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This paper deals with the phenomenon of synchronization of oscillatory ensembles interacting distantly
through the passive medium. Main characteristics of such a kind of synchronization are studied. The results of
this work can be applied to describe the synchronization of cardiac oscillatory cells separated by the passive
fibroblasts. In this work the phenomenological models (Bonhoeffer—Van der Pol) of cardiac cells as well as
biologically relevant (Luo-Rudy, Sachse) models are used. We also propose equivalent model of distant syn-
chronization and derive on its basis an analytical scaling of the frequency of synchronous oscillations.
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I. INTRODUCTION

Synchronization is one of the most important phenomena
in science [1,2]. Numerous evidences confirm its presence in
physics, chemistry, electrical engineering, neuroscience, bi-
ology, sociology etc. [3-5]. In the last decades synchroniza-
tion has attracted lots of interest. Various kinds of synchro-
nization were discovered, such as phase, complete, partial,
generalized ones. There are also many works devoted to
study of synchronization in specific systems and its applica-
tions [6,7]. Thus, for example, the synchronization in the
heterogeneous medium of pancreatic 8 cells was studied in
[8,9]. In this paper we focus on synchronization of oscilla-
tory systems which are separated by a passive medium and
thus interacting through it. This problem arises in various
biological experiments, especially in cardiac cell cultures. It
is worth saying that nowadays investigations in the sphere of
heart functioning and cardiac dynamics are of the great im-
portance [10]. In order to motivate our work we stop briefly
at the structure of the heart. It consists of cells of different
types. Among them there are three major cell types: pace
making cells, excitable cells of working myocardium and
fibroblasts. From the point of view of nonlinear dynamics
these cells are oscillatory, excitable and passive elements,
respectively [11]. Oscillatory cardiac cells form several pace
making areas in the heart (sino-atrial node, atrio-ventricular
node) that generate a sustainable rhythm and send an electri-
cal stimulus to the working myocardium. It consists of excit-
able cells which, in turn, are able to contract when a stimulus
from the pacemaker arrives. Excitable cells occupy the most
part of the heart. But the largest number is held by fibro-
blasts. These cells for some time were considered as support-
ing units, but recent studies have shown that they play a
much more important role in the regulation of the heart func-
tioning [12].

In terms of nonlinear science the difference between ex-
citable and passive elements is in the structure of their phase
space. For the former element type the presence of a thresh-
old manifold is necessary, while for the latter elements there
has to be just a stable steady state. In this case any perturba-
tion of a passive cell from its steady state would rapidly
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decrease and no action potential would be generated. On the
other hand, a large enough perturbation to an excitable cell
would move the phase point beyond the threshold manifold
resulting in an action potential.

There are different ways to study cardiac dynamics: real
experiments with the whole heart, cardiac cell cultures, ECG
analysis, computer simulations etc. We use here the results of
a real experiment as a motivation of our work. Namely, in
[13] it has been recently considered a cardiac cell culture
consisting of cells of only two types: fibroblasts and pace-
makers. These cells were dissociated and plated on the Petri
dish. Initially there were no oscillations in the system. After
some time cells started to move and to form clusters of ex-
citable cells separated by fibroblast medium. Later on, differ-
ent excitable clusters have become oscillatory and started to
oscillate with different individual frequencies. After that
these clusters tended to synchronize until after some critical
time the effect of complete synchronization between the os-
cillatory clusters had set in. The first effect observed in [13]
showing that excitable cardiac cells may become oscillatory
due to the interaction with passive fibroblasts was studied in
several papers [14,15]. But for the last phenomenon of syn-
chronization of oscillatory clusters through a passive me-
dium there are no any theoretical studies yet. This effect is in
the focus of the present work.

The paper consists of two parts: (i) theoretical studies of
synchronization through the passive medium based on phe-
nomenological models of cardiac cells and (ii) computer
simulations with biologically relevant cardiac cell models
validating the results obtained. Further in the paper we will
refer to the synchronization of oscillatory units through a
medium of passive cells as to distant synchronization (DS).

II. DS IN PHENOMENOLOGICAL MODEL
OF CARDIAC CELLS

In this section we demonstrate the possibility of DS and
study its properties using simple phenomenological models
of cardiac cells. As a model of cardiac pace making cell we
use the well-known Bonhoeffer—Van der Pol (BVdP) system
[16], also called FitzHugh-Nagumo system [17].
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i=x-x3-y,

y=¢elx+a). (1)

Despite its simplicity the model reproduces the main pecu-
liarities of cardiac cells, namely, the generation of action
potential. This model may behave as an excitable or oscilla-
tory cell according to the value of the parameter a. Since we
are interested in the synchronization properties in the system,
we do not pay attention to the transition of a cardiac cell
from excitable to oscillatory state and use BVdP elements in
the latter regime. The parameter a in this case may vary
within the interval (—=1;1). Note that different values of a
correspond to different individual frequencies of the BVdP
element. As for the fibroblasts we use a simple first order
linear kinetics to describe dynamics of the passive element.

x=—alx-P). (2)

This is an appropriate simplification as argued in [18]. We
consider a more general case of a complex nonlinear descrip-
tion of cardiac cells in the second part of the paper. In Eq. (2)
P describes the steady state of the passive element and has
the notation of the fibroblast resting potential. The parameter
a is responsible for the rate of convergence to the steady
state. Its value should be chosen from biological consider-
ations. In the heart the characteristic time scale of a fibroblast
is half the period of the oscillation of the pace making cell.
This means that on this time scale the amplitude of fibroblast
voltage decreases from the maximal value of the pacemaker
action potential to its steady state. In case of BVdP system
this time scale may be estimated which gives the value of «
about 0.02. This value is used in our simulations unless an-
other is specified. The value of & equals 0.01.

