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Global phase synchronization in an array of time-delay systems
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We report the identification of global phase synchronization (GPS) in a linear array of unidirectionally
coupled Mackey-Glass time-delay systems exhibiting highly non-phase-coherent chaotic attractors with com-
plex topological structure. In particular, we show that the dynamical organization of all the coupled time-delay
systems in the array to form GPS is achieved by sequential synchronization as a function of the coupling
strength. Further, the asynchronous ones in the array with respect to the main sequentially synchronized cluster
organize themselves to form clusters before they achieve synchronization with the main cluster. We have
confirmed these results by estimating instantaneous phases including phase difference, average phase, average
frequency, frequency ratio, and their differences from suitably transformed phase coherent attractors after using
a nonlinear transformation of the original non-phase-coherent attractors. The results are further corroborated
using two other independent approaches based on recurrence analysis and the concept of localized sets from

the original non-phase-coherent attractors directly without explicitly introducing the measure of phase.
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I. INTRODUCTION

Chaotic phase synchronization (CPS), referred to as the
locking of the phases of the coupled chaotically evolving
dynamical systems, has been investigated in ensembles of
globally coupled arrays [1-9,11-13], networks of oscillators
[14-17] with applications to electrochemistry [7,8], laser
systems [12,13], cardiorespiratory systems [18-20], neuro-
science [21-23], ecology [24-26], climatology [27-29], etc.
Even though the notion of CPS is well studied in low dimen-
sional systems, there exist very little in-depth studies in
higher dimensional systems such as time-delay systems
which are essentially infinite dimensional in nature and often
exhibit high-dimensional, highly non-phase-coherent hyper-
chaotic attractors with complex topological structure. Conse-
quently, estimating phase explicitly to identify phase syn-
chronization in such systems is quite difficult. Nevertheless,
CPS has been recently demonstrated in two coupled piece-
wise linear and Mackey-Glass time-delay systems [30,31] by
introducing a nonlinear transformation of the original dy-
namical variable to recast the original non-phase-coherent
hyperchaotic attractors into smeared limit cycle-like attrac-
tors in order to facilitate the estimation of the phase variable
using the available methods. However, these investigations
are carried out so far only in two coupled time-delay sys-
tems. In view of the widespread applications of CPS in en-
sembles of coupled oscillators, here we investigate the exis-
tence of global phase synchronization (GPS) in an array of
unidirectionally coupled Mackey-Glass time-delay systems
and analyze the mechanism behind the dynamical organiza-
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tion of the coupled oscillators to form GPS. At first, we use
the nonlinear transformation introduced in [30,31] to esti-
mate explicitly the phases of all the oscillators in the array
and identify the existence of GPS in the array. Further, the
existence of GPS is also confirmed from the original non-
phase-coherent chaotic attractors themselves using two inde-
pendent approaches, namely, recurrence analysis [32,33] and
the concept of localized sets [34].

In addition, we will show that the onset of GPS in such
arrays does not happen instantaneously, but instead takes
place as a form of sequential synchronization. For lower val-
ues of coupling strengths the phases of nearby systems get
already synchronized with the drive system in contrast to the
far away systems. This sequential synchronization of chaotic
systems can have applications in communication systems
[35]. Furthermore, other nonsynchronized time-delay sys-
tems with respect to the sequentially synchronized cluster
display clusters of phase synchronized states among them-
selves before they become synchronized with the large clus-
ter in the sequence to form global phase synchronization.
This clustering is observed when the group of oscillators
splits into subgroups such that all the oscillators within one
cluster move in perfect phase synchrony. This clustering is
considered to be particularly significant in biological systems
[36-38]. Recently cluster synchronization in an array of
three chaotic lasers without delay was reported [39] as well.
Also global synchronization via cluster formation has been
observed in coupled phase oscillators without time-delay
[10] with simultaneous phase slips of all oscillators, where
quantized phase shifts in these phase slips have been ob-
served. By increasing the coupling, a bifurcation tree from
high-dimensional quasiperiodicity to chaos to quasiperiodic-
ity and periodicity has also been found.

