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Chaos synchronization in a ring of diffusively coupled nonlinear oscillators driven by an external identical
oscillator is studied. Based on numerical simulations we show that by introducing additional couplings at
(mN_.+1)-th oscillators in the ring, where m is an integer and N, is the maximum number of synchronized
oscillators in the ring with a single coupling, the maximum number of oscillators that can be synchronized can
be increased considerably beyond the limit restricted by size instability. We also demonstrate that there exists
an exponential relation between the number of oscillators that can support stable synchronization in the ring
with the external drive and the critical coupling strength e, with a scaling exponent . The critical coupling
strength is calculated by numerically estimating the synchronization error and is also confirmed from the
conditional Lyapunov exponents of the coupled systems. We find that the same scaling relation exists for m
couplings between the drive and the ring. Further, we have examined the robustness of the synchronous states
against Gaussian white noise and found that the synchronization error exhibits a power-law decay as a function
of the noise intensity indicating the existence of both noise-enhanced and noise-induced synchronizations
depending on the value of the coupling strength . In addition, we have found that &, shows an exponential
decay as a function of the number of additional couplings. These results are demonstrated using the paradig-

matic models of Rossler and Lorenz oscillators.
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I. INTRODUCTION

Chaos synchronization has been receiving a great deal of
interest for more than three decades [1-5]. In particular,
chaos synchronization in arrays of coupled nonlinear dy-
namical systems has been extensively investigated over
the years in view of its diverse applications in spatially ex-
tended systems, neural process, networks, etc. [6—11]. Linear
arrays with periodic boundary condition (ring geometry)
have been used widely in modeling physiological, biochemi-
cal, and biological phenomena [11-13]. For example, mor-
phogenesis in biological context [ 14] and transitions between
different animal gaits have been explained by considering a
model composed of a ring of coupled oscillators [15]. An
important application of the ring geometry is that the result-
ing spatiotemporal patterns in the ensemble of coupled oscil-
lators can be analyzed through symmetry arguments [12,15].
Recently, several interesting dynamical properties/collective
behaviors including amplitude death and chimera states
have been identified in such a ring type configuration
[11-13,16-24].

Some of the recent studies have considered synchroniza-
tion dynamics in both ring and linear arrays coupled together
in order to understand the dynamics of basic units of net-
works [11,18-20]. Recently, interesting scaling behavior of
correlation properties of interacting dynamical systems in
such a configuration has been demonstrated [20]. However,
most of the studies have considered unidirectional coupling
in both the ring and linear arrays. Because of the diverse
nature of interaction in real world phenomena, we have con-
sidered diffusively (nearest neighbor) coupled chaotic sys-
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tems with ring geometry driven by an external identical drive
in view of its widespread applications in engineering, robot-
ics, networks, and physiological and biological systems
[25,26]. For instance, cultured networks of heart cells are
examples of biological structures with strong nearest-
neighbor coupling [24,27].

The phenomenon of size instability, where a critical size
of the number of oscillators up to which a stable synchro-
nous chaotic state exists, of a uniform synchronous state
in arrays of coupled oscillators with both periodic and
free-end boundary conditions have been widely studied
[6,7,12,13,28-33]. Increasing the number of oscillators
beyond this limit leads to desynchronization and the
occurrence of spatially incoherent behavior (e.g., high-
dimensional or spatiotemporal chaos). The stability of
synchronous chaos in coupled dynamical systems plays a
crucial role in the study of pattern formation, spatiotemporal
chaos, etc. [7,30,32,34,35]. In this connection, using the
paradigmatic models of Rossler and Lorenz oscillators we
shall demonstrate in this paper that the maximal number of
oscillators in the ring geometry that can support stable syn-
chronous chaos can be increased by integer multiples of the
original number of oscillators in the ring with additional cou-
plings from the same drive oscillator. Furthermore, it is also
found that the critical coupling strength and the number of
oscillators which can be synchronized in the ring exhibit an
exponential relation with a scaling exponent and indeed the
relation remains unaltered even on increasing the number of
couplings between the drive and the ring. In addition, the
synchronization error displays a power-law decay as a func-
tion of the noise intensity for a fixed value of the coupling
strength indicating the existence of noise enhanced/induced
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synchronization. It is to be noted that small world networks
can be generated by introducing additional couplings be-
tween randomly selected nodes to create shortest paths
(links) between distant nodes [10]. Further, recent studies on
synchronizability of networks have been employing pinning
control in which hubs in the networks are connected to the
same drive node [10] as in our present study.

