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Understanding the functional dynamics of the mammalian brain is one of the central aims of
modern neuroscience. Mathematical modeling and computational simulations of neural networks
can help in this quest. In recent publications, a multilevel model has been presented to simulate
the resting-state dynamics of the cortico-cortical connectivity of the mammalian brain. In the
present work we investigate how much of the dynamical behavior of the multilevel model can
be reproduced by a strongly simplified model. We find that replacing each cortical area by a
single Rulkov map recreates the patterns of dynamical correlation of the multilevel model, while
the outcome of other models and setups mainly depends on the local network properties, e.g.
the input degree of each vertex. In general, we find that a simple simulation whose dynamics
depends on the global topology of the whole network is far from trivial. A systematic analysis
of different dynamical models and coupling setups is required.
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1. Introduction

Understanding the functional dynamics of the
mammalian brain is one of the central aims of
modern neuroscience. Apart from developing and
improving experimental methods like EEG, fMRI
and PET, mathematical modeling and computa-
tional simulations of neural networks can help to
understand the dynamical bebavior of the brain.
While the dynamics of single neurones is quite
well conceived and their dynamical behavior can
be reproduced by differential models [beim Graben
et al., 2008; Izhikevich, 2007] e.g. Hodgkin & Hux-
ley [1952] or iterated maps, e.g. Rulkov [2002], a
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systematic exploration of the impact of connection
topology on the dynamical organization in neu-
ronal networks has barely begun {Markram, 2006;
Zemanova et al., 2006; Zhou et al., 2006; Honey
et al., 2007; Izhikevich & Edelman, 2008].

In [beim Graben et al, 2008; Zhou et al,
2007) the authors simulated the resting-state of the
mammalian cortex using different approaches. The
models were implemented using the experimentally
known anatomical connectivity of the cat cortex,
which consists of a network of 53 cortical areas
and 826 long-range fibers connecting them {Scan-
nell et al., 1995; Scannell & Young, 1993]. The first
approach was to simulate cortical areas using a
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neural mass model [Wendling et al., 2000], which
aims to imitate the dynamics of a population of
neurones and is capable of reproducing EEG-like
oscillations. Hence, it promises to be a biologically
plausible model for a brain area. However, it was
found that the pairwise correlation between cortical
areas depends on the individual characteristics of
the areas (number of inputs), and further, network
topology is irrelevant. The second approach com-
prised of a multilevel model (a network of networks)
in which each area was represented by a subnetwork
of 200 neurones. While the connectivity between the
cortical areas remained the same, the internal 200
neurones were connected by a small-world topol-
ogy [Watts & Strogatz, 1998] in order to minimally
reproduce qualitative observations of neuronal con-
nectivity [Sporns et al., 2005]. This model displayed
biologically plausible behavior in the range of weak
coupling between neurones, meaning that (partial)
synchronization and dynamical clustering followed
the underlying anatomical topology. Additionally,
the mean field signals of the areas showed simi-
larity to real EEG data. In the strong coupling
regime, the dynamics of individual areas were char-
acterized by well-defined oscillations (as happened
with the neural mass model) and therefore, the
patterns of synchronization did not depend on the
underlying topology. One of the drawbacks of the
multilevel model is its rather large computational
cost.

The goal of the present work is to investigate
how much of the dynamical behavior of the multi-
level model can be reproduced by a strongly simpli-
fied model (which is computationally competitive).
For that, we have simulated each cortical area as
a single neuron. Using two popular neuron mod-
els, the Rulkov map [Rulkov, 2002] and the neuron
model by Izhikevich [2003], the network is simulated
and their outcomes are compared. We find that the
network of interconnected Rulkov maps recreates
the patterns of dynamical correlations at the mul-
tilevel model, while in the simulations performed
using the Izhikevich model, the dynamics does not
depend on the underlying topology. Among other
factors, which are discussed below, the difference
might arise from the fact that the Rulkov maps are
connected by a linear coupling and the Izhikevich
neurones by a pulse coupling.

Nevertheless, we find that in the simulations
using the Rulkov map, the neurones have a flexi-
ble dynamics permitting them to quickly adapt to
the dynamics of their neighbors. In the simulations

performed with the Izhikevich neurones, each ele-
ment follows mainly its own dynamics and corre-
lates only with the neighbors of strongest input.
This observation transcends the particular mod-
els and configurations here adopted and should be
taken into account when studying synchronization
phenoma in complex networks [Arenas et al., 2008;
Boccaletti et al., 2006].

