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The generation and synchronization of bursts are studied in intrinsically spiking neurons due to stimulation
with random intracellular calcium fluctuations. It is demonstrated that sufficiently strong noise could induce
qualitative change in the firing patterns of a single neuron from periodic spiking to bursting modes. The
dynamical mechanism of noise-induced bursting is presented based on a global bifurcation analysis. Further-
more, it is found that a pair of uncoupled and nonidentical spiking neurons, subjected to a common noise, can
exhibit synchronous firing in terms of noise-induced bursting. Furthermore, the synchronization is overall
enhanced with the noise intensity increasing, and synchronization transitions are exhibited at intermediate
noise levels.
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I. INTRODUCTION

In the past decades, constructive effects of noise in non-
linear systems have been investigated extensively in the con-
text of noise-induced transition �1� and noise-induced syn-
chronization �2�. Noise-induced transition means that noise
may lead to the appearance of new regimes which are not
observed in the corresponding noise-free system. There are
many theoretical and experimental studies of such phenom-
enon in biological systems �3–6�, including noise-induced
spiking or bursting in neural models. Noise-induced synchro-
nization means that a common external noise input to two
independent systems could give rise to synchronized motion
of both systems. Such synchronization has been demon-
strated in various systems from physics, ecology, and biology
�7–11�. In particular, Kurths et al. reported a mechanism for
noise-induced complete synchronization of chaotic systems
�10�, which may be used to explain an experimental finding
of neural information coding that a fluctuating input rather
than a constant input could greatly improve reliability of
spiking time in neocortical neurons �12�. The frontier of this
interest has shifted to noise-induced phase synchronization
of systems with chaotic �11� or limit cycle dynamics �13,14�
in recent years.

Bursting is a fundamental regime of neuronal behavior,
exhibiting trains of spikes of action potential mediated by
periods of silence �15�. Biophysical and dynamical mecha-
nisms of burst generation in a single neuron or a neural net-
work have been investigated quite scrupulously in the deter-
ministic limit �16–19�. Meanwhile, much attention has been
focused on bursting induced by noise �5,6,20,21�, due to
ubiquity of noise in the nervous systems �22�. For example,
it has been reported that bursting could be produced in an
excitable or subthreshold oscillatory regime of noisy neuron
models �6,20�. Neiman et al. �21� observed experimentally
noise-induced transition from quasiperiodically spiking to

bursting in responses of Paddlefish electroreceptor afferents.
Nevertheless, mechanisms underlying the noise-induced
bursting �NIB� remain unclear.

Neural synchronization has been suggested as particularly
relevant for neuronal signal transmission and coding. Re-
cently, burst synchronization of neurons, referred to only the
envelopes of the spikes in a population of bursting neurons,
attracts more interest �23–28�. For instance, burst synchroni-
zation can be achieved readily if the neurons are coupled, as
analyzed theoretically �23,24� and experimentally �26,27�.
Interestingly, Neiman et al. �28� reported that burst synchro-
nization could also be achieved via a mechanism of noise-
induced slow dynamics in uncoupled sensory neurons with
fast spiking dynamics. Characteristics of the noise-induced
burst synchronization �NIBS� in uncoupled neurons are not
well understood.

Here, in the context of noise-induced transition and noise-
induced phase synchronization, we will investigate NIB and
NIBS in a pair of uncoupled, nonidentical and conductance-
based neuronal models in detail. It is found that firing pat-
terns of these neurons undergo a qualitative change from a
periodic spiking mode to a bursting mode in the presence of
strong noise. A dynamical origin of such phenomenon is pro-
vided in virtue of a global bifurcation analysis of the corre-
sponding deterministic model. In addition, noise-induced
burst synchronization and synchronization transitions are
demonstrated in the two uncoupled nonidentical neurons.