The remaining paper is organized as follows: In Sec. II,
we will describe briefly the coupling configuration and the
nature of chaotic attractors exhibited by the Mackey-Glass
time-delay system. The existence of global phase synchroni-
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zation from the transformed attractors is discussed in Sec.
III, which is also confirmed from the original non-phase-
coherent chaotic attractors using recurrence analysis and the
concept of localized sets in Sec. IV. Finally, we summarize
our results in Sec. V.

II. LINEAR ARRAY OF MACKEY-GLASS
TIME-DELAY SYSTEMS

The Mackey-Glass time-delay system was originally de-
duced as a model for blood production in patients with leu-
kemia [40], and it has been well studied in the literature for
its hyperchaotic behavior [41-43] and has also been experi-
mentally realized using analog electronic circuits [44]. In this
paper, we consider a linear array of unidirectionally coupled
Mackey-Glass systems with free-end boundary conditions
represented by the following system of coupled nonlinear
first order ordinary differential equations,

. _ ax(t—17)
B0 == B+ T (1a)
L0 == )+~ e (0= x(0)]
X, (1) =— Bx,(t +[1+x,-(t—7')”]+ Xi_1 (1) = x,(2) ],
i=2,3,...,N, (1b)

where, a, 8, c are the system parameters, 7 is the time-delay
and C is the coupling strength. We have fixed the parameter
values at a;=0.2,8=0.1, c=10.0, 7=20.0, and the values of
the nonlinear parameter «; of the response systems in the
array are chosen randomly in the range «; € (0.17,0.20), so
that all the systems are effectively nonidentical. For our
simulations, we have fixed the total number of oscillators in
the array as N=20, though we confirmed our results for
N=50 also (see the Appendix).

The uncoupled drive Eq. (1a) exhibits a highly non-phase-
coherent chaotic attractor for the chosen parameter values,
which is depicted in Fig. 1(a). The first four largest
Lyapunov exponents of the uncoupled drive system are
shown in Fig. 2 as a function of the delay time 7. Note that
the phase calculated directly from the original non-phase-
coherent chaotic attractor [Fig. 1(a)] cannot yield monotoni-
cally increasing behavior as it has several closed loops,
which also contribute to the phase information, other than
the main center of rotation of the major part of the trajecto-
ries [30,31]. To overcome this problem a nonlinear transfor-
mation is introduced so as to rescale the original non-phase-
coherent chaotic attractor into smeared limit cycle-like
attractor with a single center of rotation. The transformation
is performed by introducing a new state variable [30,31],

z2(t+ 1) =x(O)x(t+ Dx(t+7), (2)

where 7 is the optimal value of time-delay to be chosen in
order to avoid any additional center of rotation. This func-
tional form of transformation (along with a delay time 7) has
been identified by generalizing the transformation used in the
case of chaotic attractors in the Lorenz systems [1]. Now, the
projected trajectory in the new state space (x(z+7),z(+7))
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FIG. 1. (a) Non-phase-coherent chaotic attractor of the drive
system given by Eq. (1a). (b) Transformed attractor [using Eq. (2)]
of the drive system. (c)-(f) Transformed attractors of some ran-
domly selected response systems (i=8,12,15,19) in the projected
phase space [x;(t+7),z,(t+7)], where they look like smeared limit
cycle attractors in the absence of the coupling along with the
Poincaré points represented by filled circles. Here 7 has been cho-
sen as 7=20.0.

[Fig. 1(b)] resembles that of a smeared limit cycle-like at-
tractor with a single fixed center of rotation. It is also to be
noted that, even though the transformed attractor has sharp
turns in the vicinity of the common center, it does not have
any closed loops as in the original non-phase-coherent attrac-
tor. Otherwise, the transformed attractor would not give rise
to monotonically increasing phase resulting in exact match-
ing of the phases of the coupled time-delay systems [30,31].