A. Dynamical properties of the passive medium

In this subsection we investigate how the signal generated
by the oscillatory BVdP element propagates through the pas-
sive medium. We consider a chain of N=11 elements where
only the first one is a BVdP in an oscillatory regime and the
rest are passive. All elements are coupled diffusively via the
variable x,

X=X —x%/?) -y, +d(xy—xy),
yi=elx; +ay),

X;==alx; = P) +d(x;_ = 2x;+ X;41).,

i=2,N, xyy =xy. 3)

In the simulations the value of a; was set to zero with no loss
of generality. Apart from it, it is easy to see that the linear

transformation of the coordinates x;=x,—P, i=2,N, y|=y,
—dP, x|=x, eliminates P from system [Eq. (3)]. So we can
consider it to be equal zero.

Figure 1(a) shows the amplitudes A; of oscillations of the
elements in the chain for fixed values d=0.4;0.2;0.1 (curves
with square, circle, and triangle markers, respectively). The
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FIG. 1. (Color online) (a) The distribution of oscillation ampli-
tudes over the chain for a fixed value of coupling d=0.4;0.2;0.1
(square, circle, and triangle curves). Inset shows the characteristic
time series of the elements with numbers i=1,3,10 (the trace with
the smaller amplitude corresponds to the larger number). (b) Ana-
lytical (circle curve) and numerical (square curve) dependence of
the oscillation amplitude of the last passive element A, related to
that of the first oscillatory element A, on the coupling d. In the inset
(a) there is a dependence of A;;/A; on the frequency of oscillations
obtained analytically. Inset (b) shows saturation of A;;/A; for ex-
tremely large coupling.

amplitudes are defined as the differences between the maxi-
mum and minimum values of the time series of the corre-
sponding element after some transients. One can see that the
amplitude decreases drastically with the increase of the dis-
tance between the element with the number i=2 and the
only oscillatory element (i=1). In other words for every cho-
sen value of the coupling strength d there exists a critical
distance of signal propagation through the passive medium.
Suppose that there is another oscillatory element on the other
side of the chain. Then there exists some critical distance
between the oscillators when they start to interact. On the
other hand if the chain length (distance between the oscilla-
tory elements) is fixed then the role of the critical parameter
is played by the coupling d. The inset in Fig. 1(a) demon-
strates the time series for the elements with the numbers i
=1,3,10. Figure 1(b) illustrates the relation A,;/A; between
the amplitudes of the last and the first element of the chain
depending on d. The curve with square markers was obtained
using computer simulations and represents the nonlinear in-
crease of the amplitude in the last element for growing d. We
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FIG. 2. (Color online) Power spectrum of the x variable time
series of the elements of the chain obtained by fast Fourier trans-
form for d=0.1. Lower and upper insets show power spectrum of
the third and last elements of the chain, respectively.

will use this dependence further for the description of syn-
chronization in the chain.

Amplitude relations of the propagating signal are impor-
tant. However, spectrum properties for complex signals
should be also taken into account. If the signal is harmonic
then it will produce a harmonic response on the same fre-
quency in the passive medium due to its linearity. But if the
signal is more complex then each Fourier component may
propagate differently resulting in a modification of the spec-
trum. Figure 2 represents the power spectrum of the time
series of the x variable (corresponding to the voltage in real
cells) of oscillatory BVdP element for d=0.1. It is clear that
along with the major peak at the low-frequency of the peri-
odic oscillations of the x variable there are also several other
peaks at the higher frequencies that appear because of the
nonlinearity in the system. The insets in Fig. 2 show the
transformations of this spectrum, while it propagates through
the passive medium. The lower inset corresponds to the third
element in the chain. One can see that most higher harmonics
have already vanished at this rather short distance from the
source (note two times shorter scale on the x-axes). The
spectrum of the last element in the chain (upper inset in Fig.
2) has the only peak at the frequency of the periodic oscilla-
tions of oscillatory BVdP element. Summing up the results
obtained we find that the nonlinear oscillations of BVdP el-
ement on the left side of the chain produce a nearly harmonic
low-amplitude signal on the other side of the chain as the
output. With the increase of d the amplitude of the output
and the degree of nonlinearity increase.

Next, we present some analytical descriptions of the ob-
served effect. We describe the chain of passive elements with
one oscillatory element at the beginning by the following
partial differential equation with nonstationary boundary
conditions:

U FU
—=-aU+D—,
ot ox
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aU(x,t
U(0,1) = A sin(wr), ﬁ =0,

ox =L

U(x,0)=0, (4)

where L is the string length. This equation is a continuous
analog of the chain that we considered previously. Here
U(x,t) has the meaning of the voltage of cardiac cell, i.e., it
stands for the x variable of system [Eq. (3)]; x—is the space
coordinate; DU/ dx? describes the diffusion in the system.
If we have a solution U(x,?) of Eq. (4), we can approximate
it to the chain with elements number N and coupling d as-
suming: L=1, h=1/(N-1), D=dh?, where h is the discreti-
zation step. The boundary condition on the left side of the
string is a harmonic force with the frequency w and ampli-
tude A. Due to the linearity of the medium any complex
signal will propagate as a superposition of its Fourier har-
monics. Using Eq. (4) we can analyze how these harmonics
propagate through the passive medium. The solution of Eq.