II. MODEL

The Plant’s model for bursting nerve cells in Aplysia R-15
�29� and thermoreceptors is chosen to investigate nontrivial
effects of intracellular calcium fluctuations on spiking dy-
namics of the neurons. In this model, the spike-generating
mechanisms are of the familiar Hodgkin-Huxley type �i.e.,
with fast, V-dependent inward and outward currents� and the
slow processes include a slow inward current and the slow
changes in intracellular free calcium concentration, which
activate an outward current or inactivate an inward current.*Corresponding author; lxf125@yahoo.cn
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The Plant’s model is governed by the following equations,

Cm
dV

dt
= − gNa · m�

3 �V� · h · �V − VNa� − gCa · x · �V − VCa�

− �gK · n4 + gK−Ca · y/�0.5 + y��

· �V − VK� − gL · �V − VL� , �1�

dh

dt
= � · �h��V� − h�/�h�V� , �2�

dn

dt
= � · �n��V� − n�/�n�V� , �3�

dx

dt
= �x��V� −�x��/�x, �4�

dy

dt
= � · �Kc · x · �VCa − V� − y� + ��t� , �5�

where V is a fast variable representing the membrane volt-
age; h, n, x are V-dependent, gating variables of sodium,
potassium and mixed sodium and calcium, respectively; y is
the intracellular free calcium concentration. Note that the
calcium concentration y is dimensionless, since the free cal-
cium concentration has been scaled by the dissociation con-
stant for binding to a Ca2+ channel �30�. Herein, the param-
eter � and �x are equal to 0.000 15 ms−1 and 9400 ms,
respectively. The voltage dependency of x� is x��V�
=1 / �exp�A · �B−V��+1�, where A=0.3 and B=−40. These
values are taken from the caption of Fig. 6 in Ref. �30�. A
description of other parameters and nonlinear functions for
Eqs. �1�–�4� can be found in Appendix I of Ref. �30�. The
parameter Kc is chosen as a control the parameter here and
taken as 0.0032 mV−1 to make the neuron periodically spik-
ing. ��t� is a Gaussian white noise with zero mean value
���t��=0 and the autocorrelation function ���t1���t2��
=2D��t1− t2�, in which D is the noise intensity. Because ex-
periments reports observed fluctuations in the baseline values
of calcium and variations in the amplitudes and widths of
intracellular calcium oscillations �31� and theoretical works
well reproduced these stochastic effects in stochastic models
driven by the white noise �32�, we adopt the white noise to
cause fluctuations of the intracellular calcium concentration
here. It should be noted that in our simulations, we set that
the intracellular calcium concentration is equal to 0 when
negative values are obtained from Eq. �5�.

The deterministic model �i.e., Eqs. �1�–�5� without the
noise term ��t�� is integrated numerically by using the Euler
method with a time step of 0.01 ms. The stochastic model
�1�–�5� is calculated numerically by using the Euler-
Maruyama algorithm �33� with the same time step. The time
evolution of the transient process is discarded in the simula-
tion results. The values of the mean interburst intervals ��b�,
the regularity factor R, the synchronous factor �ps and the
average synchronization epochs Sep are obtained by averag-
ing over 20 independent runs.