2. Dynamical Simulations of the
Cat Cortex

As in [beim Graben et al, 2008; Zhou et al.,
2006, 2007] the cortico-cortical connectivity of the
cat has been modeled, which is summarized as a
weighted adjacency matrix W, Fig. 1. This data
is a collation performed by Scannell et al. [1995];
Scannell & Young [1993] based on previous anatom-
ical reports. The network is weighted according
to the axonal density of the fibers linking two
areas. Thus, 3 means a strong (dense) connection,
2 means intermediate and 1 a weak (sparse) con-
nection. The cases explicitly reported as absent or
no information available were treated the same and
were weighted as 0. Cortical networks have been
reported to have small-world characteristics, i.e.
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Fig. 1. Weighted adjacency matrix W of the cortico-cortical
connectivity of the cat comprising 826 directed connec-
tions between 53 cortical areas. The connections are clas-
sified as weak (open circles), intermediate (blue stars) and
dense (red filled circles) according to the axonal densities
in the projections between two areas. For visualization pur-
poses, the nonexisting connections (0} have been replaced by
dots.
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a high clustering coefficient and a short average
pathlength [Hilgetag et al., 2000]. The degree of the
nodes is very heterogeneous and ranges from 2 to 35
connections, insofar, the network has a (scale-free-
like) broad degree-distribution [Kaiser et al., 2007;
Zamora-Lépez et al., 2008]. In Fig. 1, four main
clusters called “communities”, can be distinguished
which have dense connectivity inside. These com-
raunities correspond to the functional subsystems
visual (V), auditory (A), somato-motor (SM) and
frontolimbic (FL) [Hilgetag et al., 2000; Scannell &
Young, 1993; Scannell et al., 1995].

In order to achieve our goal of developing a
model that reproduces the main dynamical behav-
ior of the multilevel model and is computationally
competitive, we choose to turn back from the mul-
tilevel approach and try alternative dynamics for
modeling the areas. The dynamics of an area is now
simulated by a single neuron, modeled by (i) an iter-
ated map developed by Rulkov [2002], and (ii) a sys-
tem of two first order differential equations (ODEs)
with an additional after spike reseting mechanism,
after [[zhikevich, 2003]. Every neuron receives input
from its neighbors and is additionally stimulated by
an independent Gaussian white noise.

2.1. Swmulation of cortical areas by
the Rulkov map

The Rulkov map is a two-dimensional iterated
map, which is capable of replicating the spiking,
and spike-bursting behavior of real neurones by
the interplay between two dynamical variables, one
describing fast dynamics and another slow variable
(see details in Appendix 3). To simulate the cor-
tical network of the cat, each area is replaced by
one Rulkov map in chattering state, i.e. the iso-
lated neuron is characterized by periodic epochs
of bursting and inactivity, see Fig. 2 (top). The
maps were then coupled following the recommen-
dations in [Rulkov, 2002]. After being coupled,
the maps still display a chattering behavior but
irregular due to the input from their neighbors,
Fig. 2 (bottom).

After running the simulations, the pairwise lin-
ear correlation 7(i,j) between cortical areas have
been computed to characterise the synchroniza-
tion behavior and the functional clustering. As
mentioned in {Ivanchenko et al, 2004; Rulkov,
2002], synchronization is only observed in the low
frequency bands of bursts, but not in high fre-
quent spikes, so a low pass filter has been applied
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Fig. 2. Characteristic signal of a cortical area modeled by a
Rulkov map. (Top) Before coupling, isolated neurones were
setup into a regular chattering state, i.e. periodic epochs of
bursts and inactivity without noise. (Bottom) After the neu-
ron is coupled to the network with noise, it displays an irreg-
ular chattering behavior.

to the output signals before computing (3, 7)
(Appendix 3). In Fig. 3, a gallery of correlation
matrices 7(4, 7) is shown and the corresponding clus-
ter trees {dendrograms) for coupling strengths rang-
ing from g = 10 to ¢ = 525. Each correlation matrix
is the average of ten realizations. With a very weak
coupling, Fig. 3(a), the dynamical clusters are vis-
ible although the correlations are weak and noisy.
The dynamical clusters in Fig. 3(b) raise from the
background with high contrast, while in Fig. 3(c)
inter cluster correlation becomes more dominant.
Finally, a strong coupling leads to global correla-
tion, Fig. 3(c).