(4) is given by
« sin| —(n+ = |x
4A L 2

U(x,t) = A sin(wt) — ;% Qn+ (P + Kz)

X [(ak, + w?)sin(wt) + o(k, — a)cos(wr)], (5)

where Kn=a+D§(n+%).It is easy to see that this is a har-
monic signal with the frequency w everywhere in the string.
The amplitude A; of that signal at x=L related to that at x
=0 (which is equal A) is defined by

A ([ 4G EDYan+ o )
A ‘((1_1720: (2n+1)(w2+,<3))

o n 2\ 12
+<i2 (- 1)'(a zxnﬁg)) o
75 2n+1)(0" + k)

The curve with circle markers in Fig. 1(b) shows the ap-
proximation of the analytical relation (6) to the chain of
length N=11. This curve corresponds to the frequency of the
first major harmonic in the power spectrum of the oscillatory
BVdP element (see Fig. 2). As far as this harmonics is by far
prevailing all the others, then theoretical approach fits the
simulations rather well. Note that for high values of the cou-
pling d>0.5 the amplitude of oscillations of the BVdP ele-
ment decreases due to the interaction with the passive ele-
ments. This effect cannot be described with Eq. (4). That is
why the analytical and numerical curves diverge there. Apart
from this, it is obvious that the relation A{;/A; tends to 1 for
large values of coupling. It is illustrated in the inset (b) Fig.
1(b). Note that a saturation in this case takes place for ex-
tremely large d which is unphysical in real cardiac cells. The
inset (a) in Fig. 1(b) presents the analytical dependence of
A;/A on the frequency of signal w. It has the form of low-
frequency filter and confirms our previous results with the
filtering of the complex power spectrum of the BVdP ele-
ment when it propagates through the passive medium. This
finishes our studies of signal propagation through the passive
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FIG. 3. (Color online) Synchronization of two oscillatory BVdP
elements with ay=0 and a;;=0.25 through the passive chain of nine
elements. Two curves with circle and diamond markers shows the
frequencies of oscillators in case they were single oscillatory ele-
ments in the chain (see text). Two curves with dot markers present
the frequencies of two oscillators depending on d (lower dot curve
corresponds to the first element). Synchronization sets in for d
~().22 and at the approximately average frequency.

medium. In the next subsection we investigate synchroniza-
tion in such systems.

B. Synchronization of two oscillatory elements
through a passive medium

In this subsection the system in question has the same
structure as in the previous case except that on the other end
of the chain there is another oscillatory BVdP element with a
different value of the parameter a.

X1 =x —x?/3 -y, +d(xy—x)),
yi=elx; +ay),

X == alx; = P) +d(xi_y = 2x; + Xj11),

i:2,N— l, XN+1 = XN>

iy =xy = X3 = yy+dlo - xy),

yn=elxy+ay). (7)

We are interested in a phase-synchronized regime between
these two oscillatory elements, i.e., the equality of their av-
erage frequencies. Simulations were performed for N=11,
ay=0 and a;;=0.25, while d was varied. After 50 000 time
units skipped for transients, the frequencies were calculated
as the average number of oscillations on the interval of
150 000 time units. The frequencies of the two oscillators in
dependence on the coupling d are shown in Fig. 3 (two
curves with dot markers). Two black curves presented on the
same figure by circle and diamond markers show the depen-
dency of the oscillator frequencies on the coupling d in the
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case of no other oscillatory element on the opposite end of
the chain. In other words these curves show how the fre-
quency of the single oscillatory BVdP element is affected by
the pure influence of the passive chain. Thus, these changes
in frequency have nothing to do with the interaction between
the two oscillatory elements. From Fig. 3 we can infer that
there exists such a range of coupling values from O to ap-
proximately 0.22 (dashed line) where the two oscillatory el-
ements interacting through the passive chain almost do not
“feel” each other. This follows from the fact that for these
values of d the circles and diamonds in Fig. 3 coincide with
the dotted lines for the elements with ay=0 and a;;=0.25,
respectively, i.e., there is no visible difference in the fre-
quency of the oscillation from the case of the single oscilla-
tory element in the chain. That is why one can conclude that
there exists some threshold value of d’ where the interaction
starts. The existence of d, is easy to explain, since the am-
plitude of the signal generated by each oscillatory element
increases on the other end of this chain starting from zero
and according to the law shown in Fig. 1(b). This amplitude
should exceed some critical value to make the interaction
possible.

The more interesting effect presented in Fig. 3 concerns
the frequency of synchronization. Considering the curves in
the figure right to the dashed vertical line one can see that the
frequencies of the oscillators tend to approach each other.
One unpredictable point is that the two elements synchronize
not at the highest frequency of the first oscillator as it should
be in case of two interacting nonlinear oscillatory systems
but approximately at the average frequency. This is similar to
the case of two quasiharmonic oscillators in spite of the fact
that the elements in our simulations are essentially nonlinear.
The explanation of this effect follows directly from the re-
sults presented in the previous section in Fig. 2. There we
demonstrated that the signal propagating through the passive
element chain is being filtered and thus may be considered as
quasiharmonic (see the upper inset in Fig. 2). That is why
highly nonlinear oscillators separated by the passive medium
affect each other by the quasiharmonic force stipulating for
the particular kind of synchronization shown in Fig. 3. Note
that the property of filtering is valid only for a certain range
of coupling values, i.e., if d is too large, higher harmonics
will appear in the power spectrum of the signal on the other
end of the chain. Thus if the initial frequency mismatch be-
tween the oscillatory elements is too large, then it will de-
mand a very strong coupling to synchronize them and con-
sequently nonlinearity cannot be neglected any more.
However, a series of numerical simulations was performed
taking into account all the possible values of the initial fre-
quency mismatch and the results of it qualitatively repeat the
one shown in Fig. 3. Finally, the last point to outline is the
significant decrease of the oscillators frequency right after
the onset of synchronization. It is interesting to note that for
large values of coupling the decrease of the synchronization
frequency is nearly linear. We will explain this effect using
an equivalent model of DS presented in the following sec-
tion.

