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We report the experimental demonstration of chaotic phase synchronization �CPS� in unidirectionally
coupled time-delay systems using electronic circuits. We have also implemented experimentally an efficient
methodology for characterizing CPS, namely, the localized sets. Snapshots of the evolution of coupled systems
and the sets as observed from the oscilloscope confirming CPS are shown experimentally. Numerical results
from different approaches, namely, phase differences, localized sets, changes in the largest Lyapunov expo-
nents, and the correlation of probability of recurrence �CCPR� corroborate the experimental observations.
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Chaotic phase synchronization �CPS� refers to the coinci-
dence of characteristic time scales of interacting chaotic dy-
namical systems, while their amplitudes remain chaotic and
often uncorrelated �1,2�. CPS plays a crucial role in under-
standing a large class of weakly interacting nonlinear dy-
namical systems and has been demonstrated both theoreti-
cally and experimentally in a wide variety of natural systems
�3–12�. Despite our substantial understanding of the phe-
nomenon of CPS and its potential applications in low-
dimensional systems, only a very few studies on it have been
reported in time-delayed systems, which are essentially
infinite-dimensional in nature �13,14�. Due to the highly non-
phase-coherent chaotic and/or hyperchaotic attractors with
complex topological properties exhibited by these systems in
general, it is often impossible to estimate the phase explicitly
and to identify CPS.

Recently, we have introduced a nonlinear transformation
to recast the original non-phase-coherent attractors into
smeared limit-cycle attractors to enable to estimate the phase
explicitly and to identify CPS in time-delay model systems
in the literature �13�. In this Rapid Communication, we re-
port the experimental demonstration of CPS in coupled time-
delay systems using electronic circuits. We have also experi-
mentally implemented the methodology of localized sets �15�
and show that this is a crucial and a general framework for
characterizing CPS even in non-phase-coherent attractors
of time-delay systems �13,14�. Our results will open up the
possibility of experimental realization of CPS in other physi-
cal systems with delay and to their potential applications.

In particular, we will demonstrate the existence of CPS in
unidirectionally coupled time-delay electronic circuits with
threshold nonlinearity in both chaotic and hyperchaotic re-
gimes experimentally. �Note that bidirectional coupling can
also work equally well.� In addition to the snapshots of time
series of both systems as seen from the oscilloscope, we have
used the framework of localized sets �15� to characterize the
existence of CPS in the above systems both experimentally
and numerically. To investigate localized sets, we have con-
sidered the “event” as maxima of the flow of the drive sys-
tem and recorded the response system to obtain the “sets”
whenever a maximum occurs in the drive system and vice
versa. The sets are then superimposed on the drive �response�
attractor, which get localized on it during CPS but spread
over the entire attractor when the systems evolve indepen-
dently. Further, we have also confirmed the existence of CPS
numerically using the localized sets, the largest Lyapunov
exponents of the coupled time-delay systems, and also with
another independent approach based on recurrence analysis,
namely, the correlation of probability of recurrence �CCPR�
�16�.

The coupled electronic circuit investigated here is shown
in Fig. 1 as a block diagram. The individual time-delay units
have a ring structure and comprise of a diode based nonlinear
device �ND� unit �Fig. 2�, a variable time-delay unit �DE-
LAY� along with an integrator �R0C0� unit.

The dynamics of the individual circuit in Fig. 1 is
represented by the delay differential equation
R0C0

dU�t�
dt =−U�t�+F�kfU�t−Td��, where U�t� is the voltage
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FIG. 1. Schematic diagram of the unidirec-
tionally coupled time-delay analog circuits with
threshold nonlinearity. ND1 and ND2 are nonlin-
ear device units; delay unit consists of ten pairs
of capacitors of 470 nF and inductors of 12 mH.
R1=R2=1.86 k�, C1=C2=100 nF, and A is the
op-amp difference amplifier.
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across the capacitor C0, U�t−Td� is the voltage across the
delay unit �DELAY�, Td=n�LC is the delay time, n is the
number of LC units, and F�kfU�t−Td�� is the static charac-
teristic of the ND shown in Fig. 2. The block diagram
�Fig. 1� also contains a differential amplifier circuit �A� with
a gain �=Rf /R used to find the difference between the two
voltage signals U1 and U2. By changing the feedback resis-
tance �Rf�, the coupling strength � can be varied.

