0 0 −1 0

0 1 −1 0 0 0 0

0 0 1 −5 0 0 −1

0 0 0 3 −1 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (1)

and

Ia(H) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 1 0 0

1 0 0 0 0 0 0

0 0 0 0 −1 0 0

0 −1 0 0 0 −1 0

0 1 −1 0 0 0 0

0 0 1 0 0 0 −1

0 0 0 −1 0 0 0

0 0 0 0 0 1 1

0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

We will denote the rank of the stoichiometric matrix N
by q. For a stoichiometric matrix with m rows, there then
exist m − q conservation relationships. Each conservation rela-

tionship gives rise to a stoichiometric compatibility class that
have important consequences for the study of steady states;
namely, the multistationarity corresponds to the existence of
more than one steady state in one stoichiometric compatibility
class.
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ig. 2. Reaction network for the model in Fig. 1 with mass action kinetics. There
re three linkage classes, given by the connected components {Ru5P, RuBP, 2PGA},
PGA, DPGA, GAP, 0}, and {5GAP, 3RuBP}.

Note that the matrix Ia can be associated a directed graph rep-
esentation, in which the nodes are the complexes of the reaction
etwork and the directed edges are given by the entries of Ia, con-
idered as an incidence matrix. The resulting graph may have one
r more connected components, which are termed linkage classes
Feinberg, 1995a). The number of linkage classes is denoted by l.
or the model in Fig. 1, under the assumption of mass action kinet-
cs, the reaction network has three linkage classes, l = 3, depicted in
ig. 2. Each linkage class can further be decomposed into strong link-
ge classes. A strong linkage class is the maximal strongly connected
ubgraph of the directed graph associated to a reaction network (in
strongly connected subgraph, there is a directed path from a node
to v and vice versa) (Feinberg, 1995a). If no edge from a complex

nside a strong linkage class to a complex outside exists, we have a
erminal strong linkage class.

Next, we define the deficiency of a reaction network, based
n which one can draw conclusions about the existence of bista-
ility. The deficiency of a reaction network G, ı(G) is defined as
(G) = m − l − q, and can, therefore, be calculated directly from the
tructure of the reaction network (Feinberg, 1995a). Note that the
eficiency of a linkage class is calculated in the same way as for the
ntire reaction network. The following two theorems establish the
eeded relation between the dynamics and structure of a reaction
etwork (Feinberg, 1995a):

heorem 2.1. (Deficiency Zero Theorem) If the deficiency of a
eaction network is zero, then, assuming mass-action kinetics for all
eactions, no set of positive parameter values for k exists that leads to
ultiple steady states.

heorem 2.2. (Deficiency One Theorem) Given a reaction network,
f the following conditions are satisfied:

1) The deficiency of each linkage class is less or equal to one,
2) The deficiencies of all linkage classes sum up to the deficiency of

the entire network, and
3) Each linkage class contains precisely one terminal strong linkage

class,

then no positive parameter values for k exist that allow multista-
ionarity.

Note that Theorem 2.2 extends the result of Theorem 2.1 and
pplies to a larger ensemble of networks. These theorems can
e used to establish if a given network does not have the capac-

ty for multiple steady states. If the network is of deficiency one,
he Deficiency One Algorithm (D1A) can be used to determine the
wo steady states for the analyzed network. The Deficiency One
lgorithm has been implemented in the chemical reaction network

oolbox (Feinberg and Ellison, 2000). However, the current version

s restricted to reaction networks of at most 20 complexes due to
omputational limitations, which is already too small for most bio-
hemical networks. Recently, the MATLAB package ERNEST was
ntroduced by Soranzo and Altafini (2009) to overcome this restric-
ion for a subset of reaction networks.
103 (2011) 212–223 215

Conradi et al. (2007) have addressed the problem of resolving
multistationarity of large networks by analyzing special subnet-
works. In particular, they investigated subnetworks defined by
elementary flux modes called stoichiometric generators. An elemen-
tary flux mode of a reaction network is a minimal set of reactions
which can operate at steady state (Schuster et al., 2000). An elemen-
tary flux mode E is a stoichiometric generator if IcE /= 0. Conradi
et al. (2007) have shown that stoichiometric generators are of defi-
ciency one, so they are amenable for an analysis based on the
D1A. If the subnetwork implied by a stoichiometric generator is
capable of supporting two steady states, then these steady states
might be extended to the initial network. The authors provide addi-
tional conditions under which the bistability of the subnetwork
can be extended on the entire network. However, if no multista-
bility is found for any of the subnetworks, the multistationarity of
the entire network remains unresolved. Altogether, this approach
allows for analyzing reaction networks of previously intractable
sizes by decomposing them into smaller subnetworks. It is worth
pointing out that the calculation of all elementary flux modes can be
computational demanding (Klamt and Stelling, 2002; Acuña et al.,
2008).

3. Hierarchy of Kinetic Laws

To establish the relationship between the structure of a reac-
tion network G and the system of differential equations capturing
the dynamics, one needs to consider the type of the employed
kinetics. The kinetics for a reaction network G = (S, C, R) involves
a function that describes the rate at which the chemical species
interact as substrates and are transformed into products. Here, we
briefly review the types of kinetics which are considered in the rest
of the analysis: mass action (MA), Michaelis–Menten represented
in terms of mass action (MM-MA), and the classical irreversible
Michaelis–Menten (MM).