III. RESULTS AND DISCUSSION

A. Noise-induced bursting in a single neuron

A simulation is implemented as follows: the single neu-
ronal model is driven by the deterministic component only
up to t=450 s, by which time rhythmic spiking with the
period T=0.547 s is established, as shown in the top panel
of Fig. 1�a�. After this moment, noise with D=0.003 is
switched on, then the neuron produces bursts, as shown in
the top panel of Fig. 1�b�, and the firing patterns of the neu-
ron changes drastically. From the middle and bottom panel in
Figs. 1�a� and 1�b�, it is found that as the noise intensity
increases, the values of gating variable x significantly de-
crease and the amplitude of the calcium concentration y
greatly increases, which might result in a qualitative change
in the firing pattern �see Fig. 4�b�, discussed below�. Such a
change of the firing mode in a single neuron is clearly mani-
fested in Fig. 2, where histogram distribution of the inter-
spike intervals �ISI� in the presence of noise is shown. When
the noise intensity D=0.000 005, only a narrowband peak
appears in Fig. 2�a� and the value of ISI, corresponding to
the peak tip, is very close to the period T. This indicates that
the spiking pattern driven by a weak noise just change quan-
titatively, compared with the deterministic periodic spiking
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FIG. 1. Time series of the membrane voltage V, the gating vari-
able x, and the intracellular free calcium concentration y: �a� the
deterministic neuron model �D=0� and �b� the noise intensity
�D=0.003�.
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pattern. In contrast, as D=0.003, a broadband distribution is
generated in Fig. 2�b� and the values of ISI span a long range
of time, which implies that slow clusters of spiking and fast
spiking inside each cluster coexist in the firing train for
stronger noise, characterizing a bursting dynamics.

NIB can be described by plotting the mean interburst in-
terval ��b� as a function of the noise intensity D �see Fig.
3�a��. In the figure, ��b� presents a U-shape change and its
minimum is much larger than the deterministic period T.
This illustrates that NIB involves a new characteristic slow
time scale, manifested in quiescent epochs between the
bursts. The phenomenon is also confirmed for the parameter
Kc=0.0034, as shown in Fig. 3�a�. Such change of ��b� in the
Plant’s model might be attributed to the interplay between
the noise and the intrinsic dynamics of the models. In addi-
tion, we study the regularity of the bursts in the noise-
induced firing patterns. It is characterized as follows: R

=
	Var��b�

��b� , where smaller values of R imply better regularity.
As shown in Fig. 3�b�, R decreases monotonously with in-

creasing D, demonstrating that the regularity of the noise-
induced bursts is enhanced when the noise intensity in-
creases. Note that there is no minimum for intermediate
values of D in contrast to Fig. 3�a�.

To explain the dynamic origin of NIB, we analyze the
bifurcations of the dynamics of bursting in the deterministic
Plant’s model first. The dynamics of the bursting has been
dissected with a fast/slow dynamics analysis by Rinzel et al.
�32�. The process was carried out as follows. At first, the
whole system is divided into a fast subsystem �i.e., Eqs.
�1�–�3�� and a slow one �i.e., Eqs. �4� and �5��, and then the
dynamics of the fast subsystem is studied when fixing x and
taking y of the slow subsystem as a control parameter. It is
found that V of the fast subsystem undergoes a Hopf bifur-
cation �HB� and a Homoclinic bifurcation �HC� with y in-
creasing. A projection from the HB and HC curves onto the
y-x plane is shown in Fig. 4�b�. According to the aforemen-
tioned bifurcation analysis of the fast subsystem, the mem-
brane voltage V stays in stable steady states in region 1 to the
left side of the HB curve and in region 3 to the right side of
the HC curve, and lies in a periodic spiking state in region 2
between the curves.

As illustrated by the orbit c in Fig. 4�b�, weak oscillations
of the slow variables x and y just stay in region 2 �see its
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FIG. 3. �a� Mean interburst interval ��b� versus the noise inten-
sity D; �b� Regularity factor R as a function of D.
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FIG. 4. �a� Time series of the membrane voltage V at D
=0.0006; �b� Projection from HB and HC curves in the fast sub-
system of the Plant’s model onto the y-x plane. Regimes 1, 2, and 3
correspond to the steady state, periodic spiking state, and steady
state of V in the fast subsystem, respectively. The inset shows the
enlargement of orbit c, corresponding to the periodic spiking re-
sponse of V. Orbit d is a stochastic cycle which drives V to generate
the bursting response.
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enlargement in the inset�, which yields the repetitively spik-
ing of the fast variables V in Fig. 1�a�. When adding noise
with the intensity D=0.0006, the amplitudes of some sto-
chastic cycles are strongly amplified and these cycles typi-
cally cross the HC curves, as exemplified by the orbit d in
Fig. 4�b�. Such stochastic oscillations produce the bursting
patterns in Fig. 4�a�. The generation of bursting could be
interpreted as follows: when the slow variable y passes the
HC curve from region 3 and enters into region 2, the fast
variable V could make a change from the steady state to the
spiking state �see arrow 1 in Fig. 4�a��, switching on an ac-
tive phase of a burst. When the variable y crosses the HC
curve from region 2 and enters into region 3, the variable V
would terminate the spiking state and recovers the rest state
�see arrow 2 in Fig. 4�a��, turning on a silent phase of a burst.
Repetition of this process leads to the bursting patterns of a
neuron.