In particular, we consider here the Rossler and Lorenz
oscillators in a ring geometry with diffusive coupling be-
tween them and driven by an external identical oscillator,
whose strength is proportional to a parameter € [see Eq. (2)
below]. Based on numerical simulations, we find that the
critical coupling strength, say &., below which no synchro-
nization exists (e <g,), of the external drive increases expo-
nentially with a scaling exponent, y € (0.3,0.5), as a function
of the number of oscillators in the array that supports a stable
synchronous state. Further we observe that the number of
oscillators which supports such a stable synchronous state
can be increased in integer multiples by introducing addi-
tional couplings at the (mN,+ 1)-th oscillator of the ring with
same value of the coupling strength, where m is the number
of couplings and N, is the maximum number of oscillators in
the ring that can sustain stable synchronization with a single
coupling. Interestingly, this exponential relation is main-
tained while increasing the number of couplings, m, between
the array and the external drive. In addition, we have found
that &, shows an exponential decay as a function of the num-
ber of additional couplings between the drive and the re-
sponse array for a fixed number of oscillators in the array.
Further, we find that these results are robust against Gaussian
white noise of small intensity and the synchronization error
exhibits a power-law decay as a function of the noise inten-
sity. These results also indicate the existence of both the
phenomena of noise-enhanced and noise-induced synchroni-
zations depending on the value of the coupling strength &
beyond certain threshold values of the noise intensity. It is to
be emphasized that all the numerical simulations throughout
the manuscript have been repeated with several initial con-
ditions and the results are the averages of a large number of
realizations.

The structure of the paper is as follows. In Sec. II, we
study synchronization in rings of diffusively coupled Rossler
and Lorenz systems driven by external identical oscillators
with a drive-response configuration. We show that in both
the cases the critical coupling strength increases exponen-
tially with the number of oscillators in the response array
with a scaling exponent. In addition, the systems exhibit a
power-law decay of the synchronization error as a function
of the noise intensity demonstrating noise-enhanced and
noise-induced synchronizations depending on the value of
the coupling strength. In Sec. III, we demonstrate that the
size of the ring can be increased beyond the size instability
limit by integer multiples of the maximum number of syn-
chronized oscillators (N,) in the ring with a single coupling
for the same value of coupling strength. We also show that
the same scaling relation with a characteristic exponent is
valid for the case of arbitrary number of couplings also. Fur-
ther, we examine the effect of noise on the robustness of the
synchronous state for a fixed value of the noise intensity and
as a function of the noise intensity for a fixed value of the
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FIG. 1. (Color online) Schematic diagram of the ring of diffu-
sively coupled oscillators driven by an external identical oscillator
with drive-response configuration.

coupling strength in all the cases. Finally, in Sec. IV, we
present a summary and conclusions.

II. CHAOS SYNCHRONIZATION IN DIFFUSIVELY
COUPLED OSCILLATORS DRIVEN BY AN EXTERNAL
IDENTICAL OSCILLATOR

For the present study, we consider a coupling scheme with
drive-response configuration as shown in Fig. 1, in which the
diffusively coupled circular array is driven by an external
identical oscillator. Here “0” denotes the external drive and
“1,” “2,” ...“N” denote the constituents of the response array
with nearest-neighbor (diffusive) coupling. For simplicity,
we assume that all the oscillators in the drive-response con-
figuration are identical. In this section, we study chaos syn-
chronization in the response array when driven by the exter-
nal drive. For this purpose, we have considered Rossler and
Lorenz oscillators coupled according to Fig. 1. The value of
the diffusive coupling constant is chosen such that all the
oscillators in the array are in a stable synchronous state. By
varying the number of oscillators in the response array from
N=2 onwards, we calculate the critical value of the coupling
constant €. at and above which the response array evolves in
synchrony with the external drive.

A. Coupled Rossler system

First we analyze the coupled Rossler systems given by the
dynamical equations

K=~ (o+20),
Yo =Xo+ ayg
Z0=b+zo(xg— ), (1)

)Cj =- (yj +Z]) + d(.Xj+1 +.Xj_1 - 2xj) + 51!.]'8()(:0—)6]'),
(2a)

066219-2



SCALING AND SYNCHRONIZATION IN A RING OF...

i=b+zix;-c), j=12,---,N, (2¢)

where a=0.15, »=0.2, ¢=10, d=1, and ¢ is the coupling
strength. Here the variable x;, y, and z, correspond to the
drive system and x;, y;, and z; (j=1,2,...,N) represent the
diffusively coupled response array. The first oscillator of the
response array Eq. (2) is driven by the drive Eq. (1). & is
the Kronecker delta function given by

5 1 fori=j
“710 otherwise.

The isolated system Eq. (1) exhibits chaotic behavior for the
above choice of parameters with the Lyapunov exponents
N =0.1304>0, \,=0, and A;=-14.1405.