In mass action kinetics, the rate of a reaction is proportional to
the concentration of the reactant multiplied by a kinetic constant.
In general, a substrate s, with concentration xs, which participates
with ys molecules in the substrate complex of a reaction, con-
tributes xys

s to the rate of the reaction. Therefore, the mass action
kinetics of the reaction yc → yc′ can be written as:

vyc→yc′ (k, x) = kyc→yc′
∏

s ∈ S∩supp(yc)

xys
s , (3)

where supp(yc) = {s | yc(s) /= 0}.
Since Michaelis–Menten kinetics of a reaction A → B catalyzed

by enzyme E can be derived from three mass action reactions
A + E → AE, AE → A + E, and AE → B, here we use Michaelis–Menten
kinetics represented in terms of mass action. Applying this kinetic
requires that each irreversible reaction is substituted by three reac-
tions with mass action kinetics.

In irreversible MM kinetics with more than one substrate, the
rate of a reaction A + B → C + D can be written as:

v(k, x) = Vm
xAxB

(xA + KmA)(xB + KmB)
, (4)

where KmA and KmB are the MM constants for the substrates A and
B, and Vm is the maximum rate of the reaction.

The model of the reaction network G together with a specified
kinetics v(k, x) is succinctly written as:

dx
dt
= N · v(k, x). (5)

Note that the right-hand side of Eq. (5) defines a set of ratio-
nal functions expressed as ratios of two polynomials. Assuming
diffusion of one system element, Eq. (5) can also be rewritten for



2 stems

t
i
a

4

t
G
r
C
o
w
p
s
v
c
f
r
a

G
b
t
T
s
t
a
d
b
M
r

A

)

nservation relations

dt 5 Ru5P 4 GAP

To obtain the steady state solutions, the left-hand sides of Eqs.
(6) are set to zero. Expressing every variable in terms of xRuBP leads
to xRu5P = (k1/k5) · xRuBP and xPGA = 2 · k1/(k2 + k6) · xRuBP. Subsequent
16 S. Grimbs et al. / BioSy

he reaction diffusion system in one dimension in a form involv-
ng partial derivatives for any of the three kinetic laws discussed
bove.

. General Approach

In this section, we describe our general method for determining
he existence of multistationarity in a model specified by Eq. (5).
iven a reaction network G together with parameter-dependent

eaction rates v(k, x) first we check if Theorems 2.1 and 2.2 from
RNT (Horn and Jackson, 1972; Feinberg, 1995a,b) are applicable
n the entire network. If this is not the case, we employ subnet-
ork analysis described in Section 2. To determine the bifurcation
arameters, we rely on finding a rational parameterization for the
ystem of polynomials given in Eq. (5), whereby a small subset of
ariables can be identified in terms of which all others can be cal-
ulated at steady state (Thomson and Gunawardena, 2009). For
urther reading on the concept of Gröbner basis, the interested
eader is directed to Cox et al. (1991). The steps of our analysis
re summarized in Algorithm 1.

Our approach is partly based on algebraic geometry, described in
atermann and Wolfrum (2005). Similar approaches have recently
een introduced for the analysis of multistationarity in pro-
ein phosphorylation and apoptosis (Martinez-Forero et al., 2010;
homson and Gunawardena, 2009; Li and Ho, 2000). Although the
teps outlined in Algorithm 1 can be used to determine the exis-
ence of multistationarity together with the bifurcation regions,
dditional steps must be taken to establish the stability of the
etermined steady states. The details of the methods from alge-
raic geometry are illustrated in the Result’s section pertaining to
ichaelis–Menten kinetics, which renders the presentation of the

esults easier to follow.

lgorithm 1. Steps in multistationarity analysis

Data: G reaction network,
N stoichiometric matrix,
v(k, x) reaction rates
Result: Answer to multistationarity,
Set of bifurcation parameters
begin

Determine deficiency, δ, of G
if v(k, x) is MA or MM-MA then

if (δ = 0) ∧ (Theorem 2.1 holds) then
No multistationarity for any choice of k

else if δ > 1 then
if Theorem 2.2 holds then

No multistationarity for any choice of k

else if D1A is applicable then
Multistationarity for k as outcome of D1A

else
Determine stoichimetric generators
Apply the approach of Conradi et al. (2007

else
Reduce N to its reduced echelon form Nre

Identify stoichiometric compatibility classes M (co
m − q)

Construct a system of polynomials, V , from Nre · v(k, x

fosesabrenbörGehtetaluclaC V (e.g., by using lexico
Determine bifurcation parameters β by solving p = 0, p
103 (2011) 212–223

5. Results

Here we describe the results of applying Algorithm 1 to the
model of the Calvin cycle in which the hierarchy of kinetics,
described in Section 3, is embedded.