Summing up we underline three important effects: (i) the
existence of a threshold value of coupling di where an inter-
action among the oscillators starts (ii) synchronization of the
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oscillators at the average frequency as in the case of quasi-
harmonic systems and (iii) rapid decrease of the synchroni-
zation frequency with the growth of d. In the following sec-
tion we construct an equivalent model for such a system
using only two oscillatory elements with the special type of
coupling that takes into account the peculiarities of the pro-
cess in question.

C. Equivalent model for DS

In this section we built an equivalent model to the system
described by Eq. (7). The equivalence here is understood in a
sense of reproducing the main traits of the synchronization in
system [Eq. (7)]. First we take into account the linearity of
the passive elements. This means the superposition principle
is satisfied for them. Thus we can present the dynamics of
the second element x,(f) as the sum of the two signals
xz(t)=)?é(t)+5c{2v (1): (i) the first fi(t) is the signal coming from
the first element and (ii) the second %5(¢) from the last one.
Since we are not interested in the dynamics of passive ele-
ments, we can write the system of two interacting oscillatory
elements as follows:

X1 =x —x1/3 =y, +d[B(0) + B (1) - x4],
yi=elx +ay),
35N=x1v_xz3v/3 —ynt d[x%—l(t) + 3711\7—1(1‘) - Xy,

yy=¢elxy+ay), (8)

where xN_l(t)=5Ex_l(t)+5c”,l\,_1(t) similarly to the second ele-
ment. We now can regroup the coupling term into two parts
with different physical notations. For the first element it
looks like d[%y(t)+X5(t)—x,]=d{[%)(t) —x;}+d75 (7). The first
term here describes the influence of the whole passive chain
on the first element as if there is no other oscillator on the
other end. This influence produces changes in the individual
frequencies of the oscillator with the increase of d (see
curves with circle and diamond markers in Fig. 3). We will
neglect this term, since we are interested only in synchroni-
zation properties of the systems. The second term of cou-
pling d?zv (¢) represents the signal coming from the other os-
cillator. It is responsible for synchronization. Note that
according to the previous results this signal also depends on
d (frequency filtering and amplitude dependency). Thus the
equivalent system for DS in the chain may be written as

X=X —x3 =y, +dD (t,d),
yi=elx +ay),
XN =xN—x13v/3 - yN+ df/lv_l(t7d)’

yy=¢elxy+ay), 9)

Now we need to specify fc;zv (t,d) and )7,1\,_] (t,d) in terms of the
variables xy,yy and x;,y;, respectively. To do this let us
mark that the passive chain may be considered as an inte-
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FIG. 4. (Color online) Synchronization in the equivalent model
of DS. Two curves are the frequencies of oscillators depending on
d. Inset illustrates the f/f, ratio.

grating chain. Indeed applying Laplace transform to the
equation x=—ax for the passive element, then its transmis-
sion gain is defined by the relation,

K(w) = (10)

a+io’
which is the gain of the low-frequency filter or integrator.
This means that the signal xy(f) going through the passive
medium is being integrated with respect to time. However
according to the relation yy=e(xy+ay) we can state that in-
tegrating gives with the change of variables yy(r). Thus far
we considered only the filtering property of the passive
chain. Taking into account the amplitude dependency A(d)
described by Eq. (6), we obtain finally (the index N is sub-
stituted by 2 for convenience),

X1 =X —x1/3 =y, + dA(d)y,,
yi=elx +ay),
xZ=Xz—x%/3 —}’2+dA(d)}’1’

Vo=l +ay). (11)

The amplitude of the oscillation of the x variable of BVdP
oscillator is three times larger than the y variable that is why
the amplitude dependence A(d) should be scaled by factor 3.
Numerical simulations of system [Eq. (11)] for the values of
parameters a;=0 and a,=0.25 give the results presented in
Fig. 4. Here one can see the dependency of the oscillation
frequencies of both elements on the coupling parameter d.
Since we have neglected term fé(t)—xl in Eq. (8) we do not
observe any changes in the frequency of oscillators caused
by their interaction with passive elements. The inset in the
figure illustrates the dependency of the ratio f|/f, of the
oscillator frequencies on d. It is easy to see that there is a
range of values of coupling from 0 to about 0.18 (dashed
vertical line) where the oscillators almost do not interact, i.e.,
the ratio f;/f, does not change for d growing from 0 to 0.18.
Apart from this, synchronization in this system occurs ex-
actly at the average frequency of the two elements. And fi-
nally a drastic decrease of the frequency with the increase of
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FIG. 5. (Color online) Effect of the frequency decrease in the
equivalent model of DS. Solid blue curve with circle markers (using
left ordinate axes) presents the dependency of frequency scaling
f:ymh/ f(d) on coupling strength obtained numerically. Black
squares are analytical approximation (13) of f;ynch/ f(d). Dark red
curve with circle markers (using right ordinate axes) is the depen-
dency of time shift 7 between two synchronous time series of the y
variable of the oscillators on d. Insets show the characteristic time
series of the synchronous motions of two oscillators for d=0.29 (a)
and d=0.5 (b).

coupling right after the onset of synchronization is also ob-
served. These three points mean that our equivalent model
reproduces all of the underlined previously effects.