Next we shall study the dynamics of the drive-response
configuration Egs. (1) and (2). The value of the diffusive
coupling constant d is chosen such that it supports the maxi-
mum number of oscillators in the circular array to evolve in
synchronous fashion. In the absence of any external coupling
(€=0), the array of diffusively coupled Rossler systems Eq.
(2) exhibits chaos synchronization in all the N oscillators
with N<N,,,, with [7]

ks

Nmax P )
sin™! (VA pax/4d)

where \,,, is the maximal Lyapunov exponent. One can eas-
ily check that N,,=17 for the above choice of parameters.

As soon as the external drive is switched on (e# 0), the
stable synchronous state of the diffusively coupled oscilla-
tors gets destroyed for small values of e. The number of
oscillators in the response array Eq. (2) which retains syn-
chronization with the drive Eq. (1) depends on the coupling
strength €. To estimate the quality of synchronization, we
define a measure, namely, the synchronization error, as the
Euclidean norm

(3)

172

N
7)) =1 Sl -5)+ 0=+ o= 221+ @)
=1

In order to get a perfect synchronization in the drive-
response configuration, Egs. (1) and (2), we require 7— 0 as
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FIG. 2. (Color online) Variation of the critical coupling strength,
€., as a function of the number of oscillators, N, for (a) Rossler
system (gp=0.1665 and y=0.4842) and (b) Lorenz system (g
=4.8158 and y=0.4731). Filled circles correspond to the numerical
data and solid lines are the plot of &, using relation Eq. (5).
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TABLE 1. Critical coupling strength &,

Rossler system Lorenz system

N g, N g

2 0.447 2 12.528
3 0.721 3 20.288
4 1.134 4 31.334
5 1.882 5 51.486

t—o0. We remark here that all the simulations in the manu-
script are performed for an average of over 100 random ini-
tial conditions. By examining 7, we extract the critical cou-
pling strength &, corresponding to the number of oscillators,
N, in the response array, whose dynamics are entrained with
that of the drive in phase space. For example, for N=2, we
find the critical coupling strength as €.=0.47. The &, values
are given in Table I for different values of N. However, for
N=06, the system gets destabilized or becomes completely
unstable, for any value of € #0.

By careful examination of the numerical values, we real-
ize that there is an exponential relation between the number
of oscillators (N) in the response array that supports synchro-
nization with the external drive and the critical coupling
strength, €.. By fitting the numerical values, one can easily
establish the relation connecting €. and N as

e.=gg exp(yN), (5)

with the proportionality constant £y=0.1665 and the scaling
exponent y=0.4842.

The critical coupling strength as a function of the number
of oscillators is shown in Fig. 2(a), where the filled circles
correspond to numerical data and the solid line is the fitted
data using the relation Eq. (5). The above result is also con-
firmed by calculating the conditional Lyapunov exponents
(CLEs) of the response array by increasing the number of the
coupled oscillators N. Here, by CLE we mean the largest
Lyapunov exponent of the response array, which of course
should be less than zero in order to have a synchronous state.
Figure 3 shows the variation of CLEs as a function of & for
the various numbers of oscillators in the response array.
From Fig. 3, one can identify that the value of & for each N,
where a transition of the CLE from positive to negative value
occurs, agrees with the value of ¢, given in Table L

0.06
0.04
0.021

ACLE

0.00
—0.02
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%.O 0.5 1.0 1.5 2.0 2.5
e

FIG. 3. (Color online) Conditional Lyapunov exponents of the
coupled Rossler system Eq. (2) for different values of the number of
oscillators (N) in the array as a function of the coupling strength.
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B. Coupled Lorenz systems

Next we consider the case of the Lorenz system described
by the following set of equations [36,37] as the drive,

%o = 0(yo—Xo),
Vo= rXo— Yo — X020

Z9=— Bz + XoYo» (6)

where 0=10, r=23 and B=1. A ring of diffusively coupled
Lorenz systems for the response array can be represented by
the following set of coupled equations,

ij (T(y] —Xj) +d('xj+l +'xj—l - 2)CJ) + 5],‘]'8()60 —Xj),

(7a)
Vi=IX =YX (7b)
z’,-=—,sz+xjyj, j=12,---,N, (7c)

where d is the diffusive coupling constant and ¢ is the cou-
pling strength of the external drive. One may note that the
isolated system Eq. (6) exhibits chaotic behavior for the
above choice of parameters with the Lyapunov exponents
N=0.6075>0, N\3=0, and A3=—-17.9194.