III. GPS FROM THE TRANSFORMED ATTRACTOR

In this section, we will show that the global phase syn-
chronization in the array of Mackey-Glass time-delay sys-
tems Eq. (1) is attained by a sequential phase synchroniza-
tion of the oscillators in the array as the coupling strength is
increased. Further we will also demonstrate that the remain-
ing nonsynchronized oscillators in the array form synchro-
nized clusters among themselves before attaining GPS.
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FIG. 2. The first four maximal Lyapunov exponents A, of the
Mackey-Glass time-delay system Eq. (1a) for the parameter values
a=0.1,8=0.2, 7€ (14,37) in the absence of the coupling C.
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FIG. 3. (a)-(d) Phase differences (A¢p; ;= ¢p;— ;) of the randomly selected systems (i=8,12,15,19) from the array of coupled Mackey-
Glass time-delay systems for different values of the coupling strength C. A more detailed description can be found in the text.

We use the same nonlinear transformation Eq. (2) to re-
cast the original non-phase-coherent chaotic attractors of all
the N=20 oscillators into smeared limit cycle-like attractors.
We have fixed the value of the optimal value 7in Eq. (2) as
7=8.0 for all the N oscillators. Instead one can also choose
different values for 7 for different oscillators, as they are
nonidentical systems with a parameter mismatch, to obtain
more exact unfolding for different attractors. However, we
find 7=8.0 for all the oscillators is adequate for our purpose
in the following study. We have calculated the instantaneous
phases of all the oscillators using the Poincaré section tech-
nique [1,2] from their corresponding transformed attractors.
Projected trajectories of randomly selected response systems
(i=8,12,15,19) in the array Eq. (1b) into the new state
space [x;(t+7),z,(t+7)], where they look like smeared limit
cycle-like attractors with a fixed center of rotation, are shown
in Figs. 1(c)-1(f). Filled circles in these plots correspond to
the Poincaré points.

Phase differences, Ad,=¢p,—¢;, between the drive and
some randomly selected response systems (i=8,12,15,19)
in the array Eq. (1b) are shown in Figs. 3 for different values
of the coupling strength. They increase monotonically in the
absence of coupling (C=0.0) indicating that all the oscilla-
tors are in an asynchronous state. Phase slips in the phase
differences for small values of the coupling strength indi-
cates that the oscillators are in the transition state to GPS.
Further increase in the value of the coupling strength results
in a strong boundedness of the phases of the oscillators. For
sufficiently large C, the phase differences become zero (Fig.
3) indicating the existence of phase synchronization between
the drive and the response systems. It is evident from the Fig.
3 that the eighth oscillator is synchronized with the drive at
C=0.7, while the other systems are in the transition state,
whereas 12th oscillator is synchronized with drive only at
C=0.9. The other two oscillators with the index i=15 and i
=19 reach synchronization with the drive for further larger
values of the coupling strength, C=1.0 and 1.2, respectively.
Therefore, it is clear that the nearby oscillators to the drive

system in the array are synchronized first as the coupling
strength is increased implying that the global phase synchro-
nization is reached by sequential phase synchronization of
the coupled oscillators in the array. To confirm the existence
of GPS, we have calculated the average phase difference,
7(t), defined as

1 N
OE HEZ (1 — &) (3)

The average phase difference [ 7(z)] for different values of C
is shown in Fig. 4 as a function of time ¢. In the absence of
the coupling (C=0.0), the phases of all the oscillators evolve
independently and hence their average phase difference in-
creases linearly with time. Further increase in C induces the
entrainment of phases of the oscillators and at the value of
coupling strength C=1.2 the average phase difference of all
the N oscillators becomes exactly zero, showing a high-
quality GPS in the array.

The emergence of GPS through a sequential phase syn-
chronization is also characterized by calculating the time av-
eraged phase ((¢;)) and the time averaged frequency ((€),))
of each of the oscillators in the array which are defined as
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FIG. 4. The average phase difference [ 7(z)] for different values
of the coupling strength C. For C=0.0 the phases of all the systems
are unbounded so the phase difference increases linearly with time
but for C=1.2 the phases of all the systems are bounded, showing a
high-quality phase synchronization.

016215-3



SURESH et al.