Next, a cluster analysis of the correlation matri-
ces is performed by calculating their corresponding
dendrograms. A dendrogram is a graph of many U-
shaped lines, which connects nodes in a hierarchical
binary tree. The height of each line stands for the
dynamical distance (euclidean) between two nodes,
which is obtained from the correlation matrix: d;; =
V2 om(Tim — T3,m)? This technique enables one to
visualise which areas are closely connected and how
they build up dynamical clusters. As we are con-
cerned about the anatomical clusters (V, A, SM and
FL), we concentrate on the hierarchical level where
the correlation matrix decomposes into four clus-
ters. Apparently, the stability of hierarchical levels
is a function of correlation. By stability, we mean
the height of the hierarchical level where there are
four clusters in the dendrogram.
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Fig. 3. Correlation matrices and dendrograms for the Rulkov map with different coupling strengths. (a) ¢ =10, (b) g =75

and (c) g = 525.

We find that, with low correlation, Fig. 3(a),
the stability of our region of interest is very
weak. Here, the correlation between single nodes
dominates the synchronization behavior, while an
intermediate correlation, Fig. 3(b), leads to the
desired synchronization of four stable clusters where
each cluster has its particular dynamics and is
weakly coupled to other clusters. Very high coupling
strength destabilizes the four clusters and “melt”
them together, which means that individual dynam-
ics becomes lost, while synchronization of all clus-
ters becomes dominant, Fig. 3(c). Note, that in
these dendrograms, areas are generally not ordered
by their number. To see which areas form a cluster,
we provide another graph (Fig. 4). The dynami-
cal clusters closely follow the anatomical commu-
nities, although some of the areas are assigned to
a different community. These areas, while belong-
ing to an anatomical community, are hubs with
many connections in other communities. There-
fore, they also get synchronized with other com-
munities and appear dynamically clustered into a
“wrong” community. The presence of such hubs
has also been reported in [Homey et al., 2007,
Zemanova et al., 2006, 2008; Zhou et al., 2006,
2007).

2.2. Simulation of areas by
Izhikevich neurones

The same analysis has been repeated using

the Izhikevich neuron to model the cortical
areas [Izhikevich, 2003]. This model consists of a
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Fig. 4. The four dynamical clusters of the Rulkev model at
an intermediate coupling strength of g = 75, resulting from
the clustering algorithm described in Sec. 2.
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Fig. 5. Characteristic signal of a cortical area modeled by
the Izhikevich neuron. (Top) Before coupling, isolated neu-
rones were setup into a regular chattering state without noise.
(Bottom) After the neuron is coupled into the network with
noise, it still displays a chattering behavior, although slightly
irregular.

pair of first order ODEs; one variable is denoted as
the membrane potential of the neuron and the other
as a membrane recovery variable. Additionally, it
contains an after-spike reset to avoid modeling the
shape of the spike. This model has been conceived
to reproduce a rich range of dynamical behaviors
exhibited by real neurones of different classes in
a computationally competitive manner [Izhikevich,
2003, 2004].

The model parameters were chosen to simu-
late the isolated neurones in the chatlering state
as shown in Fig. 5 (top). The network was imple-
mented, setting up the neuron to neuron pulse-
coupling as indicated in [Izhikevich, 2003]. See
details in Appendix 3. In the coupled configuration,
areas still display a chattering behavior, although

arsa |

area |
€ & &5 B 8 8 8 3 3

5 10 15 20 25 30 35 40 45 80 -

(a)

5 10 15 20 25 30 36 40 45 N
area J area J

only slightly irregular, Fig. 5 (bottom), as compared
to the coupled Rulkov maps, Fig. 2 (bottom).

The simulated network also yields synchroniza-
tion, but as seen in Fig. 6, the clustering behav-
ior is different. Clusters are not concordant with
the anatomical communities, regardless of the cou-
pling strength. Here, the SM and FL communities
follow almost the same dynamics, together with a
large part of the visual cluster. Moreover, the audi-
tory community disappears as a dynamical cluster.
These observations are very similar to the patterns
of synchronization of the neural mass model dis-
cussed in [Zhou et al., 2007].