We study the variation of the critical coupling strength as
a function of the number of oscillators in the response array
by numerically examining the synchronization error # in a
similar fashion as in the case of the coupled Rossler oscilla-
tors. For this purpose, we fix the diffusive coupling constant
as d=30. In this case, the response array Eq. (7), in the
absence of external drive (¢=0), supports a maximum of N
=9 oscillators in the stable synchronous state as per Eq. (3).

When the external coupling is switched on, the synchro-
nization in the array Eq. (7) gets lost. However, by choosing
the number of oscillators, N, and the coupling strength, &,
appropriately one can synchronize the array with the external
drive. The values of &, for different numbers of oscillators in
the response array, N, are also given in Table I. Figure 2(b)
depicts the plot of N versus e.. It is easy to see that, as in the
case of the coupled Rossler oscillators discussed above, &,
again increases exponentially as a function of N according to
the relation Eq. (5) with £,=4.8158 and y=0.4731.

The above results have also been examined by calculating
the conditional Lyapunov exponents associated with Eq. (7)
and it is confirmed that the largest CLE (cf. Figure 4) transits
from positive to negative value at the critical coupling
strength of a given N as shown in Table 1.

So far, we have considered Rossler and Lorenz oscillators
with a ring geometry and driven by an external identical
oscillator in a drive-response configuration. Based on nu-
merical simulations, we have found that there is an exponen-
tial relation connecting the critical value of the coupling
strength e. and the number of oscillators in the response
array N that evolve in synchrony with the external drive with
a scaling exponent y=0.48 for both the Rossler and Lorenz
oscillators. Next, we will examine the effect of Gaussian
white noise on the stability of synchronization of the coupled
oscillators.
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FIG. 4. (Color online) Conditional Lyapunov exponents of the
coupled Lorenz system Eq. (7) for different values of the number of
oscillators in the array as a function of the coupling strength.

C. Effect of noise

We have examined the robustness of the synchronous
states of the coupled oscillators by including Gaussian white
noise to the first variable of all the systems. Interestingly, we
find that the results obtained remain unaltered for small val-
ues of the noise intensity and the synchronization error, 7,
follows a power law decay as the intensity of the noise is
increased resulting in noise-enhanced and noise-induced syn-
chronizations depending on the value of the coupling
strength. It is of interest to note that similar noise-enhanced
phase synchronization in two coupled noisy Rossler oscilla-
tors [11,38] and noise-induced phase synchronization in two
coupled Rossler and Lorenz oscillators [11,39] have been
observed.

In particular, we have included the Gaussian white noise,

V2aDy&(t) with a=0.01 to the x variable of all the coupled
systems including the drive after every time step, where D,
is the noise intensity and &(¢) is the Gaussian white noise
[40]. We have calculated the CLEs for both the Rossler and
Lorenz oscillators as in the previous section by including a
small noise with noise intensity Dy=0.001, which are plotted
in Figs. 5(a) and 5(b), respectively. It is evident from this
figure that the critical values of & for the chosen value of the

40 50 60

FIG. 5. (Color online) Conditional Lyapunov exponents of the
coupled (a) Rossler and, (b) Lorenz systems for different values of
the number of oscillators in the array as a function of the coupling
strength in the presence of Gaussian white noise with intensity
Dy=0.001.
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FIG. 6. (Color online) Time averaged synchronization error {7)
for different numbers of oscillators in the ring as a function of the
noise intensity D for a fixed value of ¢, displaying a power law
decay for (a) the Rossler oscillators in the range Dy € (0.01,1), and
(b) the Lorenz oscillators in the range D, € (0.01,10).

noise intensity remain almost the same as in Figs. 3 and 4 for
the Rossler and Lorenz oscillators, respectively. Hence, the
exponential relation between the number of oscillators in the
ring and their corresponding e, remains the same in the pres-
ence of small noise also.

Furthermore, we have calculated the synchronization er-
ror 7 by increasing the noise intensity D, at the threshold
value of &, namely &, shown in Table I. The average
synchronization error (7), where (-) denotes the time aver-
age over 500 000 time steps, for different values of N in
the ring as a function of noise intensity D, is shown in Figs.
6(a) and 6(b) for the Rossler and Lorenz systems, respec-
tively. The average synchronization error for both the
Rossler and Lorenz systems for different numbers of oscilla-
tors in the ring follows a power-law decay as a function of
the noise intensity D, beyond certain threshold values of Dy,
i.e., Dg=0.01.