0.16

0.14

0.12

0.18

0.15

0.12

0.15 |

0.135

b(iv)

C=112 —=—
01l fe_ 12—

8.2

a(v) 0.108 b(v)
8.1
822t €=20 —— 0.11

C=20 ——

T s.16
a(vi) 0.108 b(vi)

8.1

4 8 1216 20 4 8 12
1 1

16 20

FIG. 5. (a) Time averaged phase ((¢;)) and (b) time averaged
frequency ({€);)) of all the systems plotted as a function of the
system index i for various values of the coupling strength C.
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where #; is the time of the kth crossing of the flow with the
Poincaré section of the ith attractor and (- --), denotes a time
average. The average phase and the average frequency are
shown in Figs. 5(a) and 5(b), respectively, for different val-
ues of the coupling strength as a function of the oscillator
index. A random distribution of the average phase [Fig.
5(a)(i)] and the average frequency [Fig. 5(b)(i)] for the value
of the coupling strength C=0.1 indicate that the coupled os-
cillators in the array evolve almost independently. A slight
increase in the coupling strength (to C=0.3) results in syn-
chronous evolution of the first 5 oscillators in the array as
seen in Figs. 5(a)(ii) and 5(b)(ii). For C=0.5, Figs. 5(a)(iii)
and 5(b)(iii) indicate that the first 6 oscillators are synchro-
nized. It is also to be noted from these figures that the other
desynchronized oscillators form synchronized clusters
among themselves. In particular, the oscillators with the in-
dices 8—11 synchronize among themselves to form a cluster,
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while the oscillators with the indices 13—-14, and 19-20 form
separate small clusters. These clusters can also be clearly
visualized by plotting the oscillator index plots as we will
illustrate below. It is also to be noted that even when the total
number of oscillators in the array is increased, the phenom-
enon remains qualitatively the same though the sizes of the
clusters will increase appropriately (see the Appendix below
for some details for N=50). We also note that the results
remain qualitatively unaltered even for different sets of ran-
dom values for the nonlinear parameters, «;, confirming the
robustness of our results. A similar transition to phase syn-
chronization (PS) through clustering, termed as hard transi-
tion for large coupling strength, in a chain of diffusively
coupled Rossler oscillators with large frequency mismatch
have been observed [9] but in the periodic state due to the
suppression of chaotic attractors. For further larger values of
the coupling strength, the desynchronized oscillators form
similar small clusters among themselves before attaining
GPS. The average phase and the average frequency illus-
trated in Figs. 5(a)(iv) and 5(b)(iv) for C=1.0 indicates that
most of the nearest oscillators are synchronized with the
drive, while the oscillators with the indices 18—19 form a
small separate cluster. All the oscillators in the array become
phase and/or frequency locked and evolve in synchrony
(GPS) with each other for the coupling strength C=1.12 as
depicted in Figs. 5(a)(v) and 5(b)(v) and they continue to be
in a stable phase and/or frequency synchronized state which
is shown in Figs. 5(a)(vi) and 5(b)(vi) for C=2.0.

The mechanism for the formation of clusters and GPS
may be explained as follows. Due to the mismatches in the
nonlinear parameters, «;, all the individual systems in the
array evolve independently with different phases (phase mis-
matches), and correspondingly with frequency mismatches,
for small values of the coupling strength C. As C is increased
further, the oscillators with nearest frequencies in the array
synchronize first to form clusters among themselves leaving
the clusters with relatively large frequency mismatch in iso-
lation (see Figs. 6 and 13). Further increase in C results in
the formation of a single large cluster whose constituents
exhibit a coherent phase oscillation with the drive due to the
decomposition of the clusters away from the drive in the
array. Consequently GPS results in the system. Similar
mechanism has been identified in ensemble of coupled
Rossler oscillators with frequency mismatches [45] (without
time delay).