From a biophysical point of view, the noise-induced
bursts might be understood as follows. The occurrence of
positive fluctuations in the noise input improves accumula-
tion of the intracellular calcium during the repetitively spik-
ing, which turns on a Ca-activated, potassium channel with
conductance gK-Ca, yielding an outward current. The current
counteracts the slow inward current and eventually termi-
nates the spiking state. During the rest state, the occurrence
of negative fluctuations in the noise input accelerates re-
moval of the intracellular calcium, decreasing the outward
current. The consequent slow depolarization eventually leads
to reactivation of the slow V-dependent inward current, and
thus to an activation of the rapid, spike-generating currents.

Dynamical and biophysical interpretations of the noise-
induced bursting in the Plant’s neuronal model might be
helpful to understand experimental findings of noise-induced
bursting in the sensory neurons �21,28�. In addition, Longtin
�20� has also reported a noise-induced bursting pattern in the
Plant’s model. In contrast to our work, he choose the differ-
ent deterministic dynamics and noise source in the investiga-
tion of NIB, which lead to a different generation mechanism
for the noise-induced bursting in his work from that de-
scribed in our work. For example, he adopted a deterministic
model with slow waves but no spikes, and studied the effects
of the membrane voltage fluctuations on the spiking patterns.
In the present work, the deterministic model stays in a peri-
odic spiking state and the effects of the intracellular calcium
fluctuations on the spiking patterns are investigated. Due to
these differences, it is reasonable to conclude that the mem-
brane voltage fluctuations induce fast spiking on the slow
waves to produce the bursting pattern in Longtin’s work,
while the calcium concentration fluctuations produces slow
bursting on the fast and repetitive spiking to yield the burst-
ing pattern in our work.

B. Noise-induced burst synchronization
in nonidentical neurons

Due to the fact that neurons in an array typically have
widely distributed natural frequencies and include statisti-
cally independent internal noise, synchronization with
weaker degree, i.e., phase synchronization �PS�, has been

studied in nonidentical neurons �7,11,34,35�. Motivated by a
recent experiment of the noise-induced burst synchronization
in electroreceptor afferents �28�, we investigate burst syn-
chronization of two uncoupled and nonidentical spiking neu-
rons stimulated by a common noise in the context of noise-
induced phase synchronization.

To characterize the coincidence of bursts in both neurons,
we define a phase variable for the variable V as �34�,

��t� = 2	
k +
�t − �k�

��k+1 − �k�
� , �6�

where �k
 t
�k+1, and �k is the firing time at which the kth
burst starts, detected in numerical simulations when the
membrane potential V exceeds a threshold value of 0 mV
and ISI is larger than a critical value of 3000 ms. It should be
noted that the ISI criteria used to identify the bursts is chosen
on the basis of the ISI histogram distribution �see Fig. 2�b��.
The most common approach to study PS in stochastic sys-
tems is to compute the probability of the distribution of the
cyclic phase difference P��c�� on �−	 ,	�, where �c�
=�� mod�2	�. PS is then interpreted in a statistical sense
�34�: peaks of P��c�� manifest preferred phase differences
and the corresponding peak’s sharpness characterizes the de-
gree of stochastic phase locking. Phase synchronization in
biological and ecological systems were demonstrated by
means of such statistical interpretation in recent years
�36,37�.