In our studies, we have fixed the value of the coupling
strength e at the critical coupling strength €. as shown in

Al
AY
Drive @
1
1
1
1

Response array
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Tables for different values of N. On increasing the noise
intensity D,, the synchronization error follows a power-
law decay as a function of Dy after certain threshold value of
noise intensity. This naturally corresponds to a noise-
enhanced synchronization and also confirms the robustness
of the synchronous state. Interestingly, we have also ob-
served that by fixing € at a value less than that of the syn-
chronization threshold &., noise can induce synchronization
between the ring and the drive oscillator. The synchroniza-
tion error again shows a power-law decay as a function of
the noise intensity (exactly similar to Figs. 6 omitted here to
avoid repetition), exhibiting noise-induced synchronization.
Thus we have observed both the phenomena of noise-
enhanced and noise-induced synchronizations depending
upon the choice of e.

III. OVERCOMING SIZE INSTABILITY BY
INTRODUCING ADDITIONAL COUPLINGS

In the above, we have pointed out that, when one consid-
ers an array of diffusively coupled chaotic oscillators (with a
ring geometry) driven by an external identical forcing in the
drive-response configuration, the critical coupling strength of
the external drive required to synchronize the response array
varies exponentially with the number of oscillators within
the synchronization regime. As a consequence of the expo-
nential relation, the number of oscillators in the response
array that can be synchronized with the external drive is
limited to 4 or 5 because one requires a high-coupling
strength, which results in desynchronization above a certain
threshold value of the coupling strength due to size instabil-
ity. However, we wish to point out here that it is possible to
increase the number of oscillators in the response array,
which are synchronized with the external drive by increasing
the number of couplings. In Fig. 7, we show a schematic
diagram for the realization of the drive-response configura-
tion with more than one coupling. In this section we explore
the possibility of increasing the number of oscillators that
evolve in synchrony with the drive and the robustness of the
scaling exponent y when one introduces more number of
couplings between the drive and the response array.

In order to study the effect of making more number of
couplings between the drive and the response array, we again

FIG. 7. (Color online) Sche-
matic diagram of the ring of diffu-
sively coupled oscillators driven
by an external identical oscillator
with additional coupling in (a)
first neighbor and (b) second
neighbor.

©)
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’
’
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consider the coupled Rossler systems as discussed earlier in
Sec. IT A. The drive system is assumed to follow the same set
of Eq. (1) as before. Then the governing equations for the
response array can be written as

K==+ z) +dxj +x0 = 2x) + pi(xg—x;), (8a)

yj=x;+ay;, (8b)
Zj:b+zj(xj_c)’ j:1’2"“’N9 (SC)
where
m—1
1 for j=ki+1,
= Sivie1s O = 9
Pi 8% ok ki {0 otherwise. ®

and & corresponds to the coupling strength. Here m denotes
the number of couplings and [ represents the /-th neighbor of
the first oscillator in the response array. For example, /=1 for
the first neighbor, /=2 for the second neighbor and so on.

A. Second coupling at the first neighbor

First let us consider the case in which there is a second
coupling (of the same strength as the first one) between the
external drive and the response array in the immediate neigh-
borhood of the first oscillator, that is, /=1 in Eq. (9), which is
already coupled to the drive [cf. Figure 7(a)]. For simplicity,
we consider the coupled Rossler systems Eq. (1) and (III)
with N=3 with coupling at the first and second oscillators
in the array. Now, interestingly it is easy to see that the
critical coupling strength required to synchronize all the
three oscillators in the array gets reduced to £.~0.311 from
£,~0.407 (see Table I). Similarly, up to N=6 the second
additional coupling helps to reduce the critical values of € as
tabulated in Table II for the coupled Rossler oscillators. The
same analysis can be extended to the Lorenz oscillators
Egs. (6) and (7a)—(7¢) as well. Again the results are tabulated
in Table II. It may be noted that for such a second additional
coupling one additional oscillator, namely, N=6, in the ring
can be synchronized compared to the case of a single cou-
pling (see Table I). Further, the critical values of & in Table II
again show an exponential relation with the number of syn-
chronized oscillators in the array as shown in Figs. 8(a) and
8(b) for the Rossler and Lorenz oscillators, respectively.
Here the proportionality constant £,=0.0788 and the scaling
exponent y=0.4303 for the Rossler oscillators and g
=2.7351 and y=0.3878 for the Lorenz oscillators.

TABLE II. Critical coupling strength . for second coupling at
the first neighbor

Rossler system Lorenz system

N g N &

3 0.311 3 9.189
4 0.441 4 12.895
5 0.647 5 18.435
6 1.056 6 28.297
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FIG. 8. (Color online) The variation of the critical coupling
strength, €., as a function of the number of oscillators, N, for sec-
ond additional coupling at the first neighbor of the first coupling for
(a) Rossler system (g7=0.0788 and y=0.43303), and (b) Lorenz
system (g9=2.7351 and y=0.3878). Filled circles corresponds to
the numerical data and solid lines are the plot of e. using relation
Eq. (5).