The above dynamical organization of GPS via sequential
phase synchronization and the clustering can be also be vi-
sualized clearly by using snapshots of the oscillators in the
index vs index plot, as node vs node diagrams, as shown in
Fig. 6. The oscillators that evolve with identical values of the
average phase and/or frequency are assigned with identical
shapes. The diagonal line in Fig. 6(a) for C=0.1 corresponds
to the oscillator index i=j and they evolve independently.
Figure 6(b) indicates that the first four oscillators in the array
are synchronized with the drive for C=0.27. As discussed
above, three small clusters are seen in Fig. 6(c) for C=0.5
while the first 6 oscillators form a large synchronized cluster.
Similar small clusters are shown in Figs. 6(d) and 6(e) for
C=0.82 and 1.08, respectively, in addition to the single large
cluster formed by sequential phase synchronization of the
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FIG. 6. (Color online) Snapshots of the node vs node diagrams
(that is, oscillator index vs oscillator index plots) indicating the
sequential phase synchronization and the organization of cluster
states for different values of coupling strength. The different sym-
bols indicate that the corresponding nodes are phase synchronized.
(a) Non-phase-synchronized case for C=0.1 (b) First four oscilla-
tors in Eq. (1b) are phase synchronized with the drive system for
C=0.27. (c), (d), and (e) Sequential phase synchronization and the
formation of small cluster states for C=0.5, 0.82, and 1.08, respec-
tively, and (f) global phase synchronization for C=1.2.

oscillators in the array. Finally, GPS of all the oscillators in
the array is illustrated in Fig. 6(f) for C=1.2.

For a global picture of the emergence of GPS, we have
plotted the average phase ({¢;)) and the average frequency
((Qp)) of all the N oscillators as a function of the coupling
strength C in Figs. 7. There is an absence of any correlation
among the average phases [Fig. 7(a)] and the average fre-
quencies [Fig. 7(b)] of different oscillators for low values
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FIG. 7. (Color online) (a) Time averaged phase ({(¢;)) and (b)
time averaged frequency ({€2,)), i=1,2,...,20 plotted as a function
of the coupling strength C € (0, 1.5). Here for each value of C we
have plotted the average phase and/or frequency of all the N=20
oscillators, which is shown by the filled circles. Insets show some
of the systems get synchronized themselves to form small clusters
(each subgroup of oscillator is differentiated by different types of
circles) before they synchronize with the drive system to form GPS.
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FIG. 8. (Color online) (a) The frequency difference (ALY, ;,j
=2,3,...,N) and (b) the frequency ratio (;/(,j=2,3,...,N) are
plotted as a function of the coupling strength C e (0, 1.5). Each line
corresponds to the difference and/or ratio between a response sys-
tem and the drive system. The black filled circles indicate the aver-
age frequency difference and/or ratio of all the (N—1) response
systems from the drive system.

of the coupling strength as revealed by the random distribu-
tions of their values. The random distribution of (¢;) and
(Q;) are organized into few clusters for C=0.5 as may be
evident from the Fig. 7. Global phase synchronization
emerges for C=1.12 as may be seen from the insets. Small
synchronized clusters formed by the remaining asynchronous
oscillators for larger values of C can also be appreciated
from the insets.

We have also plotted the frequency difference (A€, ;,;
=2,3,...,N) and the frequency ratio (£);/€);,j
=2,3,...,N) of all the oscillators with that of the drive as a
function of the coupling strength by different types of lines
in Figs. 8(a) and 8(b), respectively. The black filled circles in
Figs. 8(a) and 8(b) correspond to the average frequency dif-
ference and the average frequency ratio of all the oscillators
with that of the drive. The substantial saturation in their val-
ues for C=1.12 indicates the emergence of GPS.

The emergence of global phase synchronization in the ar-
ray can also be quantified using the well-known order param-
eter [47],

1N
Rev={ | S0 ), (5)
Nj:l

t

where ¢;(7) denotes the instantaneous phase of the jth sys-
tem, (1) is the average phase and (---), denotes a time av-
erage. If all the systems are in a phase synchronized state
then R= 1. The order parameter (R) is plotted in Fig. 9 for
the number of oscillators N=20 and N=50 as a function of
the coupling strength C. As C is increased, R also increases
and for N=20 the critical value of the coupling is C>1.12
and for N=50, C will be >2.4, for the value of R=1 con-
firms the existence of GPS in the array of coupled time-delay
systems.
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FIG. 9. The phase order parameter (R) for the number of oscil-
lators N=20 and N=50 as a function of the coupling strength indi-
cating global phase synchronization in the array of coupled
Mackey-Glass time-delay systems.