5.1. Mass Action Kinetics

The model in Fig. 1 with mass action kinetics results in a reac-
tion network depicted in Fig. 2. It is of deficiency one and composed
of three linkage classes, each of deficiency zero; therefore, neither
Theorem 2.1 nor Theorem 2.2 is applicable. However, by applying
D1A, we conclude that no multiple positive steady states are pos-
sible, no matter what values of the mass-action kinetic parameters
ki, 1 ≤ i ≤ 7, are chosen.

Moreover, we point out that even the existence of a single steady
state is not ensured and depends on some of the kinetic parameters.
This conclusion can be obtained by analyzing the following system
of differential equations associated with the reaction network:

dxRuBP

dt
= k5 · xRu5P − k1 · xRuBP

dxPGA

dt
= 2 · k1 · xRuBP − k2 · xPGA − k6 · xPGA

dxDPGA

dt
= k2 · xPGA − k3 · xDPGA

dxGAP

dt
= k3 · xDPGA − 5 · k4 · x5

GAP − k7 · xGAP

dxRu5P = −k · x + 3 · k · x5

(6)
) and adding M
graphic order)

V , in terms of β
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Fig. 3. Steady state concentrations for the reaction network in Fig. 2. The parameter
k
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RuBP+E1 RuBPE1 2 PGA+E1

PGA+E2 PGAE2 DPGA+E2

DPGA+E3 DPGAE3 GAP+E3

5 GAP+E4 GAPE4 3 Ru5P+E4

Ru5P+E5 Ru5PE5 RuBP+E5

PGA+E6 PGAE6 E6

GAP+E7 GAPE7 E7

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

s16

s17

s18

s19

s20

s21

2 is varied and all other parameters are fixed to 1. As k2 approaches 5 · k6, the
oncentrations go to infinity. For even smaller values of k2, no steady state exists at
ll. All steady states are unstable, as indicated by the dotted lines. The concentrations
Ru5P and xRuBP are always the same.

ubstitutions yield xDPGA = (k2/k3) · xPGA = 2 · k1 · 3/k3 · (k2 + k6) · xRuBP

nd xGAP = 5
√

k1 · /3 · k4 · xRuBP. Finally, one may obtain:

0 = k3 · xDPGA − k7 · xGAP − 5 · k4 · x5
GAP

= 2 · k1 · k2

(k2 + k6)
− k7 · 5

√
k1

3 · k4
· xRuBP − 5

3
· k1 · xRuBP

=
(

2 · k1 · k2

(k2 + k6)
− k7 · 5

√
k1

3 · k4 · x4
RuBP

− 5
3

· k1

)
· xRuBP

(7)

Note that Eq. (7) has five distinct solutions, of which only one is
positive real number, given by:

RuBP = 4

√√√√ k1 · k5
7

3 · k4

(
2·k1·k2
k2+k6

− 5
3 · k1

)5

for (2 · k1 · k2/(k2 + k6)) − 5/3 · k1 > 0 or equivalently k2 > 5 · k6.
his imposes a lower bound for k2 in terms of k6. More precisely,
f k2 is below this bound, not even a single steady state exists, no

atter what values are obtained for all remaining parameters k. The
hange of steady state concentration for varying k2, while keeping
ll other k’s fixed to one, is shown in Fig. 3.

To analyze the stability of the determined steady state, one has
o calculate the eigenvalues of the Jacobian matrix, J, of the system
iven in Eqs. (6). The Jacobian is given by:

=

⎡
⎢⎢⎢⎢⎢⎣

k5 −k1 0 0 0

0 2 · k1 −k2 − k6 0 0

0 0 k2 −k3 0

0 0 0 k3 −25 · k4 · x4
GAP − k7

−k5 0 0 0 15 · k4 · x4
GAP

⎤
⎥⎥⎥⎥⎥⎦

. (8)

The roots of the characteristic polynomial �J(�) = det (J − � · I),
here I stands for the identity matrix, determine the eigenvalues
f J. The characteristic polynomial can be calculated by a subsequent
inor expansion across the first row of Eq. (8), leading to:

J(�) = (k5 − �)(k1 + �)(k2 + k6 + �)(k3 + �)(25k4x4
GAP + k7

+ 30k5k1k2k3k4x4
GAP). (9)
Fig. 4. Reaction network for model in Fig. 1 with Michaelis–Menten via mass action
kinetics. There are seven linkage classes, given by the connected components of the
graph.

The expansion of �J in Eq. (9) in the form
�J(�) = ˛0�0 + ˛1�1 + ˛2�2 + ˛3�3 + ˛4�4 + ˛5�5 may be used to
show that ˛1 to ˛5 are negative. The remaining coefficient ˛0 can
be expressed as ˛0 = k5k1k3

(
k7 (−k2 − k6) + 5k4x4

GAP (k2 − 5k6)
)

.

Substituting x4
GAP = k7/k4(6k2/(k2 + k6) − 5), obtained from

the steady state relation between xRuBP and xGAP, one finally
gets

˛0 = 4k5k1k3k7(k2 + k6).

Hence, ˛0 is always positive. From Descartes’ rule of sign it follows
that �J(�) has exactly one positive root and therefore one positive
eigenvalue. Consequently, the entire parameter space of the sys-
tem, given in Eqs. (6), does not contain any stable steady states,
which clearly makes this network, with mass action kinetics, an
extremely poor model.