The normalized evolution equation corresponding to the
coupled time-delay electronic circuits �Fig. 1� is represented
as �17,18�

ẋ = − x�t� + b1f�x�t − ��� ,

ẏ = − y�t� + b2f�y�t − ��� + ��x�t� − y�t�� , �1�

where x�t�=y�t�=U�t� /Us, t̂= t /R0C0, �=Td /R0C0, and
b=kf =1+ �R8 /R7� are dimensionless circuit variables and pa-
rameters. The function f�x�t−���=F�U�t−Td�� is taken to be
a symmetric piecewise linear function defined by �17,18�

f�x� = Af� − Bx . �2a�

Here

f� = �− x�, x � − x�

x , − x� � x � x�

x�, x � x�,
� �2b�

where x� is a controllable threshold value and can be altered
by adjusting the values of voltages V1 and V2. A= �R6 /R4�
and B= �R6 /R5� are positive parameters. The estimated nor-
malized values turn out to be x�=0.7, A=5.2, B=3.5,
b1=1.2, and b2=1.1 in accordance with the values of the
circuit elements. The parameter mismatch b1�b2 contributes
to the nonidentical nature of the coupled time-delay systems.
In the following, we will demonstrate the existence of CPS
as a function of the coupling strength � in both chaotic and
hyperchaotic regimes for suitable values of the delay time �.

The snapshots of the time series of both drive and re-
sponse systems as seen from the oscilloscope are shown in
Fig. 3�a� in the chaotic regime for the delay time �=1.33 and
the coupling strength �=0.9, indicating the evolution of both
systems in-phase with each other. Similarly, the snapshots of
the time series evolving in-phase with each other in the hy-
perchaotic regime for the delay time �=6.0 are shown in Fig.
3�b� for �=0.7. The phase differences calculated numerically
from the evolution equations �Eq. �1�� using the Poincaré
section technique �1,2� for different values of � are illus-
trated in Fig. 4, indicating the existence of CPS for �=0.9
with �=1.33. The existence of CPS is further characterized
both experimentally and numerically by using the framework
of localized sets �15�.

The sets obtained by sampling the time series of one of
the systems whenever a maximum occurs in the other one
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FIG. 2. ND unit of Fig. 1: actual circuit
implementation of the nonlinear activation func-
tion consisting of diodes D1=D2=1N4148, resis-
tor R1=R7=1 k�, R2=R3=10 k�, R4=2 k�,
R5=3 k�, R6=10.4 k�, and R8=5 k�, and
threshold control voltages V1=V2=0.7 V along
with different amplifying stages �OA1=OA2

=OA3=uA741�.

FIG. 3. �Color online� Snapshots of the time evolution of both
coupled systems indicating the existence of CPS in �a� chaotic re-
gime and �b� hyperchaotic regime. x axis: time �1 unit=1.0 ms�; y
axis: voltage �1 unit=1.0 V�.
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FIG. 4. �Color online� Phase difference for different values of
�=0.3, 0.5, 0.7, and 0.9 and �=1.33.

SENTHILKUMAR et al. PHYSICAL REVIEW E 82, 065201�R� �2010�

RAPID COMMUNICATIONS

065201-2



are plotted along with the chaotic attractor of the same sys-
tem for the delay time �=1.33 both experimentally and nu-
merically in Figs. 5 and 6, respectively. The sets distributed
over the entire attractor of both the drive �Figs. 5�a�i and
6�a�i� and the response �Figs. 5�b�i and 6�b�i� systems for the
coupling strength �=0.3 indicate that the time-delay systems
evolve independently. The sets that are localized on the cha-
otic attractor of both the drive �Figs. 5�c�i and 6�c�i� and the
response �Figs. 5�d�i and 6�d�i� systems for the coupling
strength �=0.9 correspond to a perfect locking of the phases
of both systems as confirmed by the zero phase difference
plotted in Fig. 4.

Next, we confirm the synchronization transition using the
largest Lyapunov exponents of the coupled time-delay sys-
tems and the CCPR �16�. The four largest Lyapunov expo-
nents of Eq. �1� are depicted in Fig. 7�a� as a function of
�� �0,1�. �1� The zero Lyapunov exponent of the response
system already becomes negative for lower values of � and
the positive Lyapunov exponents become gradually negative
for ��0.62, indicating the existence of CPS. This is a strong
indication of some degrees of correlation in the amplitudes
as transition of positive Lyapunov exponents to negative val-
ues corresponds to the stabilization of transverse instabilities
of the response attractor of both the systems even before the
onset of CPS and such a negative transition of positive

Lyapunov exponents at the onset of CPS is a typical charac-
teristic of time-delay systems �13�. Similar transitions have
also been reported in non-phase-coherent attractors of
low-dimensional systems �1,2,13�. �2� The definition of

CCPR= �P̄1�t�P̄2�t�	 /�1�2, where P̄1,2 means that the mean
value has been subtracted, �1,2 are the standard deviations of
P1�t� and P2�t�, � · 	 is the time average, and P�t� is a gener-
alized autocorrelation function based on recurrence proper-
ties �16�. If both the systems are in CPS, the probability of
recurrence is maximal at the same time t and CCPR
1. If
they are not in CPS, the maxima do not occur simultaneously
and hence one can expect a drift in both the probabilities of
recurrences resulting in low values of CCPR. The low values
of CCPR �Fig. 7�b�� in the range �� �0,0.62� indicate that
both coupled systems are not in CPS and for ��0.62 the
values of CCPR
1 confirming the existence of high quality
CPS.