IV. GPS FROM THE ORIGINAL NON-PHASE-COHERENT
ATTRACTOR

In this section, we demonstrate the existence of GPS from
the original non-phase-coherent chaotic attractors using two
different approaches, namely, recurrence quantification
analysis [32,33] and the concept of localized sets [34] with-
out estimating explicitly the measure of phase.

A. GPS using recurrence analysis

Several measures of complexity which quantify small
scale structures in the recurrence plots have been proposed
and are known as recurrence quantification analysis (RQA)
[32,33]. Certain measures have also been introduced to char-
acterize and identify different kinds of synchronization tran-
sitions in coupled chaotic systems. These measures have the
advantage of applicability in the analysis of experimental
systems and, in particular, in the case of very small available
data sets. Further, these measures can also be used in the case
of non-phase-coherent chaotic and/or hyperchaotic attractors
of time-delay systems [30,31,46], where it is difficult and
often even impossible to calculate the phase explicitly.
Among the available recurrence quantification measures, we
use the correlation of probability of recurrence (CPR) and
the generalized autocorrelation function P(f) to confirm the
existence of GPS in the array of coupled time-delay systems
Eq. (1), both qualitatively and quantitatively.

A criterion to quantify phase synchronization between
two systems is the CPR defined as

CPR = (P,(1) P,(1))/ oy 05, (6)

where P(t) is the generalized autocorrelation function repre-
sented as
N-t

1
P(t) = N_—IE ®(6_ ”Xz = Xiss

), (7

where O is the Heaviside function, X; is the ith data point of
the system X, € is a predefined threshold, | -|| is the Euclidean

norm, and N is the number of data points, 131,2 means that the
mean value has been subtracted and o, are the standard
deviations of P(¢) and P,(r), respectively. Looking at the
coincidence of the positions of the maxima of P(r) of the
systems, one can qualitatively identify PS [32,33]. If both
systems are in CPS, the probability of recurrence is maximal
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at the same time ¢ and CPR~ 1. If they are not in CPS, the
maxima do not occur simultaneously and hence one can ex-
pect a drift in both the probability of recurrences resulting in
low values of CPR.

The generalized autocorrelation function of the drive
P,(r) and that of some response systems (i=8, 12, and 19)
Pg(1), Py5(1), and P y(¢) are depicted in Fig. 10 for different
values of the coupling strength. In the absence of coupling
(€C=0.0), all systems evolve independently and hence the
maxima of their respective generalized autocorrelation func-
tions do not occur simultaneously as shown in Fig. 10(a). On
increasing the coupling strength, oscillators with a lower
value of index in the array become synchronized first result-
ing in sequential phase synchronization and this can also be
identified from the generalized autocorrelation functions of
the response systems in the array. For instance, Pg(z), P ,(1),
and P,y(¢) are shown along with P(¢) in Fig. 10(b) for C
=0.4. It is clear from this figure that the maxima of the drive
P, (1) and those of the response Pg(7) are in complete agree-
ment with each other [Fig. 10(b)(i)] indicating the existence
of PS between them. On the other hand, only some of the
maxima of the response system P,() are in coincidence
with those of the drive [Fig. 10(b)(ii)] illustrating that the
response system i=12 is in transition to PS, whereas the
maxima of the response system Po() do not coincide with
those of the drive [Fig. 10(b)(iii)] indicating that the re-
sponse system i=19 is in an asynchronous state for the same
value of C. For C=1.2, almost all of the positions of the
peaks of the generalized auto correlation functions P,(z),
Pg(1), P1,(1), and P,o(1) are in agreement with each other as
illustrated in Fig. 10(c) confirming the existence of GPS via
sequential phase synchronization. It is also to be noted that
the magnitudes of the peaks of all the oscillators have gen-
erally of different values and the differences in the heights of
the peaks indicate that there is no correlation in the ampli-
tudes of the coupled systems. Furthermore, the formation of
clusters by the other asynchronous oscillators in the array
can also be realized by plotting their respective generalized
autocorrelation functions, which will show that all their
maxima are in good agreement with each other, whereas
there exists a drift between them and the maxima of the
sequentially synchronized cluster.