5.2. Michaelis–Menten Via Mass Action Kinetics

If the kinetics of the model in Fig. 1 is assumed to be
Michaelis–Menten represented by mass action, as described in Sec-
tion 3, the Ia matrix of the reaction network is depicted as in Fig. 4.
This reaction network has a deficiency of 2 and is composed of
seven linkage classes, each of deficiency 0. Therefore, neither The-
orems 2.1 and 2.2 nor D1A are applicable. Furthermore, since the
network consists of 21 complexes, it already exceeds the com-
putational capabilities of the CRNT Toolbox (Feinberg and Ellison,
2000).

Conradi et al. (2007) proposed a method to draw conclusions
about multistationarity of a reaction network by analyzing special
subnetworks. In particular, they investigated subnetworks defined

by elementary flux modes (Schuster et al., 2000) and elucidated
under which conditions results for these subnetworks also hold for
the entire network.

Applying this approach, subnetwork analysis revealed only two
elementary modes, which were calculated using the Metatool pack-
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Table 2
Parameter assignment for the system given in Eqs. (10) which allow for multiple
positive steady states. Parameters set to 1 are precisely those associated with reac-
tions that are not present in the first elementary mode which was used to construct
a subnetwork. For simplicity, all parameters are chosen to have the same value.

s1 = 0.99119923 s8 = 1 s15 = 2.4579323
s2 = 1 s9 = 6.6747969 s16 = 1
s3 = 2.0237445 s10 = 15.141035 s17 = 1

a

T
t

t
F
s
c
l
n

7

E
s
F
f
b

Table 3
Two different positive steady states obtained from the system in Eqs. (10) using the
parameters shown in Table 2. The first steady state is unstable while the second one
is stable.

Variable Steady state 1 (mM) Steady state 2 (mM)

xRuBP 2.1738771 7.6340526
xE1 3.2184725 1.5737360
xRuBPE1 2.2935102 3.9382467
xPGA 0.7319781 2.2714297
xE2 1.3155187 0.7209939
xPGAE2 0.8484346 1.4429594
xDPGA 0.8031938 2.4924215
xE3 2.0319109 1.1136257
xDPGAE3 1.3104660 2.2287516
xGAP 0.6439413 1.2921397
xE4 4.3510314 0.2296564
xGAPE4 5.7470699 9.8684449
xRu5P 1.8031031 6.3319974
xE5 2.6499371 1.2957393
xRu5PE5 1.8883671 3.2425640
xE 1.4641405 0.9364545

there are no conservation relations.
For the first case, although the concentrations of all five Calvin

cycle intermediates, RuBP, PGA, DPGA, GAP, and Ru5P, can serve
as bifurcation parameters, only four of them yield bifurcations in
s4 = 9.9649223 s11 = 1 s18 = 1
s5 = 1 s12 = 0.26920841 s19 = 1.5770407
s6 = 10.30969 s13 = 1.3666169 s20 = 1
s7 = 6.1626543 s14 = 1 s21 = 1.7182818

ge (van Kamp and Schuster, 2006):

�EM
1 = {3, 0, 3, 6, 0, 6, 6, 0, 6, 1, 0, 1, 3, 0, 3, 0, 0, 0, 1, 0, 1},

�EM
2 = {3, 0, 3, 5, 0, 5, 5, 0, 5, 1, 0, 1, 3, 0, 3, 1, 0, 1, 0, 0, 0}.
hese elementary modes arise from shutting down one of the two
ransporter reactions.

Both elementary modes, �EM
1 and �EM

2 , are capable of supporting
wo steady states, which can be calculated by the CRNT Toolbox.
urthermore, by means presented by Conradi et al. (2007), these
teady states of the subnetworks induced by the elementary modes
an be extended to the full network. To see this, consider the fol-
owing system of differential equations obtained from the reaction
etwork in Fig. 4:

dRuBP
dt

= s15 · Ru5PE5 − s1 · RuBP · E1 + s2 · RuBPE1

dE1

dt
= −s1 · RuBP · E1 + s2 · RuBPE1 + s3 · RuBPE1

dRuBPE1

dt
= s1 · RuBP · E1 − s2 · RuBPE1 − s3 · RuBPE1

dPGA
dt

= 2 · s3 · RuBPE1 − s4 · PGA · E2 + s5 · PGAE2 − s16 · PGA · E6 + s17 · PGAE6

dE2

dt
= −s4 · PGA · E2 + s5 · PGAE2 + s6 · PGAE2

dPGAE2

dt
= s4 · PGA · E2 − s5 · PGAE2 − s6 · PGAE2

dDPGA
dt

= s6 · PGAE2 − s7 · DPGA · E3 + s8 · DPGAE3

dE3

dt
= −s7 · DPGA · E3 + s8 · DPGAE3 + s9 · DPGAE3

dDPGAE3

dt
= s7 · DPGA · E3 − s8 · DPGAE3 − s9 · DPGAE3

dGAP
dt

= s9 · DPGAE3 − 5 · s10 · GAP5 · E4 + 5 · s11 · GAPE4 − s19 · GAP · E7 + s20 · GAPE

dE4

dt
= −s10 · GAP5 · E4 + s11 · GAPE4 + s12 · GAPE4

dGAPE4

dt
= s10 · GAP5 · E4 − s11 · GAPE4 − s12 · GAPE4

dRu5P
dt

= −s13 · Ru5P · E5 + s14 · Ru5PE5 + 3 · s12 · GAPE4

dE5

dt
= −s13 · Ru5P · E5 + s14 · Ru5PE5 + s15 · Ru5PE5

dRu5PE5

dt
= s13 · Ru5P · E5 − s14 · Ru5PE5 − s15 · Ru5PE5

dE6

dt
= −s16 · PGA · E6 + s17 · PGAE6 + s18 · PGAE6

dPGAE6

dt
= s16 · PGA · E6 − s17 · PGAE6 − s18 · PGAE6

dE7

dt
= −s19 · GAP · E7 + s20 · GAPE7 + s21 · GAPE7

dGAPE7

dt
= s19 · GAP · E7 − s20 · GAPE7 − s21 · GAPE7

(10)

Using the parameters shown in Table 2, the system given by

qs. (10) does have the capability to obtain multiple positive steady
tates as can be seen by the two steady states presented in Table 3.
urthermore, Fig. 5 shows the corresponding bifurcation diagram
or some of the metabolites, using the sum of xE2 and xPGAE2

as a
ifurcation parameter.
6

xPGAE6 0.5358594 1.0635454
xE7 1.5754002 1.2367929
xGAPE7 0.5885531 0.9271604

5.3. Michaelis–Menten Kinetics

When irreversible Michaelis–Menten kinetics is imposed on the
model of the Calvin cycle, only the approach based on algebraic
geometry is applicable, since analysis of multistationarity cannot
be performed with any of the tools described in Section 2. Here we
consider two cases: (1) the original model from Zhu et al. (2009) and
(2) the modified model from Table 1. Contrary to the analysis of Zhu
et al. (2009), here we demonstrate that, with the same set of values
for the kinetic parameters, two steady states are possible. More-
over, we show qualitatively similar results for the modified model.
In addition, we identify the bifurcation parameters and their cor-
responding regions. Since the concentration of ATP and NADPH are
assumed constant (as are the ratios ADP/ATP and NADPH/NADP),
Fig. 5. Bifurcation diagram for system 10 using the parameters from Table 2. Stable
steady states are depicted by a solid line, unstable steady states by a dashed line.
The stars and crosses mark the concentrations at steady state 1 and 2, respectively
(see Table 3). The sum of concentrations of E2 and PGAE2 is chosen as a bifurcation
parameter.
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Fig. 6. Bifurcation parameters for the original Calvin cycle model from Zhu et al. (2009) with irreversible Michaelis–Menten kinetics. Since CRNT tools cannot be applied in
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his case, the curves are obtained by solving the system of Gröbner bases. In each
ach other using the parameters from Zhu et al. (2009). Multistationarity is confirm
alues of xRu5P, there are at least two positive steady states for the remaining four
lone.

ositive ranges for the concentration of the remaining metabolites.
learly, there are twenty possible bifurcation diagrams due to the
airwise combinations of the five Calvin cycle intermediates, as
hown by the individual plots inlaid in Fig. 6. By means of an alge-
raic transformation, detailed below, the dependencies to the other

ntermediates can be eliminated. Eleven of these twenty combina-
ions show multistationarity for positive concentration values. This
onclusion holds when one considers the definition of physiologi-
ally plausible concentrations given in Zhu et al. (2009), taking the
ange (0.0001–5) mM for all metabolites (this range gives the lower
nd upper bounds of the solution found therein).

However, for physiologically plausible concentrations,
RuBP ∈ [0.6, 6.0], xPGA ∈ [1.4, 12.0], xDPGA ∈ [0.8, 1.4], xGAP ∈ [0.032,
.04], and xRu5P ∈ [0.01, 0.2] mM as given in Zhu et al. (2007),
here exist eight cases—e.g., xPGA given in terms of the bifurcation
arameter xRuBP—where the concentrations of the two depicted
etabolites fall in the respective physiological ranges. Note that,

s seen in the last row of Fig. 6, for physiologically plausible values
f xRu5P, there are at least two physiologically plausible steady
tates for the remaining four metabolites.

We point out that in seven out of the twenty cases, there exists
o steady state in the intersection of the physiological ranges for
he pair of considered metabolites. In addition, the combinations
or which a single steady state exists for the physiologically plau-
ible range include the following five: xRuBP as a function of the
ifurcation parameter xGAP, xPGA in terms of xGAP, xDPGA depending

n xRuBP and xRu5P, respectively, and xGAP with respect to xRuBP.

Like in the first case, for the modified model all five Calvin cycle
ntermediates can serve as bifurcation parameters. Only four of
hem yield bifurcations in positive ranges for the concentration of
he remaining metabolites GAP has at most one positive steady
subfigures, the steady state concentrations of two metabolites are plotted against
detecting three steady states (yellow, red, and blue line). For instance, for positive
olites. The stability of these steady states cannot be determined by our approach

state. There are again twenty possible bifurcation diagrams due to
the pairwise combinations of the five Calvin cycle intermediates
with no further dependencies, as shown by the individual plots
inlaid in Fig. 7. Nine of these twenty combinations show multista-
tionarity for positive concentration values. For the physiologically
plausible concentrations, there exists only one case—xRu5P given in
terms of the bifurcation parameter xPGA—where the concentrations
of the two depicted metabolites fall in the respective physiological
ranges.