To quantify the degree of PS, we introduce the entropy of
the distribution of the cyclic phase differences as follows
�34�:

H = − �
i=1

M

Pi ln Pi, �7�

where M is the number of bins and Pi is the probability that
the cyclic phase difference �c� is in the ith bin. Normalizing
H in �0, 1� by the maximal entropy Hm=ln M of the uniform
distribution, the synchronization index is calculated as

�ps = �Hm − H�/Hm, �8�

where �ps=0 corresponds to a uniform distribution �no syn-
chronization� and �ps=1 represents a Dirac-like distribution
�perfect phase synchronization�.

Both neurons driven by a common noise are described by
Eqs. �1�–�5�, except that the parameter Kc is different for two
neurons, that is, we take Kc1=0.0032 mV−1 for one neuron
and Kc2=0.0034 mV−1 for the other, which make both neu-
rons periodically oscillate with different periods 0.547 and
1.02 s, respectively. Figure 5 shows the probability density of
the cyclic phase differences in both neurons for D
=0.00008 and 0.0025, respectively. An almost uniform dis-
tribution of the phase differences in Fig. 5�a� indicates that
the neurons could not be stochastically locked in the pres-
ence of weak noise. In contrast, stronger noise produces a
sharp and high peak in the probability density of Fig. 5�b�,
demonstrating phase locking in the neurons. Actually, such
synchronization is also manifested by the mean interburst
intervals in Fig. 3�a�. The discrepancies in the mean inter-
burst intervals at a low noise level shows that the average
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frequencies of bursts in the neurons are different, while the
overlap of the interburst intervals at a high noise level indi-
cates that the average frequencies of the two neurons are the
same. These results imply that the nonidentical neurons
could share similar slow dynamics in the presence of suffi-
ciently strong noise. Therefore, it is possible that a sufficient
common noise could induce bursts in nonidentical and un-
coupled neurons and lead to an entrainment of the slow dy-
namics in both neurons, producing phase synchronization.

Figure 6�a� plots the dependence of the synchronization
index �ps on the noise intensity D. It is obviously visible that
overall, �ps increases with D, demonstrating that phase syn-
chronization appears and the synchronization degree is im-
proved when the noise intensity increases. Surprisingly, �ps
does not smoothly increase in Fig. 6 and there exist some
valleys at intermediate noise levels, which might character-
ize synchronization transitions induced by strong noise. Note
that similar plots of �ps versus D are obtained for 30 inde-
pendent realizations and multiple minima of �ps are also
demonstrated for Kc1=0.0024 mV−1 �the data are not shown
here�. Figure 6�b� shows the dependence of the synchroniza-
tion index �ps on the parameter Kc1 with Kc2
=0.0034 mV−1 to study effects of the parameter mismatch
on phase synchronization. It is obviously seen from the fig-
ure that �ps increases monotonously as Kc1 increases both for
D=0.0025 and D=0.0031. This demonstrates that the degree
of phase synchronization is enhanced when the parameter
mismatch decreases. Furthermore, it is found from Fig. 6�b�
that the values of �ps for D=0.0025 are larger than those for
D=0.0031 in a certain range of Kc1, which implies that syn-
chronization transitions between both neurons do exist for
some values of parameter mismatch in two neurons.

Synchronization fluctuations at the high noise level in Fig.
6�a� is different from the previous results that when two un-
coupled neurons are subject to a common noise, the synchro-

nization degree of noise-induced spiking �or bursting� in two
neurons increases monotonously with the noise intensity
�11,28�. To further explore the aforementioned phenomenon
of synchronization fluctuations, we plot the phase differences
of firing trains of two neurons in Fig. 7 for D=0.0025, 0.003,
and 0.0035, respectively. As shown in Fig. 7�a�, the phase
differences slightly fluctuate around the value of 0, but also
exhibits two outbreaks, which indicate that the phases in
both neurons usually are very close, called “almost perfect
PS.” When D increases up to 0.003, there exist epochs of
phase locking interrupted by many phase jumps in Fig. 7�b�,
which is the characteristic of the imperfect PS �7�. As D
increases up to 0.0035, the phase differences in Fig. 7�c�
fluctuate around the value 0 again and show one outbreak,
demonstrating recurrence to the almost perfect PS. Noted
that as the noise intensity increases up to 0.004 and 0.0041,
the phase differences of firing trains in two neurons just
slightly fluctuate around a constant value and do not exhibit
outbreaks or phase jumps, illustrating perfect PS �data are
not shown here�.