The existence of GPS via sequential phase synchroniza-
tion is also quantified using value of the index CPR of the
response systems with the drive as shown in Fig. 11. The
different lines correspond to the index of the oscillators (i
=2,8,12,19) in the array. It is evident from the figure that
the oscillators with increasing index attain the value of unity
in a sequence as a function of the coupling strength and
finally for C>1.12 the CPR of all the response systems with
the drive reaches unity confirming that all the coupled oscil-
lators are in GPS. The mean value of CPR of all the response
systems in the array is shown as filled circles, which also
confirms the existence of GPS for C>1.12.

B. GPS using the concept of localized sets

Recently, an interesting framework to identify CPS,
namely, the concept of localized sets [34] has been intro-
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FIG. 10. (Color online) Generalized autocorrelation functions of the drive P,(r) and randomly selected response systems (i=8, 12, and19)
Pg(t), Py5(t), and Pjo(7) indicating (a) nonphase synchronization for C=0.0, (b) generalized autocorrelation functions for C=0.4 (bi) PS
between the systems 1 and 8, (bii) approximate PS between the systems 1 and 12, and (biii) non-PS between the systems 1 and 19, and (c)

PS between all the systems (i=1, 8, 12, and 19) for C=1.2.

duced. This approach provides an easy and efficient way to
detect CPS especially in complicated non-phase-coherent at-
tractors. The basic idea of this concept is to define a typical
event in one of the systems and then observe the other sys-
tem whenever this event occurs. These observations give
raise to a set D. Depending upon the property of this set D,
one can state whether PS exists or not. The coupled systems
evolve independently if the sets obtained by observing the
corresponding events in the systems spread over the attractor
of the systems. On the other hand, if the sets are localized on
the attractors then CPS exists between them.

We have confirmed the existence of the GPS in the linear
array of Mackey-Glass time-delay systems Eq. (1) by using
this concept of localized sets. Now, we will demonstrate the
existence of GPS via sequential phase synchronization in the
randomly selected response systems (i=1,8,12,19). We
have defined the event as Poincafe sections in the attractors

CPR;
CPR,
CPRy

o) Jpguu—

CPR,,

0 02 04 06 08 1
C

1.2 14 1.6

FIG. 11. (Color online) The index CPR as a function of the
coupling strength C. Different lines correspond to the CPR of dif-
ferent (i=2, 8, 12, and 19) response systems with the drive system.
The filled circles correspond to the mean value of the CPR of all the
(N—1) systems in the array.

indicated as + marks in Figs. 12. The set, indicated as filled
circles, obtained by observing the drive system (i=1) when-
ever the defined event occurs in the response system (i=8) is
shown in Fig. 12(a) and that obtained by observing the re-
sponse systems i=8,12,19 whenever the defined event oc-
curs in the drive system are shown in Figs. 12(b)-12(d) for
the value of coupling strength C=0.0. As the obtained sets
are spread over the attractors, all the systems evolve inde-
pendently and there is no CPS in the absence of coupling
between them. Further when we increase the coupling
strength to C=0.4, the oscillator (i=8) is partially synchro-
nized with the drive as the sets are almost localized but the
sets in the oscillators i=12,19 are spread over the attractors
which means that they are not yet phase synchronized with
the drive system. This is shown in Figs. 12(e)-12(h). Again
increasing the coupling strength to C=0.6, the sets are fur-
ther bounded to a small region over the attractors which
shows that the oscillators i=8,12 are synchronized with the
drive, but the oscillator i=19 is less phase synchronized with
the drive which is represented by the spread of the events
over the attractor as shown in Figs. 12(i)-12(1). Further, the
Figs. 12(m)-12(t) indicate the situation for C=0.76 and C
=1.2, respectively, where all the oscillators are now phase
synchronized with the drive as the sets are localized over the
attractor confirming the existence of GPS in an array via
sequential phase synchronization as the coupling strength is
increased.