Now we concentrate on the effect of frequency decrease
because it is significant in a large range of coupling. We will
explain the phenomenon using our equivalent model of DS.
First we notice that synchronization that sets in at d~=0.29
(Fig. 4) is in-phase with some phase shift which vanishes
with the increase of the coupling strength. This fact is sup-
ported by the two time series of the process for d=0.29 (right
after the onset of synchronization) and d=0.5 that are pre-
sented in Fig. 5 in the insets (a) and (b), respectively. The
time delay 7 between the two elements is clearly seen in the
inset (a), while both realizations are almost identical for d
=0.5 [inset (b)], i.e., 7=0. Thus, in order to describe the
frequency decrease, we make the assumption that after syn-
chronization sets in we have y,(f)=y,(r—7). Second, we
suppose that 7 is small enough, such that y,(r)=[y,(z)
—y,(t=7)]/ 7. Hence, substituting y,(¢)=y,(¢)—7y,(¢) into the
first equation of system [Eq. (11)], we obtain the system
governing the dynamics, for example, of the first element in
the synchronous regime,

K=& —-x3 -y,

y = . (12)

where y=[1-dA(d)]y,, &=[1-dA(d)7e], €=[1-dA(d)]e,
and a=0 as it was in simulations for the first elements. Sup-
posing that system [Eq. (12)] spends most time on the curve
of slow motions &x—x°/3—y=0 and moves immediately
from one stable brunch of this curve to another, one can
integrate the equations and find the frequency of the oscilla-
tions,
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B 3 _1-dA@)
T 2632 +1n 1/2) =fopZ dA(d)te’

f (13)
where fy=€/2(3/2+1In 1/2) is the individual frequency of
the oscillator. Thus we get the desired scaling f;,.,/f(d) of
the frequency right in the moment of the onset of synchro-
nization to the frequency of synchronous oscillations of two
elements depending on d. Numerical dependency of
Sopnen! f(d) on coupling strength is shown in Fig. 5 by the
solid line with circle markers (using the left ordinate axes).
In order to compare analytical solution (13) with this curve,
we have to take into account the dependence of the time
delay 7on the coupling d which is presented in Fig. 5 by the
dark red curve with circle markers (using the right ordinate
exes). Incorporating this dependency into Eq. (13), we obtain
finally an analytical scaling ijnch/ f(d) presented in Fig. 5 by
black squares. One can see that our theoretical approxima-
tion fits rather well to the numerical simulations. Various
divergences between the analytical and numerical curves
may be explained by some idealizations made: (i) smallness
of 7, (ii) immediate movement of the system between the
branches of the curve of slow motions.

In the end of this section we draw the attention to the fact
that the effect of the significant frequency decrease described
by the scaling [Eq. (13)] is due to the frequency filtering
property of the passive medium, because only in this case the
equivalent model of DS [Eq. (11)] is valid.

III. DS IN BIOLOGICALLY RELEVANT MODELS

As mentioned in the introduction, the current task appears
from experiments with cardiac cell culture. Thus far we con-
sidered simple phenomenological models only. However to
prove the generality of the results obtained as well as to
support the possibility of application of the results to cardiac
biology, we perform similar studies with biologically rel-
evant models. The following two subsections describe mod-
els of cardiomyocite and fibroblast. After that the results of
simulations of these models are presented.

A. Luo-Rudy phase I model of cardiac cell

As a model of cardiac myocite we use the well known
Luo-Rudy phase T model [19]. This model is of Hodgkin-
Huxley [20] type and includes eight nonlinear ordinary dif-
ferential equations to describe the dynamics of a single car-
diac cell. The main equation governs the dynamics of the cell
membrane voltage V measured in millivolts,

dv
C,—=-1,

m dt won + Ie'”’ (14)
where C,,=1 uF/cm? is the membrane capacity. The time
unit of the model is 1 ms. I is a constant external electrical
stimulus and I;,, is a sum of six ionic currents flowing
through the membrane,

Lign=1Ina+ LI+ Ix+Ig + g, + 1, (15)

where Iy, is a sodium current, /;; slow inward calcium cur-
rent, Ix potassium current, [, stationary potassium current,
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Ik, plateau potassium current and [, a background current.
These currents are measured in uA/cm? and defined by

Ing=Gyamhj - (V= Ey,),
I;=Gy-df - [V-Eg(V.,0)],
Ix=Gg-xx{(V) - (V= Eg),
IKl =Gy k1 (V) - (V= Egy),
Il(p = GKp : kp(V) (V-Ex1),

I5=G,- (V-E,). (16)

Here G, and E, for g € {Na,si,K,K1,Kp,b} denote, respec-
tively, the maximal conductance and the reversal potential of
the corresponding ionic current. Each of the gating variables
gie{m,h,j,d,f,x}, i=1,...,6 is described by the ordinary
differential equation,

gi=ag,.(V)(1 _gi)_ﬂgi(v)gi' (17)

Nonlinear functions agt_(V) and ,Bg[_(V) as well as E,(V,c),
x{(V), K1(V), K,(V) are fitted to the experimental data [19].
The dynamics of the external concentration of calcium ions
is given by the first order differential equation,

¢=10"1,(V,d,f,c) +0.07(10™* - ¢). (18)

When [ is equal to zero, the cell described by this model
demonstrates excitable behavior. On the other hand we need
to simulate an oscillatory cardiac cell in our task. It is shown
in [14] that the excitable Luo-Rudy cell can be turned into an
oscillatory regime by adding the depolarizing constant exter-
nal current /Y. It was also shown that at the value of [*Y
~2.21 a stable limit cycle in this model appears via saddle-
node homoclinic orbit bifurcation. When /°>2.21 its value
also defines the frequency of the oscillation similarly to the
parameter a in the BVdP system.