We point out that in eleven out of the twenty cases, there exists
no steady state in the intersection of the physiological ranges for
the pair of considered metabolites. Hence, there are obviously eight
combinations for which a single steady state exists for the physio-
logically plausible range.

To obtain these results, we calculated the Gröbner bases, V,
for differently ordered monomials (i.e., the concentrations for the
Calvin cycle intermediates), as described in Algorithm 1. For the
Michaelis–Menten kinetics, each basis is given by a set of poly-
nomials p and rational functions r. These polynomials and rational
functions include the last monomial of the order and the concentra-
tion for one Calvin cycle intermediates—the bifurcation parameter.
Thus, each pairwise combination of two intermediate concentra-
tions occurs and the Gröbner basis contains at least one polynomial
in terms of the fixed intermediate, last monomial of the order, and
the bifurcation parameter.

To investigate the multistationarity of the original model from

Zhu et al. (2009) for the combination of xPGA as function of
bifurcation parameter xRuBP in the physiologically plausible con-
centration ranges, we use the Gröbner basis for the monomial order
(Ru5P,DPGA,RuBP,GAP,PGA). The used polynomial basis element
for this dependent combination of intermediates is the seventh
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ig. 7. Bifurcation parameters for the modified Calvin cycle model as described in T
tate concentrations of two metabolites are plotted against each other, like in (Fig. 6
hree steady states (yellow, red, and blue line). For instance, for positive values of x

lement, given by

= −2.2079 · xPGA − 6.33023 · xPGA
2 + 1.66547 · xPGA

3

+ 1.0 · xRuBP. (11)

We set the polynomial in Eq. (11) to zero and solve it for
PGA = f (xRuBP). The three arising solutions were then plotted as
function of xRuBP and were evaluated on the physiologically plau-

ible intervals for RuBP and PGA concentrations (shown in Fig. 6
ow: PGA, column: RuBP). These calculations were performed with
athematica 7.0. A detailed summary of computations is provided

s a Supplementary file. The notebook to reproduce the bifurcation
iagrams is available upon request (Table 4).

Following this approach, the results presented in Figs. 6 and 7
erve as a rigorous proof of the capacity for multistationarity in this
odel of the Calvin cycle. Moreover, these findings demonstrate

he reason why previous studies failed to determine the regions of
ifurcation by “trial-and-error” approaches. While solving systems
f polynomials, as in Zhu et al. (2009), may yield partial results,
ny finding which employs Gröbner bases is exhaustive due to the
epresentational power of this mathematical construct.

.4. Mass Action with Diffusion

Spatiotemporal dynamics of the Calvin cycle can be investigated
n two principle ways: The first consists of considering a model aug-

ented with different cellular compartments, yielding a partition

f the metabolic pools. The second, which we pursue in this section,
ncludes the study of metabolite diffusion.

Metabolite diffusion results in a fundamentally different view
f multistationarity compared to that of Sections 5.1–5.3. We
etermine the existence of symmetry breaking instabilities in the
with irreversible Michaelis–Menten kinetics. In each of the subfigures, the steady
g the parameters from Zhu et al. (2009). Multistationarity is confirmed by detecting
ere are at least two positive steady states for the remaining four metabolites.

investigated metabolic network, i.e., instabilities due to diffusion.
Characteristic examples of such instabilities for biochemical reac-
tions include: a substrate and product-inhibited enzyme reaction
and the product-activated enzyme reaction catalyzed by phospho-
fructokinase in the glycolytic cycle (Prigogine et al., 1969). The
basic theoretical question is in fact, whether the steady-state con-
centrations may, with increasing values of chemical constraints
(given affinities or free-energies of the over-all reactions), still be
obtained by a gradual modification of the law of mass action. Sym-
metry breaking instabilities have been investigated for chemical
(Bar-Eli, 1985; Dolnik and Marek, 1988; Crowley and Epstein, 1989;
Maini and Chau, 1997), gene-regulatory(Koseska et al., 2007), and
metabolic networks (Tsaneva-Atanasova et al., 2006). They have
also been observed in biological processes in which slow diffusion
is present (Shiferaw and Karma, 2006; Kondo and Asi, 1995).

Unlike the case of homogeneous perturbations, when the sys-
tem moves from one to another homogeneous steady state, for
inhomogeneous perturbations the system goes from a homoge-
neous to an inhomogeneous steady state (IHSS). The instabilities
are a result of the symmetry breaking of the steady state in the
system through a pitchfork bifurcation. Thus, the unstable homo-
geneous steady state splits into two additional branches, which
then gain stability via Hopf bifurcations. If the complete bifurcation
structure of the system cannot be obtained due to computational
or experimental restrictions, the existence of the inhomogeneous
steady state could be easily misinterpreted as two separate steady
states. Here, we define conditions under which the Calvin cycle can
be characterized with the occurrence of an IHSS.
In plants, the chloroplast thylakoid membrane is the site of
light-dependent photosynthetic reactions coupled to ATP syn-
thesis. Recent experimental studies have confirmed that (i) the
chloroplast thylakoid ATP/ADP carrier supplies the thylakoid lumen
with stromal ATP in exchange for ADP and (ii) increased concen-
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Table 4
Number of multiple, single and no steady state(s) as depicted in Figs. 6 and 7. The respective entries are obtained by evaluating two different domains—positive concentrations
and physiologically plausible concentrations of the intermediates.