Further, the formation of clusters can also be realized us-
ing the concept of localized sets by defining the event among
the response systems that form the clusters and observing the
other response systems that are in the same cluster. In this
case the obtained sets by observing the event in the drive will
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FIG. 12. (Color online) First row (a), (e), (i), (m), (q) corresponds to the attractors of the drive system (i=1) and the rows (b), (f), (j), (n),
(1); (¢), (g), (k), (0), (s); and (d), (h), (1), (p), (t) correspond to the attractors of some randomly selected response systems (i=8,12,19). The
+ marks represent the events (Poincaré sections) in the corresponding attractors. In (a)-(d) the sets (represented by the filled circles) are
spread over the attractors and hence there is no CPS for the value of coupling strength C=0.0. In (e)-(h) for C=0.4 and in (i)-(1), (m)-(p),
and (q)-(t) the sets are localized confirming the existence of GPS in the array for C=0.6, 0.76, and 1.2, respectively.

spread over the attractor of the response systems, while the
sets obtained by observing the event among the response
systems that form a cluster will be localized on their respec-
tive attractors.

V. SUMMARY AND CONCLUSION

We have demonstrated the existence of global phase syn-
chronization via sequential phase synchronization in an array
of coupled Mackey-Glass time-delay systems with parameter
mismatches, which exhibit highly non-phase-coherent attrac-
tors with complex topological structure. Further, we have
also shown that the remaining asynchronous systems will
organize themselves to form different clusters before they get
phase synchronized with the main cluster to form global
phase synchronization. We have confirmed the existence of
GPS via sequential phase synchronization by estimating the
phase difference as a function of the coupling strength, the
average frequency and the average phase as a function of the
oscillator index and the coupling strength after calculating
the phase variables from the transformed attractors. We have
also demonstrated the existence of sequential phase synchro-
nization and the formation of clusters by the remaining os-
cillators using the average frequency, average phase and spe-

cifically using the index vs index plot of the oscillators.
Furthermore, we have also confirmed the existence of GPS
via sequential phase synchronization using the recurrence
quantification measures and the concept of localized sets
which are calculated from the original non-phase-coherent
attractors of the coupled Mackey-Glass time-delay systems.
It is also to noted that we have obtained similar transitions to
GPS via clustering even in the hyperchaotic regimes of Fig.
2 for the Mackey-Glass systems and also in the coupled
piecewise linear time-delay systems (with five positive
Lyapunov exponents).
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APPENDIX

The dynamical organization of GPS via sequential phase
synchronization and the cluster formation can be visualized
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FIG. 13. (Color online) Snapshots of the node vs node diagram indicating the sequential phase synchronization and the organization of
cluster states of N=50 oscillators for different values of coupling strength, C. The different symbols indicate that the corresponding nodes
are phase synchronized. (a) Non-phase-synchronized case for C=0.1, (b) first seven oscillators in Eq. (1b) are phase synchronized with the
drive system for C=0.4, (c), (d), and (e) sequential phase synchronization and the formation of small cluster states for C=0.53, 1.9, and 2.3,
respectively, and (f) global phase synchronization of N=50 oscillators for C=2.5.

by using the snapshots of N=50 oscillators in the index vs
index plot as shown in Fig. 13. The diagonal line in Fig.
13(a) for the value of coupling C=0.1 corresponds to the
oscillator index i=j and the oscillators evolve independently.
Further in Fig. 13(b), the first seven oscillators in the array
are synchronized with the drive and the oscillators 8§—11 form
a separate cluster for the coupling strength C=0.4. Further,
the first eleven oscillators in the array are synchronized and

four small separate clusters are seen in Fig. 13(c) for C
=0.53. Similar small clusters are formed in Fig. 13(d) for
C=1.9 while the first thirty one oscillators form a large syn-
chronized cluster. Further, in Fig. 13(e) the first forty four
oscillators are synchronized with the drive and the oscillators
45-50 form a separate cluster for C=2.3. Finally, the occur-
rence of GPS of all the oscillators in the array is illustrated in
Fig. 13(f) for the value of coupling strength C=2.5.
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