Moreover, we compute the average synchronization ep-
ochs Sep, that is, the average time interval between two suc-
cessive phase jumps, to quantify the qualitative difference in
the dynamics of phase separation during the synchronization
regime �7�. The dependence of Sep on D is depicted in Fig. 8
to illustrate that there exist some valleys for an intermediate
noise level, which is consistent with the phenomenon in Fig.
6. The nonmonotonous increasing of both �ps and Sep at in-
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termediate noise levels imply that as the noise intensity in-
creases, two neurons undergo repetitive synchronization
transitions between almost perfect PS and imperfect PS, and
then reach perfect PS finally.

Here, we have provided a rather heuristic understanding
of the synchronization transitions, but the mathematical
mechanism is still an open task for future work and out of
the scope of this paper. The synchronization transitions in
Figs. 6�a� and 8 might be attributed to a complicated inter-
play between the noise and the parameter mismatch on the
bursting generation in two neurons. When the noise is very
low, more bursts could be produced by larger Kc due to the
parameter mismatch and the time of burst occurrence in two
neurons are different, leading to a weak synchronization. As
the noise intensity increases, the difference of the number of
bursts for different parameter Kc greatly decreases to zero,
but the mean interburst intervals in both neurons just slightly
decrease �see Fig. 3�a��, resulting in an enhancement of the
synchronization strength and producing nearly perfect phase
synchronization. However, when the noise is high, both
mean interburst intervals significantly increase �see Fig.
3�a��. According to the mechanism of burst generation, the

mean interburst intervals is influenced by the mismatch pa-
rameter and its rapid increase might amplify this influence,
resulting in the differences of time of the burst occurrence in
two firing patterns. This reduces the synchronization strength
and causes imperfect phase synchronization. Finally, when
the noise is very high, noise dominates the mean interburst
intervals in two neurons over the parameter mismatch again,
producing perfect phase synchronization.

IV. SUMMARY

In this paper we investigated the nontrivial effects of
noise in the Plant’s neuronal model, including noise-induced
bursting and burst synchronization. It has been found that
noise could trigger a transition in the firing pattern of single
neuron from a periodic spiking mode to a bursting one. A
dynamical mechanism for such bursting is provided on the
basis of a global bifurcation analysis in the corresponding
deterministic model. It has been demonstrated that two non-
identical and uncoupled spiking neurons, subject to a com-
mon noise, could be synchronized by means of noise-
induced bursting. Furthermore, as the noise intensity
increases, the synchronization degree is consistently en-
hanced. Interestingly, with the noise intensity increasing,
both neurons undergo synchronization transitions between
almost perfect and imperfect phase synchronization and fi-
nally achieve prefect phase synchronization, which is robust
to the parameter mismatch in two neurons. In addition, the
dependence of phase synchronization on the parameter mis-
match of two neurons is also investigated.

Comparing with previous studies about deterministic
bursting �16–19� and noise-induced spiking synchronization
�10,11�, our findings might yield some new insights into
characteristics and origins of bursting and synchronization
transitions in nonlinear systems driven by noise. In addition,
since it is well established that fluctuations in intracellular
calcium concentration are ubiquitous in cells �30�, it is
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expected that our results might be helpful to understand its
role in synchronous bursting oscillations of a population of
sensory neurons, which may be a neural mechanism for co-
incidence detection, and may substantially simplify the neu-
ral operations.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China �Grant No. 10872014� and China Post-
doctoral Science Foundation �Grant No. 230210143�.