Model variants Ranges Multiple (steady states) Single (steady states) No (steady states)
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i
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i
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t

a
w
o

ies of well-established theorems relating the underlying structure
of the network with its dynamical features. For the model with
mass action kinetics, we not only established that a single steady
state exists, but also determined the conditions for its stability.
Interestingly, weakening the mass-action assumption by explicitly

Table 5
Steady state solution derived from Eqs. (13).

Variable Steady state (mM)

x 0.01982
Zhu et al. (2009) Positive 11
Physiologically plausible 8

Table 1 Positive 9
Physiologically plausible 1

rations of ATP in the stroma cause activation of RuBisCo activase
Thuswaldner et al., 2007; Yin et al., 2010). Since ATP, as the prin-
iple energy compound, diffuses between cellular compartments
Basshama et al., 1968) and is essential for the light-independent
hotosynthetic reactions, we analyzed the effects of ATP diffusion
n the existence of inhomogeneous steady states. We extend the
odel presented in Fig. 1 by the following reaction:

DP
k8→ATP. (12)

Furthermore, the two kinases are not simplified and now read
s in the second column of Table 1.

By assuming a Fick type of diffusion law, the equations describ-
ng the balance between reaction rates and diffusion can be written
s follows:

∂xRuBP

∂t
= −k1 · xRuBP + k5 · xRu5P · xATP

∂xPGA

∂t
= 2 · k1 · xRuBP − k2 · xPGA · xATP − k6 · xPGA

∂xDPGA

∂t
= −k3 · xDPGA + k2 · xPGA · xATP

∂xGAP

∂t
= k3 · xDPGA − k7 · xGAP − 5 · k4 · x5

GAP

∂xRu5P

∂t
= 3 · k4 · x5

GAP − k5 · xRu5P · xATP

∂xATP

∂t
=−k2 · xPGA · xATP−k5·xRu5P·xATP+k8(c−xATP)+DATP·( ∂2xATP

∂R2
)

(13)

In the system given by Eqs. (13), DATP is the diffusion coefficient
f ATP, assumed to be constant, such that ADP = c − ATP, where c
s the constant amount of adenosine nucleotides. Here, R indicates
he diffusion coordinate. For this system of polynomials, we find
he following parameterization at steady state:

xPGA =
k8(5 · k1xRuBP + 3 · k7 · 5

√
k1xRuBP

3 · k4
)

k2(3 · c · k8 − 8 · k1 · xRuBP − 3 · k7 · 5

√
k1xRuBP

3 · k4
)

xDPGA = 5 · k1 · xRuBP · 5
√

3 · k4 + 3 · k7 · 5
√

k1xRuBP

3 · k3 · 5
√

3 · k4

xGAP = 5

√
k1 · xRuBP

3 · k4

xRu5P = 3 · k1 · k8 · RuBP

k5(3 · c · k8 − 8 · k1 · xRuBP − 3 · k7 · 5

√
k1 · xRuBP

3 · k4
)

8 · k1xRuBP k7 5

√
k1 · xRuBP

(14)
xATP = c −
3 · k8

−
k8

·
3 · k4

,

nd a quintic equation for xRuBP of the form Az5 + Bz + C = 0,
here z = 5√xRuBP. One may show that this equation has only

ne positive solution for xRuBP, which facilitates the computa-
6 3
5 7
9 2
8 11

tion of the time-independent homogeneous solution given in
Table 5.

We now consider the linear stability of this steady uniform
solution with respect to space and time-dependent perturbations.
Therefore, it is sufficient to consider perturbations of the form:

x = xeq + X exp[ω · t + i(r/�)], (15)

where x corresponds to the concentration of any variable in the
system given by Eqs. (13), and xeq denotes the steady state con-
centrations, provided we consider affinities small with respect to
kT. Let X be the perturbation amplitude which is assumed to sat-
isfy | X/xeq |	1, and ω and � are the perturbation frequency and
wavelength correspondingly. If an instability occurs, the perturbed
system will, at some moment, be in a state of marginal stability, cor-
responding to ω = 0. Hence, the secular (characteristic) equations
for the system in Eqs. (13), obtained by the perturbation of each
concentration according to Eq. (15) and linearized with respect to
X in the marginal state, provides the following relation:

k6 =
(k8 + (DATP/�2)) · (k7 − 5 · k4 · x4

GAPeq
)

3 · (30 · k4 · x4
GAPeq

+ k7)
, (16)

for the rate constants, diffusion coefficient, and the wavelength �.
Note that the relation described in Eq. (16) holds only in the

marginal state, and separates a root ω < 0 from a root ω > 0. Thus,
for a given set of parameters, the critical value of the wavelength �
at which the instability begins can be estimated from:

�2
c =

(k7 − 5 · k4 · x4
GAPeq

) · DATP

3 · k6 · (30 · k4 · x4
GAPeq

+ k7) − k8 · k7 + 5 · k4 · k8 · x4
GAPeq

. (17)

From Eq. (17), one can conclude that the critical wavelength, �c,
depends on both the kinetic parameters and the diffusion coeffi-
cient. As a result, the ratio between the diffusion coefficient and the
reaction rates determines the wavelengths at which the instability
occurs in the system.