B. Sachse model of cardiac fibroblast

To simulate cardiac fibroblast we use the model proposed
by Sachse et al. in [21]. This model is of the same type as the
Luo-Rudy model. It involves three ionic currents to describe
the voltage of a single cell,

Cme:_(IKir+[Shkr+Ib)- (19)
The inwardly rectifying current I;, is given by
Ixir= GO\ [K+]0(Vf - Eg). (20)

Here Gy, is the maximal conductance for this current and Ey
is the reversal potential. The probability Ok, of the channel
to be opened is defined as

1
ayir+exp(By;(Vy— EY) FIRT)

Okir= (2 1)

where ag;, and By;,. are constants, F is the Faraday constant,
R is the gas constant and T is the temperature.
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The outward current /g, is time and voltage dependent.
In [21] it was reconstructed based on the Goldman-Hodgkin-
Katz current equation and a Markovian model of the delayed
rectifier K* currents,

V,F?[K*]; - [K*]oexp(— V/F/RT)
RT 1 —exp(= V/FIRT)

Ispicr = PspirOsiir

with the permeability Pgy,,. The Markovian model describes
five closed states, COgys-..,C4gi and one open state

OShkra

COgper = = 4k, Oyt + k_y Cligpr
Clgpr = 4k, COgr — (Bky + k_y) Cligppr + 2k_y C25150-
2 = 3k, Cligny = (2ky, + 2k_y) C2 g1, + 3k_, C g1t
C3 gty = 2k C2gr — (kyy + 3k_y) C3 1ty + 4k _y Ch iy
Chgpiy = ky C3spsr = (ko + 4k_y) Cpy + kg Oy

Ogitr = koChsirr = k_0Ognir-

Here the rate coefficients k, and k_, are exponential func-
tions of voltage and kg,k_, are constants.
The background current 7, is defined simply as

Ih: Gb(Vf—E},) (22)

All in all the Sachse model of fibroblast is described by
seven dynamical variables and seven nonlinear ODEs.

C. Signal propagation properties

In this subsection we simulate a chain of fibroblasts with
the only oscillatory cardiac cell at the end of it. We are in-
terested in the properties of signal propagation in this system
especially with respect to our previous results obtained for
the BVdP model. A chain of N=11 elements is considered.
The value of the external current for the cardiomyocite ¥
was equal 3, 2.8, and 2.6. Figure 6 illustrates what amplitude
has the signal in the last element of the chain if it is gener-
ated by the oscillatory Luo-Rudy element at the other end of
the chain. The inset in the figure shows the distribution of the
amplitudes over the elements for a fixed value of d
=0.05;0.03;0.01. Comparing these curves with Fig. 1, one
can see that the chain of real fibroblast demonstrates quali-
tatively the same behavior as the phenomenological chain,
namely, a drastic decrease of the oscillation amplitude over
the distance and a monotonic increase of the amplitude in the
last element with growing d. Figure 7 demonstrates the fre-
quency filtering property of the fibroblast chain. The main
plot shows the power spectrum of the oscillatory Luo-Rudy
element being at the end of the chain. This spectrum has at
least five distinct harmonics. The largest at about 1.4 Hz
corresponds to the frequency of periodic oscillations of the
action potential and all the others form a nonlinear profile of
the cardiac action potential. Note that in contrast to a BVdP
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FIG. 6. (Color online) The dependencies of the oscillation am-
plitude of the last passive element A;; related to that of the first
oscillatory element A; on the coupling d for different values of
1'=3;2.8;2.6 (squares, circles, triangles). In the inset there is a
distribution of oscillation amplitudes over the chain for fixed values
of coupling d=0.05;0.03;0.01 (squares, circles, triangles).

element, the cardiomyocite exhibits a time series which is
not symmetric with respect to zero. Thus its power spectra
has also a large zero frequency component corresponding to
constant shift of the time series. This component is not pre-
sented in Fig. 7 for clearness of the plot. The lower and
upper insets in Fig. 7 show the power spectra of the fifth and
11th elements in the chain, respectively. One can see that the
signal at the other end of the chain (upper inset) possess the
only significant component at the frequency of periodic os-
cillations of the cardiomyocite and thus this signal is quasi-
harmonic there. Comparing these results with Fig. 2 it is easy
to see that the chain of fibroblasts described by the sophisti-
cated biologically relevant model demonstrates the same fre-
quency filtering property as the chain of linear passive units.

The results of the current subsection show that the chain
of fibroblasts simulated by a biologically relevant model ex-
hibits the same main properties of signal propagation as our
phenomenological one. Namely, two major effects are ob-
served in both models: (i) lowering of the signal amplitude,
while it propagates through the fibroblast medium and (ii)
power spectrum filtering responsible for quasiharmonics pro-
file of oscillations at the end of the chain.