�1� W. Horsthemke and R. Lefever, Noise-Induced Transitions:
Theory and Applications in Physics, Chemistry, and Biology
�Springer-Verlag, Berlin, 1984�.

�2� R. Toral, C. R. Mirasso, E. Hernández-García, and O. Piro,
Chaos 11, 665 �2001�.

�3� A. Longtin and K. Hinzer, Neural Comput. 8, 215 �1996�.
�4� S. Tanabe and K. Pakdaman, Biol. Cybern. 85, 269 �2001�.
�5� J. Jo, H. Kang, M. Y. Choi, and D. Koh, Biophys. J. 89, 1534

�2005�.
�6� Z. Yang, Q. Lu, H. Gu, and W. Ren, Int. J. Bifurcat. Chaos 14,

4143 �2004�.
�7� S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S.

Zhou, Phys. Rep. 366, 1 �2002�.
�8� T. Zhou, L. Chen, and K. Aihara, Phys. Rev. Lett. 95, 178103

�2005�.
�9� R. F. Galán, N. Fourcaud-Trocmé, G. B. Ermentrout, and N. N.

Urban, J. Neurosci. 26, 3646 �2006�.
�10� C. Zhou and J. Kurths, Phys. Rev. Lett. 88, 230602 �2002�.
�11� C. Zhou and J. Kurths, Chaos 13, 401 �2003�.
�12� Z. F. Mainen and T. J. Sejnowski, Science 268, 1503 �1995�.
�13� J. N. Teramae and D. Tanaka, Phys. Rev. Lett. 93, 204103

�2004�.
�14� H. Nakao, K. Arai, and Y. Kawamura, Phys. Rev. Lett. 98,

184101 �2007�.
�15� R. Krahe and F. Gabbiani, Nat. Rev. Neurosci. 5, 13 �2004�; S.

M. Sherman, Trends Neurosci. 24, 122 �2001�; J. E. Lisman,
ibid. 20, 38 �1997�.

�16� S. Coombes and P. C. Bressloff, Bursting: The Genesis of
Rhythm in the Nervous System �World Scientific Publishing
Co. Pte. Ltd., Singapore, 2005�.

�17� E. M. Izhikevich, Dynamical Systems in Neuroscience: The
Geometry of Excitability and Bursting �MIT Press, Cambridge,
MA, 2006�.

�18� P. Channell, G. Cymbalyuk, and A. Shilnikov, Phys. Rev. Lett.
98, 134101 �2007�.

�19� M. V. Ivanchenko, G. V. Osipov, V. D. Shalfeev, and J. Kurths,
Phys. Rev. Lett. 98, 108101 �2007�.

�20� A. Longtin, Phys. Rev. E 55, 868 �1997�.
�21� A. B. Neiman, T. A. Yakusheva, and D. F. Russell, J. Neuro-

physiol. 98, 2795 �2007�.
�22� A. A. Faisal, L. P. J. Selen, and D. M. Wolpert, Nat. Rev.

Neurosci. 9, 292 �2008�.
�23� M. Dhamala, V. K. Jirsa, and M. Z. Ding, Phys. Rev. Lett. 92,

028101 �2004�.
�24� M. V. Ivanchenko, G. V. Osipov, V. D. Shalfeev, and J. Kurths,

Phys. Rev. Lett. 93, 134101 �2004�.
�25� Q. Y. Wang, Z. S. Duan, Z. S. Feng, G. R. Chen, and Q. S. Lu,

Physica A 387, 4404 �2008�.
�26� R. C. Elson, A. I. Selverston, R. Huerta, N. F. Rulkov, M. I.

Rabinovich, and H. D. I. Abarbanel, Phys. Rev. Lett. 81, 5692
�1998�.

�27� R. Segev, Y. Shapira, M. Benveniste, and E. Ben-Jacob, Phys.
Rev. E 64, 011920 �2001�.