It is important to note that real time estimation of either of
these measures is practically not possible. This is because of
experimental data acquisition with high precision as a func-
tion of all system parameters, which impose severe limita-
tions on handling huge data set, sampling intervals, effect of
noise, etc., and even then one has to rely on data analysis
tools for the estimation of both Lyapunov exponents and
CCPR, which are essentially numerical analysis. Therefore,
for the present study, further characterizations of CPS using
Lyapunov exponents and CCPR are suitably supplemented by
numerical simulations.

Now, we demonstrate the existence of CPS in a hypercha-
otic regime for the delay time �=6.0. For rather small �, the
sets spread over the entire hyperchaotic attractors of the
drive and the response systems. The experimental results are
shown in Figs. 5�a�ii and 5�b�ii and numerical results are
given in Figs. 6�a�ii and 6�b�ii, respectively, for �=0.3,
which confirm that both systems evolve independently. On
the other hand, for �=0.9, the observed sets that are localized
on the hyperchaotic attractors of the drive and the response
systems as shown experimentally in Figs. 5�c�ii and 5�d�ii
and numerically in Figs. 6�c�ii and 6�d�ii, respectively, in-
deed confirm the existence of CPS in the hyperchaotic re-
gime.

(a)i (b)i

(c)i (d)i

(a)ii (b)ii

(c)ii (d)ii

FIG. 5. �Color online� Experimental characterization of CPS
using the framework of localized sets in the chaotic regime �i� for
�=1.33 and in the hyperchaotic regime �ii� for �=6.0. Sets in the
drive and the response systems are distributed in �a� and �b� for
�=0.3 indicating the asynchronous state and localized in �c� and �d�
for �=0.9 indicating CPS, respectively. x axis: voltage U�t�
�1 unit=0.5 V�; y axis: voltage U�t−Td� �1 unit=2.0 V�.

-0.3

1.5

-0.3 1.5

x(
t)

x(t+ τ)

(a)i

0

1.2

0 1.2

y(
t)

y(t+ τ)

(b)i

-0.3

1.5

-0.3 1.5

x(
t)

x(t+ τ)

(c)i

0

1.2

0 1.2

y(
t)

y(t+ τ)

(d)i

-1.2

1.2

-1.2 1.2

x(
t)

x(t+ τ)

(a)ii

0

1.2

0 1.2

y(
t)

y(t+ τ)

(b)ii

-1.2

1.2

-1.2 1.2

x(
t)

x(t+ τ)

(c)ii

-1.2

1.2

-1.2 1.2

y(
t)

y(t+ τ)

(d)ii

FIG. 6. �Color online� Numerical confirmation of CPS using the
framework of localized sets in the chaotic regime �i� for �=1.33 and
in the hyperchaotic regime �ii� for �=6.0. Sets in the drive and the
response systems are distributed in �a� and �b� for �=0.3 indicating
the asynchronous state and localized in �c� and �d� for �=0.9 indi-
cating CPS, respectively.
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FIG. 7. Confirmation of CPS in the chaotic regime using �a�
four largest Lyapunov exponents and �b� correlation of probability
of recurrence �CCPR�.
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The largest ten Lyapunov exponents of the coupled time-
delay systems for the delay time �=6.0 are shown in Fig.
8�a� in the range of �� �0,1�. The four positive Lyapunov
exponents of the drive system continue to remain positive in
the entire range of �. The three least positive Lyapunov ex-
ponents of the response system become gradually negative
for ��0.4 and the largest positive Lyapunov exponent be-
comes negative for ��0.5, at which CCPR �Fig. 8�b�� also
reaches the value of unity, indicating the existence of high
quality CPS in the hyperchaotic regime. Further, we have
scanned the �� ,�� parameter space by calculating the value
of CCPR to demarcate the regimes of CPS as depicted in Fig.
9. As discussed above, the coupled systems are in CPS when
the value of CCPR
1 and it is evident from this figure that
CPS occurs in a wide range of �.

To summarize, we have demonstrated the notion of CPS
in a unidirectionally coupled time-delay electronic circuit
with threshold nonlinearity in both chaotic and hyperchaotic

regimes. The existence of CPS is observed experimentally
from snapshots of the time evolution of both the coupled
systems and is confirmed with the framework of localized
sets. Further we have corroborated the synchronization tran-
sition numerically using the phase differences, the concept of
localized sets, changes in the largest Lyapunov exponents,
and from the values of CCPR of the coupled time-delay sys-
tems, which agree well with the experimental observations.
We strongly believe that our results especially with the
framework of localized sets will lead to the identification of
CPS in other physical systems with delay and to their poten-
tial applications.
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