3. Summary and Discussion

In this paper, we have explored an alternative and
simplified manner to simulate cortical networks
which can still recover the dynamical properties
of the multilevel approach of [beim Graben et aol.,
2008; Zemanova et al., 2006, 2008; Zhou et al., 2006,
2007]. We have simulated the cortico-cortical net-
work of the cat by replacing each cortical area by
a single excitable oscillator: either a Rulkov map
or an Izhikevich neuron. The dynamical correla-
tions between areas, using the Rulkov map (Fig. 3)
closely resembles those of the multilevel model.
In the weak coupling regime, both models display
dynamics which depend on the underlying topology.
The dynamical clusters are similar to the anatomi-
cal communities (V, A, SM and FL). An example of
the dynamical clusters obtained with the multilevel
model are shown in Fig. 7 for comparison. In the
strong coupling regime of both models, the dynam-
ical clusters melt together leading to global synchro-
nization, a situation which might be considered as

area |

M
s f0 15 20 25 80
area J

Fig. 6. Correlation matrices for the Izhikevich map with different coupling strengths. (a) g = 3, (b) g =5, (c) g=10,at a

noise level of D =0.1.
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Fig. 7. Multilevel model of [beim Graben et al., 2008; Zhou et al., 2006, 2007] (a) correlation matrix, (b) dendrogram and

(c) clustering map in a weak coupling regime.

pathological in brain activity — e.g. during epilep-
tic seizures. On the contrary, in none of the simula-
tions performed using the Izhikevich neurones, we
could reproduce this dynamical clustered behavior,
see Fig. 6.

An answer to this difference may lie in the
fact that low dimensional maps are capable of
rich dynamics (even 1-D maps can have chaotic
behavior) while differential equations can show
chaotic behavior only when they are at least three-
dimensional. The neurones modeled by the Rulkov
map have flexible dynamics as shown in Fig. 2(b).
As a consequence, the neurones are able to quickly
adapt to the dynamics of their neighbors. For exam-
ple, the hubs are connected to many areas which
might have different time-scales. This adaptability
permits the hubs to “keep in synch” with all their
neighbors. In the simulations performed with the
Izhikevich model, the individual bursting dynam-
ics of the neurones is dominant and they essen-
tially keep their own rhythm. As a result, areas
can only synchronise with the groups of neighbors
from which they receive the strongest synchronised
input.

Another reason for the different behaviors
observed lies in the coupling between neurones. In
the Rulkov model the neurones are connected by
a linear coupling which leads to burst synchroniza-
tion. As recommended in [Izhikevich, 2003] the con-
nections in the Izhikevich model are modeled by a
pulse coupling between the fast variables of both
neurones. Hence, the input of a neuron takes only
into account the number of neighbors which fire a
spike simultaneously.

Whether the dynamical flexibility of the areas
arises from the chaoticity of the neuronal model
and/or the type of coupling, it seems that when

simulating a network of coupled oscillators (generic
or excitable) the dynamics of the individual ver-
tices need to be adaptable. Otherwise, the dynam-
ical outcome is not sensitive to the underlying
topology of the network, or trivially dependent
on the local number of neighbors. Further pre-
liminary observations with different setups, e.g.
Izhikevich neurones with electrical coupling (not
shown), exhibit dramatic changes in the corre-
lation patterns. These observations suggest that
a systematic analysis of different model dynam-
ics and coupling types is required to under-
stand when the outcome of a network simulation
will depend on the underlying network topology
or not. .

Finally, we discuss the reliability of the sim-
plified models presented here in order to simulate
cortico-cortical networks. In the multilevel model,
the time series signal of individual cortical areas,
computed as the mean-field signal of the inter-
nal 200 neurones resemble typical EEG data, and
thus it can be considered a plausible model for
direct comparison to experimental-like data. In the
simplified models the signals of individual areas is a
spiking or a spike bursting pattern, hence interpret-
ing it as EEG data is implausible. Nevertheless, if
we regard the low pass filtered output as the signal
(Appendix 3), it might still have some similarities
with experimental EEGs. In any case, as the sim-
plified model captures the underlying topology of
the network and computes very fast, it seems suit-
able for applications to investigate network synchro-
nization and other dynamics related properties like
information processing. Another promising alterna-
tive is to build a multilevel model but using Rulkov
maps instead of neuronal models based on differen-
tial equations.
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As brain areas consist of a large number
of neurones, which altogether have a wvery high-
dimensional phase space, in which chaotic behav-
ior is likely, iterated maps could be interpreted as
Poincaré-maps of such a high dimensional system
and hence, are more suitable to represent them as
two-dimensional ODEs.
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Appendix A
The Rulkov Map