The conditional Lyapunov exponents of the coupled
Rossler and Lorenz oscillators for N=3, 4, 5, and 6 oscilla-
tors in the ring as a function of ¢ is shown in Figs. 9(a) and
9(b), respectively. It is to be noted that all the CLEs change
their values from positive to negative near the critical values
of £ as in Table II.

We have also investigated the effect of noise in the
present case as well. The CLEs of both the coupled Rossler
and Lorenz oscillators for different N values in the ring for
the noise intensity Dy=0.001 is plotted in Figs. 10(a) and
10(b) as a function of e. Again the CLEs change their signs
almost at the same critical values of & as the CLEs of the
coupled oscillators without noise [Figs. 9(a) and 9(b)]
thereby preserving the same exponential relation between the
critical values of & and the number of oscillators synchro-
nized in the ring. Further, the synchronization error (7) fol-
lows a power law decay as a function of the noise intensity
D, for both the Rossler and Lorenz oscillators as shown in
Figs. 11(a) and 11(b) beyond certain threshold values of D,

FIG. 9. (Color online) Conditional Lyapunov exponents of the
(a) Rossler and, (b) Lorenz systems for different values of the num-
bers of oscillators (N) in the array as a function of the coupling
strength with the second additional coupling at the first neighbor of
the first coupling.
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FIG. 10. (Color online) Conditional Lyapunov exponents of the
(a) Rossler and, (b) Lorenz systems for different values of the num-
ber of oscillators (N) in the array as a function of the coupling
strength with the second additional coupling at the first neighbor of
the first coupling in the presence of Gaussian white noise with
intensity Dy=0.001.

for a fixed value of e, given in Table II illustrating noise-
enhanced synchronization. Further, a similar relation can be
obtained between (%) and D, for values of &€ <eg, confirming
the existence of noise-induced synchronizations.

B. Second coupling at the second neighbor

Next, by introducing a second coupling at the second
neighbor (instead of the first one), /=2, of the first coupling,
we find that one can synchronize two additional oscillators in

<
(=]
—

106

107"2

10°

106

1072

1071 100 10!
Dy

FIG. 11. (Color online) Time averaged synchronization error {7)
for different number of oscillators in the ring as a function of noise
intensity Dy for fixed value of €, displaying a power-law decay (a)
the Rossler oscillators in the range Dy € (0.01,1), and the Lorenz
oscillators in the range Dy e (0.01,10) with the second additional
coupling at the first neighbor of the first coupling.
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TABLE III. Critical coupling strength &, for second coupling at
the second neighbor.

Rossler system Lorenz system

N g, N g

4 0.405 4 12.212
5 0.563 5 16.231
6 0.814 6 21.883
7 1.156 7 31.987

the ring compared to the number of synchronized oscillators
with a single coupling. Likewise, introducing the second
coupling at the third neighbor [cf. Figure 7(b)] of the first
oscillator (/=3) in the array results in increasing the number
of oscillators that are synchronized with the drive by 3. Simi-
larly, introducing the second coupling at the Nth neighbor
will increase the synchronized oscillators in the ring by N.
Thus from the Table I for single coupling, we can realize that
it is possible to synchronize up to 10 oscillators (instead of 5)
with the introduction of a second coupling at reduced critical
coupling strength.

The critical values of the coupling strength &, and their
corresponding number of synchronized oscillators in the ring
for both the Rossler and Lorenz oscillators for the second
coupling at the second neighbor are tabulated in Table III,
which again displays an exponential relation as shown in
Figs. 12(a) and 12(b). The proportionality constant is esti-
mated as £7,=0.0972 and the scaling exponent y=0.3536 for
the Rossler oscillators and £y=3.0908 and y=0.3321 for the
Lorenz oscillators. These critical values of e are also con-
firmed by the transitions in the value of the CLEs of the
coupled Rossler and Lorenz oscillators as shown in Figs.
13(a) and 13(b).