35
30} € 4
[y
—~ 25} 0
N 1 2 3 4 5
Ni 20! f (Hz)
3 = 5
= 15 =3
= %)
(25 10t 0 l 1
2 4
5l J f (H2)
| 1
0 ‘ ‘ ‘
2 4 f (Hz) 6 8

FIG. 7. (Color online) The power spectrum of the voltage vari-
able time series of the elements of the chain obtained by fast Fou-
rier transform for d=0.05. Lower and upper insets show power
spectrum of the fifths and last elements of the chain, respectively.
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FIG. 8. (Color online) Synchronization of two oscillatory Luo-
Rudy elements with /{"=2.8 and I{}'=3 through the fibroblast chain
of nine elements. Two curves with circle and diamond markers
shows the frequencies of oscillators in case they were single oscil-
latory elements in the chain (see text). Two curves with dot markers
present the frequencies of two oscillators depending on d (lower dot
curve corresponds to the first element). Synchronization sets in for
d=0.063 and at the approximately average frequency.

D. Synchronization of two cardiomyocites
through the fibroblast chain

The chain of N=11 elements was simulated. The first and
the last units of the chain are oscillatory Luo-Rudy elements
with [{=2.8 and I{}'=3. Figure 8 shows synchronization
phenomena occurring in the system. As in the case of the
phenomenological models (Fig. 3), two black curves with
circle and diamond markers represent the frequencies of the
oscillatory cells depending on the coupling d in the case of
the only oscillatory cell in the chain. One can see that the
influence of the fibroblast chain on a single oscillatory car-
diac cell produces the dependency of its frequency on the
coupling of the same kind as for the BVAP model. The
curves with dot markers in Fig. 8 show the frequencies of
oscillatory cardiomyocites interacting through the fibroblast
chain. Three main effects are observed again: (i) the exis-
tence of a threshold value of coupling (dashed vertical line in
the figure) where the interaction begins (ii) synchronization
at the average frequency that is characteristic for quasihar-
monic oscillators and (iii) a drastic decrease of the synchro-
nization frequency with growing d. Concluding this section
we state that synchronization in biologically relevant models
appear in the same way as in phenomenological models of
cardiac cell and exhibits the same significant peculiarities.

IV. DS IN 2D MEDIUM

This section generalizes previous results to the case of
nonhomogeneous ensembles of oscillatory cardiac cells in-
teracting through a two-dimensional passive medium of fi-
broblasts. Simulations were performed with a 60 X 60 lattice
of cardiac cells described by the Luo-Rudy and Sachse mod-
els. The structure of the system is shown in Fig. 9. Here
white space corresponds to a passive fibroblast medium with
resting potential —60 mV and colored areas represent non-
identical clusters of oscillatory cardiac cells. The color gra-
dation reflects the value of the parameter /¢ for each oscil-

ij
latory cell, i.e., reflects the individual frequencies of
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FIG. 9. (Color online) Topology of the experiment. White
spaces correspond to the fibroblast medium. Colored areas represent
oscillatory clusters. Color gradation reflects individual frequencies
of cardiac pacemakers.

pacemakers. One can see that there nine clusters are formed
which are arranged randomly in the lattice. There is a ran-
dom variation of the cluster size from 6 X6 to 9 X9 ele-
ments. Each cluster has its average individual frequency de-
fined by the average I*" parameter value chosen randomly
from the range [2.8;3]. Apart from this, a small variation of
I (up to 0.005) within each cluster also exists. Such topol-
ogy follows also from biological experiments [13] and quali-
tatively reproduces their conditions. The whole system was
simulated for 6 X 10® where 4.5X 10° ms were skipped for
transients and 1.5X 10° ms were used for frequencies calcu-
lation. Figure 10 demonstrates the dependencies of the aver-
age cluster frequencies f; on the coupling strength d. Al-
though synchronization in this case is much more complex,
some characteristic traits still persist. Thus, the red circles in
Fig. 10 outline the places where synchronization sets in at
the average frequency of interacting units. Second, at large
scales of d the frequencies of oscillatory ensembles behave
similarly to that of two interacting cells (Fig. 8), i.e., a slight
increase of the frequencies for small couplings and conse-
quent decrease as the d growths are observed. Additionally,
global synchronization occurring at d=0.47 appears after
several regimes of cluster synchronization, e.g., for

0.1 0.2 0.3 0.4 0.5 0.6

FIG. 10. (Color online) Average frequencies of oscillatory en-
sembles depending on coupling strength d. Red circles shows the
places where the characteristic traits of DS are observed. Global
synchronization sets in via set of clustered regimes.
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FIG. 11. (Color online) Snapshots of the lattice cell voltage V;;
after transients for different time moments: (a) 0 ms, (b) 30 ms, (c)
60 ms, (d) 90 ms. One can see a wave propagating from down left
corner of the lattice in right-upward direction.

d=0.3;0.45 two clusters of synchronization are observed and
for d=0.4 there are three of them. Finally, we note that due
to the high complexity and inhomogeneity of the system,
there are region of couplings were an intricate dynamics is
demonstrated. For example for d €[0.31;0.35] where one
synchronous cluster splits into two the frequencies of the
oscillatory ensembles show a complex interplay that may be
caused by the finiteness of calculation time and long tran-
sient processes at the border of two regimes.

The last thing to note is that the regime of global synchro-
nization is represented by the target wave that spreads in the
system (Fig. 11). Due to the fact that fibroblasts do not pro-
duce action potential their oscillations have very small am-
plitudes such that one observe a wave as the consequence of
periodic excitations of oscillatory clusters with a fixed phase
shift.