Rulkov introduced a model that replicates the spik-
ing and spike-bursting behavior of real neurones.
The model is represented by a two-dimensional
map:

Tiny1 = [z, + 8) + &
Yinsl = Yin — W(Zint1) + poCzi, z5) + &

(A1)

(A.2)
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Table 1. Parameter values of
the Rulkov map.
Constant Value
o 6
8 1
n 0.001
o 0.3
X <0
1— z; [
-1 T 2 oty
g N
-T’“ m] :ZV Z (A‘4)

It consists of a fast variable (z), which represents
the membrane potential of the neuron and a slow
one (y), enabling the possibility to operate on differ-
ent time scales. For the fast dynamics of z, one can
regard y as a control parameter. For some regions
of y there exists a stable cycle in the fast dynamics
of z, which generates periodic spiking. As y changes
slowly, the system will undergo a bifurcation that
destroys the stable cycle in the fast dynamics and z
will converge to a fixed point, the relaxation regime.
After some time y returns to the regime, where a
stable cycle in 7 exists and everything starts over
again.

Note that the adjacency matrix Wm is the nor-
malised weighted matrix after dividing the weight
matrix by its largest element ie. Wi = W;/3.
The constants «, 3, o, u are model parameters
(Table 1} and are all the same for every area, while
£ = D=y (t) stands for Gaussian distributed white
noise with zero average and variance 1 multiplied
by a constant (D) to adjust the noise level. The
coupling strength is denoted as g.

Appendix B
The Izhikevich model

The model by Izhikevich [Izhikevich, 2003] con-
sists of a pair of first order ordinary differential

equations:
d
%’Ui = 0.04’01‘2 + 5y; + 140 — u; + I; (Bl)
d
= albu; —u;) + & (B.2)

Table 2. Parameter values
for the Izhikevich ODE.
Constant Value
a 0.02
b 0.2
c —-50.0
d 2
Iy 10

with an after spike resetting

ifv>30, thenv:=candu:=u+d.  (B.3)

In our simulations, the equations have been
integrated, using the fourth-order Runge-Kutta
method with a step size of d¢t = 0.1.! This model
is also capable of generating spiking and spike-
bursting signals, but, as it consists of a system of
two first order ODEs, it cannot be chaotic in the
uncoupled case. Following the original recomenda-
tions, the pulse-coupling between neurones is mod-
eled by replacing the input to the neurones I with:

g

N
Li=Ii| 1+ —ﬁ Wij@(’l)j —_ 20) -+ &1'

i=1

(B.4)

where W;; is the adjacency matrix as above, g is
the coupling parameter and §& = DZg;(¢) stands
for Gaussian distributed white noise with zero aver-
age and variance 1 multiplied with a constant (D)
to adjust the noise level. Here D = 0.1 was used
in all cases. The control parameters (Table 2} were
chosen such that the model generates a chattering
signal v(t), as shown in Fig. 5.

Appendix C
Pre-processing

All simulations started with random initial con-
ditions and the transient (first 10000 iterations)
was discarded. The following 50 000 iterations were
saved for data analysis. The correlation matrices
exhibited are an average of ten realizations for the
Rulkov model and 50 for the cases using the Izhike-
vich model because of the resolution differences of
the models. As a measure for synchromicity of the
signals z;, the linear (zero-lag) correlation coeffi-
cient r(i,7) is used. The signal contains two main
frequencies: a (fast) occurrence of spikes and a

iFor a faster computation, the simple Euler integration method can be used, because its errors do not accumulate due to the

after-spike reset.
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Fig. 8.

(slow) occurrence of bursts. As we are interested
in the correlation of bursting activity, the signals
have been filtered to eliminate the high frequencies.
A recursive filter was chosen:

(C.1)

zn = (a — 1)@p + azp-1

25 T T T T
2
1.5

o g

0 500 1000 1500 2000

(b)

(a) Filter response, (b} comparison between the filtered and the unfiltered (Rulkev) signals.

2500

The filter has been applied in both directions
(forward and backward) to remove the phase shift
that it generates if applied only once. We found
a = 0.9 as suitable value. Figure 8 shows the effect

of the filter on our data.