The conditional Lyapunov exponents of both the oscilla-
tors as a function of & with the noise intensity Dy=0.001 for
N=4, 5, 6, and 7 oscillators in the ring are shown in Figs.
14(a) and 14(b). It is evident from this figure that the critical
value of & for small noise intensity is almost the same as that
of the oscillators without noise [cf. Figures 13(a) and 13(b)],

15F ‘ ‘ — 40
— Fit 30b T Fit
1.0+ ® Data 1 @® Data
o 20
0.5 1
10 1
(a) (b)

0.0 4 5 6 7 0 4 5 6 7

N N

FIG. 12. (Color online) The variation of the critical coupling
strength, €., as a function of the number of oscillators, N, for sec-
ond additional coupling at the second neighbor of the first coupling
for (a) Rossler system (g7=0.0972 and y=0.3536) and (b) Lorenz
system (g7=3.0908 and y=0.3321). Filled circles corresponds to
the numerical data and solid lines are the plot of &, using relation

Eq. (5).
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5 10 15 20 25 30 35 40

FIG. 13. (Color online) Conditional Lyapunov exponents of the
(a) Rossler and, (b) Lorenz systems for different values of the num-
ber of oscillators in the array as a function of the coupling strength
with the second additional coupling at the second neighbor of the
first coupling.

indicating the robustness of the synchronous state and the
exponential relation Eq. (5) with the addition of small noise.
Further the power law decay of the synchronization error as
a function of the noise intensity [Figs. 15(a) and 15(b)] be-
yond certain threshold values of D, for the value of &, for
both the oscillators confirming the existence of noise-
enhanced synchronization. Exactly similar figures can be ob-
tained by fixing the coupling strength to be less than ¢, in-
dicating the existence of noise-induced synchronization.

C. Couplings at the N-th neighbors

Let N, be the maximum number of oscillators in the re-
sponse array that are synchronized with the external drive for

0.06

0.031

5 10 15 20 25 30 35 40
€

FIG. 14. (Color online) Conditional Lyapunov exponents of the
(a) Rossler and, (b) Lorenz systems for different values of the num-
ber of oscillators in the array as a function of the coupling strength
with the second additional coupling at the second neighbor of the
first coupling in the presence of the Gaussian white noise with noise

intensity Dy=0.001.
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FIG. 15. (Color online) Time averaged synchronization error {7)
for different number of oscillators in the ring as a function of noise
intensity D, for fixed value of ¢, displaying power-law decay for
(a) the Rossler oscillators in the range D e (0.01,1), and (b) the
Lorenz oscillators in the range Dy € (0.01,10) with the second ad-
ditional coupling at the second neighbor of the first coupling.

a given g, for m=1. Then, by introducing a second coupling,
(m=2) in Eq. (9), at N.+1 one can synchronize up to a
maximum of 2N, oscillators in the response array with the
external drive for the same coupling strength &.. One can
also introduce a third coupling in the response array,
(m=3) in Eq. (9), in the same fashion in which the second
coupling is introduced where one can synchronize a maxi-
mum 3N, oscillators in the response array. In this way one
can increase the number of oscillators (size) in the response
array that evolve in synchrony with the external drive to mN,
by introducing m couplings at the oscillator index 1, N.+1,
2N.+1,...,(m=1)N_+1, respectively, with the same critical
coupling &..

In the following, we shall illustrate this result using the
second and third couplings at the oscillators with the indices
N.+1 and 2N_+1, respectively. It is known from Sec. II that
the maximum number of oscillators that can be synchronized
with the drive with a single coupling is N.=5. The CLEs of
the Rossler and Lorenz oscillators with the second coupling,
(m=2), at the oscillator in the ring with the index N,+1=6
and the third coupling, (m=3), at the oscillator index 2N,
+1=11 along with the CLE of the N, oscillators in the ring
with a single coupling are shown in Figs. 16(a) and 16(b) as
a function of e. It clearly shows that the mN, oscillators in
the ring with couplings at m=1,2 and 3 are synchronized
exactly at the same critical value of the coupling strength €.
Hence, it is evident that the number of synchronized oscilla-
tors can be increased beyond the size instability to any de-
sired amount by introducing additional couplings at the
(mN,+1)-th oscillators for the same value of ¢,.

We have also examined the effect of noise as in the pre-
vious cases. The CLEs of the Rossler and Lorenz oscillators
with the second and the third couplings at the oscillators with
the indices N.+1 and 2N.+1 with the noise intensity Dy
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0.03 | ‘ | | | (a) |

—0.05 ¢

45 50 55 60

FIG. 16. (Color online) Conditional Lyapunov exponents of the
(a) Rossler and, (b) Lorenz system for different values of the num-
ber of oscillators in the array as a function of the coupling strength
with the second and the third additional couplings at the Nth and
2Nth neighbor, respectively, of the first coupling.

=0.001 for fixed value of &, are shown in Figs. 17(a) and
16(b), respectively. The synchronization error also displays a
power law decay as a function of the noise intensity D, as
shown in Figs. 19(a) and 19(b) beyond after certain threshold
values of D, for both the coupled Rossler and Lorenz oscil-
lators confirming the robustness of the synchronous states
and the noise-enhanced synchronization. Further these sys-
tems of coupled oscillators also display noise-induced syn-
chronization by exhibiting similar figures as a function of Dy
for € less than ¢,.