6. Discussion

The results obtained from applying our general method to a
model of the Calvin cycle, endowed with a hierarchy of kinetics,
are summarized in Table 6. The presented findings are corollar-
RuBP

xPGA 0.03313
xDPGA 0.03236
xGAP 0.38252
xRu5P 0.02235
xATP 0.41904
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Table 6
Summary of results regarding multistationarity for a model of the Calvin cycle with
a hierarchy of kinetic laws. The first column gives the hierarchy of kinetics, from
simplest to more involved: mass action (MA), Michaelis–Menten via mass action
(MM-MA), Michaelis–Menten (MM), and mass action with diffusion (MAd). The con-
sidered type of instabilities and the existence of multistationarity are given in the
second and third column, respectively. The methods used to establish the potential
for multistationarity and the bifurcation parameters/regions are listed in the last
column. Provable results are obtained for all kinetics considered in the hierarchy.

Kinetics Instability Multistationarity Support

MA Homogeneous NO CRNT and algebraic
geometry

MM-MA Homogeneous YES CRNT and stoichiometric
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t
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w
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w
t
o
i
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t

r
A
l
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w

generators
MM Homogeneous YES algebraic geometry
MAd Inhomogeneous YES algebraic geometry

odeling enzyme mechanisms leads to multiple positive steady
tates. This is a result of applying the subnetwork analysis in
onjunction with CRNT. By employing methods from algebraic
eometry, we also demonstrated the existence of multistationar-
ty in the model with Michaelis–Menten kinetics and identified
he bifurcation parameters together with the physiologically plau-
ible regions of the parameter space which supports more than
ne steady state. As indicated in Section 4, our approach warrants
pplication of other methods to resolve the stability of the deter-
ined steady states. Therefore, our findings only partially settle

he issue of multistability of the Calvin cycle, since we only con-
ider one model and derive the conditions for its ability to support
ultistationarity.
Besides the simplicity of the considered model and the coarse

odeling of the Michaelis–Menten kinetics, one further concern
rises from the parameter values and the steady state concen-
rations of the metabolites. Since CRNT only aims at answering
hether or not multiple positive steady states can occur, the result-

ng values for the parameters and metabolite concentrations may
ie outside of any physiologically meaningful range. Nevertheless,
here is some freedom in choosing those parameters, e.g., for reac-
ions not included in the subnetwork induced by an elementary
ux mode. This can be further exploited to test whether multista-
ionarity also occurs for physiologically feasible parameter values
nd metabolite concentrations.

We note that an isolated reaction network of the form of
+ E�AE → B, which is exactly the set of reactions that were

ncluded to emulate Michaelis–Menten kinetics, does not support
ultiple steady states on its own (Craciun et al., 2006). There-

ore, the fact that multiple steady states exist for the model with
ichaelis–Menten via mass action kinetics and not with mass

ction kinetics implies that multistationarity, for the former kinetic
aw, does not arise from local structural properties but rather from
he overall structure of the entire network.

Our approach allows for a tractable analytical analysis of models
ith Michaelis–Menten kinetics. In this way, we were able to iden-

ify the physiologically plausible regions of the parameter space in
hich bifurcation could occur. The obtained results with respect

o the bifurcation parameters, shown in Fig. 6, can help the design
f validation experiments for multistationarity in plant cells. For
nstance, a validation experiment with isolated chloroplasts and
oncentration changes of the bifurcation parameter PGA, for which
here exists a chloroplast transporter, can now be readily under-
aken.

For the reaction diffusion model, we established theoretical

esults determining the ratio between the diffusion coefficient of
TP and the reaction rates which, in turn, determines the wave-

engths at which inhomogeneous instability could occur. Eliciting
iological conclusions from these results would be premature, as
e only consider diffusion systems in one dimension. The problem
103 (2011) 212–223

of developing a model to account for more realistic types of dif-
fusion, not only of ATP but also other Calvin cycle intermediates,
remains to be addressed with methods similar to those presented
here.

Rigorous analysis of multistationarity on metabolic networks
allows for altering the final outcome of metabolic processes. There-
fore, multistationarity presents a dynamic feature amenable to
biotechnological application, specifically increased biomass pro-
duction. However, as pointed in our analysis, any conclusions
regarding multistationarity are tightly coupled with the details of
the employed model, and warrant caution in design of experimen-
tal metabolic engineering procedures.

Finally, although we studied a model of the Calvin cycle in which
a hierarchy of kinetics is embedded, our approach is not limited to
metabolic networks. In principle, the pressing question of multista-
tionarity can be analyzed with such an approach for any biological
network modeled with mass action or Michaelis–Menten kinet-
ics.
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