V. SPATIAL SCALING OF DS

In this section we present a general framework of finding
scalings of DS properties, namely, synchronization threshold
d, and synchronization frequency f,, with a varying size of
the passive medium between the oscillators. Here we con-
sider a chain of N passive elements described by Eq. (2) and
two oscillatory BVdP elements with different individual fre-
quencies (a;=0; a,=0.25) at the ends of the chain. We vary
the number of passive units N between the oscillators and
calculate the threshold value of coupling strength d; when
synchronization sets in. Figure 12(a) shows the dependency
of the relation vm on N where d; is the synchronization
threshold in case of a single passive element in the chain.
This dependency turned out to be linear implying the qua-
dratic power law scaling for the synchronization threshold d,
with respect to passive elements number N. Numerically ob-
tained scaling of the frequency of the synchronization f, i.e.,
the frequency of oscillations right after synchronization sets
in, is presented in Fig. 12(b) by the curve with square mark-
ers. According to our previous results synchronization occurs
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FIG. 12. (Color online) (a) Spatial scaling of threshold coupling
strength d, for which synchronization sets in for the chain of N
passive units separating two BVdP elements. The relation \m
obtained in simulation is fitted by the linear approximation imply-
ing power law dependency. (b) Scaling of synchronization fre-
quency f, (square markers curve) obtained numerically and f,,, (dia-
mond markers curve) obtained from the general framework of
finding DS characteristics from scaling properties (see text).

at the average frequency of the two elements. However one
should take into account the impact of the passive elements
on the individual frequency of the oscillator. That means that
the frequency of a single oscillatory element coupled with
the chain of passive units is a function of two variables f~
=f*(d,N). In our case of a BVdP element the characteristic
kind of that function is shown in Fig. 13. One peculiarity
which is worth noticing is that for large numbers N (e.g.,
N=16 in Fig. 13) the frequency of the oscillator depends on
d only. Having obtained such a kind of dependency for the
individual frequency of an oscillator, one can do the follow-
ing: (i) for each number of passive elements N and for each
corresponding threshold coupling strength d, [Fig. 12(a)] we
can find the values of the individual frequencies
fildg,N); f5(dy,N) for both oscillators with a;=0; a,
=0.25, respectively. These two dependencies are presented in
Fig. 12(b) by the curves with triangle markers. Their average
value f,,=(f|+/5)/2 is shown in the same figure by the
curve with diamond markers and fits to the previously nu-
merically obtained results for the synchronization frequency
f, rather well, thus, confirming that DS takes place at the
average frequency of oscillators similarly to the quasihar-
monic system. Summarizing this section we present a gen-
eral workflow for finding DS characteristics for an arbitrary
number of passive elements N,

(i) find the synchronization threshold d, for the case of
single passive element between the oscillators;
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FIG. 13. (Color online) The dependency of individual frequency
of the BVdP oscillator with a=0 interacting with the passive chain
of size N with coupling strength d. Blue curve with dot markers is
the threshold coupling strength d scaling which is used in order to
find f] and f5 (see text).

(ii) find the individual frequency dependencies f“(d,N)
for a single oscillatory element coupled with the passive
chain (Fig. 13);

(iii) for chosen N use the quadratic power law scaling
[Fig. 12(a) to find the synchronization threshold d, (curve
with dot markers in Fig. 13);

(iv) find the synchronization frequency from the relation
Fo= Ui N+ F(d N1 2;

(v) scaling of f; for a chosen N with respect to further
increase of the coupling d satisfies the relation (13).

VI. CONCLUSION

In this paper the effect of distant synchronization of os-
cillatory elements through a passive medium was considered.
The main mechanisms responsible for this phenomenon are
discussed and three characteristic features of the process are
outlined, namely: (i) for such kind of synchronization there
exists some threshold value of coupling between the ele-
ments where the interaction between the oscillators sets in
(ii) synchronization takes place at the average frequency of
oscillators which is customary for quasiharmonic elements
and (iii) a rapid decrease of the synchronization frequency
with the growing d. First two features are explained by
studying of the signal propagation through a passive me-
dium. As for the first point, the existence of a threshold cou-
pling value is caused by a continuous increase of the signal
amplitude from zero. If there is a finite frequency mismatch
between the oscillators, then it will demand a finite ampli-
tude of the signal which is responsible for their interaction
and, thus, some critical value of coupling is to be achieved to
satisfy this requirement. The second feature of DS is caused
by the frequency filtering property of the passive medium
providing a quasiharmonic interaction between the nonlinear
oscillators. One should take into account that this property is
held for a certain value of coupling only, i.e., if the coupling
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is too large the higher harmonics in the power spectrum of
the signal will appear in the output. Hence, too large fre-
quency mismatch between the oscillators demanding a large
coupling for the synchronization to set in consequently in-
volves the nonlinearity in the interaction and changes the
scenario of the process.

We also proposed an equivalent model describing DS in a
chain. This model reproduces qualitatively all main features
of DS observed in the numerical simulation. Using this
model we explained the effect of frequency decrease after
synchronization onset and derived an analytical scaling of
the frequency which rather well fits to the simulations.

These results were generalized to the case of a two-
dimensional medium. Synchronization of nonidentical oscil-
latory clusters of cardiac cells through the passive medium of
fibroblast was shown to demonstrate characteristic traits of
DS studied in chains.

DS was considered in both phenomenological and more
realistic and biologically motivated models of cardiac cells.

PHYSICAL REVIEW E 82, 026208 (2010)

The results can be used to explain experimental observations
of synchronization of oscillatory cardiomyocites separated
by a fibroblast medium [13].

We also presented a general framework of finding the DS
characteristics for an arbitrary number of passive elements
using scaling dependencies for threshold coupling strength
and for the synchronization frequency. Application of this
framework was presented for a chain of two BVdP oscilla-
tors interacting through passive units.
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