D. Effect of additional couplings

In addition to the effect of increasing the number of syn-
chronized oscillators in the array beyond the size instability

0.03f ‘ ‘ ‘ ‘ ‘ (@)
¢ N=5 @ N=10 * N=15 @

40 45 50 55 60
£

FIG. 17. (Color online) Conditional Lyapunov exponents of the
(a) Rossler and, (b) Lorenz system for different values of the num-
ber of oscillators in the array as a function of the coupling strength
with second additional coupling at the Nth and 2Nth neighbors,
respectively, of the first coupling in the presence of Gaussian white
noise with intensity Dy=0.001.
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60}
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Number of couplings (m) Number of couplings (m)

FIG. 18. (Color online) Critical coupling strength as a function
of the number of additional couplings between the drive and the
response array for a fixed number of oscillators in the array display-
ing an exponential decay of ¢, as a function of number of additional
couplings (a) Réssler and, (b) Lorenz system.

limit by introducing additional couplings at (mN,+ 1)-th os-
cillators for m=1,2,--- it reduces the required coupling
strength exponentially to synchronize the fixed number of
oscillators in the array. For instance, we have fixed the num-
ber of oscillators in the array to be N=N_.=5 and increase the
number of couplings between the drive and the array from
N=1 to N=5-th oscillator and estimate the critical coupling
strength &, required to synchronize the N=N_.=5 oscillators
in the array for each additional coupling. The estimated ¢, is
plotted as a function of the number of additional couplings in
the array in Figs. 18 for both the Rossler and the Lorenz
systems, which establishes an exponential decrease of the
required coupling strength to synchronize the fixed number
of oscillators in the array by introducing additional couplings
between the drive and the array. It may be noted that the
critical coupling strength follows an exponential relation
with the number of couplings as e,~ g, exp(—ym), with m
being the number of couplings. The constants, in the case of

10-6 100

10—12

10(]

106

10—12

107t 100 10t
Dy

FIG. 19. (Color online) Time averaged synchronization error {7)
for different numbers of oscillators in the ring as a function of noise
intensity D for the fixed value of . displaying power-law decay
for (a) the Rossler oscillators in the range Dy € (0.01,1), and (b) the
Lorenz oscillators in the range Dy e (0.01,10) with second addi-
tional coupling at the Nth and 2Nth neighbor, respectively, of the
first coupling.
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Rossler equations, turn out to be £y=4.4746 and y=0.8819
while they are £y=105.6375 and y=0.7069 for Lorenz equa-
tions.

IV. SUMMARY AND CONCLUSION

In this paper, we have studied chaos synchronization in
arrays of diffusively coupled nonlinear oscillators with a ring
geometry driven externally by an identical oscillator. In par-
ticular, we have shown that the critical coupling strength
required to synchronize the array with the external drive in-
creases exponentially with a scaling exponent y e (0.3,0.5)
as a function of the number N, of the oscillators in the array.
We have pointed out that as a consequence of the exponential
relation, the maximum number of oscillators in the array that
can evolve in synchrony with the external drive is limited.
Further, we have shown that by introducing additional cou-
plings between the external drive and the array at
(mN,+1)-th oscillators in the ring, one can proportionately
increase the maximum number of oscillators that can evolve
in synchrony with the drive. Further, we have obtained the
same exponential relation connecting the critical coupling
strength and the number of oscillators even after introducing
the additional number of couplings. Furthermore, we have
found that e, establishes an exponential decay as a function
of the number of additional couplings between the drive and
the response array for a fixed number of oscillators in the
array. We have also examined the robustness of the results
against noise of small intensity and found that the synchro-

PHYSICAL REVIEW E 81, 066219 (2010)

nization error displays a power-law decay as a function of
the noise intensity at e=¢g,. indicating the existence of noise-
enhanced and noise-induced synchronization for € <eg. in all
the cases.

In addition, we have also obtained similar results as above
in other ubiquitous coupled nonlinear oscillators such as
coupled MLC circuits, Chua’s circuits and Sprott oscillators
as well, and also in a discrete system, namely, coupled logis-
tic maps, thus confirming the universality of the above re-
sults. One can also extend the same type of analysis with
other coupling configurations such as star type, unidirec-
tional, global, weighted coupling configurations, two-
dimensional, three-dimensional lattices, etc. We believe that
our results shed more light on controllability and synchroni-
zability of networks by introducing additional couplings at
appropriate oscillators/nodes with the less cost in terms of
the coupling strength. Further investigations can be extended
to networks, in particular to network with community struc-
ture using pinning control and also with delay coupling.
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