�28� A. B. Neiman and D. F. Russell, Phys. Rev. Lett. 88, 138103
�2002�.

�29� R. E. Plant, J. Math. Biol. 11, 15 �1981�.
�30� J. Rinzel and Y. S. Lee, J. Math. Biol. 25, 653 �1987�.
�31� T. Tordjmann, B. Berthon, E. Jacquemin, C. Clair, N. Stelly,

G. Guillon, M. Claret, and L. Combettes, EMBO J. 17, 4695
�1998�; I. Marrero, A. Sanchez-Bueno, P. H. Cobbold, and C.
J. Dixon, Biochem. J. 275, 277 �1994�.

�32� X. F. Lang and Qianshu Li, J. Chem. Phys. 128, 205102
�2008�; H. Li, Z. Hou, and H. Xin, Phys. Rev. E 71, 061916
�2005�; M. Perc and M. Marhl, Physica A 332, 123 �2004�.

�33� D. J. Higham, SIAM Rev. 43, 525 �2001�.
�34� A. Pikovsky, M. Rosenblum, and J. Kurths,

Synchronization—A Unified Approach to Nonlinear Science
�Cambridge University Press, Cambridge, England, 2001�.

�35� X. F. Lang, Q. S. Lu, and L. Ji, Int. J. Mod. Phys. B �to be
published�.

�36� C. Schäfer, M. G. Rosenblum, J. Kurths, and H.-H. Abel, Na-
ture �London� 392, 239 �1998�; P. Van Leeuwen, D. Geue, M.
Thiel, D. Cysarz, S. Lange, M. C. Romano, N. Wessel, J.
Kurths, and D. H. Grönemeyer, Proc. Natl. Acad. Sci. U.S.A.
106, 13661 �2009�.

�37� B. Blasius, A. Huppert, and L. Stone, Nature �London� 399,
354 �1999�.

PHASE SYNCHRONIZATION IN NOISE-DRIVEN… PHYSICAL REVIEW E 82, 021909 �2010�

021909-7

http://dx.doi.org/10.1063/1.1386397
http://dx.doi.org/10.1162/neco.1996.8.2.215
http://dx.doi.org/10.1007/s004220100256
http://dx.doi.org/10.1529/biophysj.104.053181
http://dx.doi.org/10.1529/biophysj.104.053181
http://dx.doi.org/10.1142/S0218127404011892
http://dx.doi.org/10.1142/S0218127404011892
http://dx.doi.org/10.1016/S0370-1573(02)00137-0
http://dx.doi.org/10.1103/PhysRevLett.95.178103
http://dx.doi.org/10.1103/PhysRevLett.95.178103
http://dx.doi.org/10.1523/JNEUROSCI.4605-05.2006
http://dx.doi.org/10.1103/PhysRevLett.88.230602
http://dx.doi.org/10.1063/1.1493096
http://dx.doi.org/10.1126/science.7770778
http://dx.doi.org/10.1103/PhysRevLett.93.204103
http://dx.doi.org/10.1103/PhysRevLett.93.204103
http://dx.doi.org/10.1103/PhysRevLett.98.184101
http://dx.doi.org/10.1103/PhysRevLett.98.184101
http://dx.doi.org/10.1038/nrn1296
http://dx.doi.org/10.1016/S0166-2236(00)01714-8
http://dx.doi.org/10.1016/S0166-2236(96)10070-9
http://dx.doi.org/10.1103/PhysRevLett.98.134101
http://dx.doi.org/10.1103/PhysRevLett.98.134101
http://dx.doi.org/10.1103/PhysRevLett.98.108101
http://dx.doi.org/10.1103/PhysRevE.55.868
http://dx.doi.org/10.1152/jn.01289.2006
http://dx.doi.org/10.1152/jn.01289.2006
http://dx.doi.org/10.1038/nrn2258
http://dx.doi.org/10.1038/nrn2258
http://dx.doi.org/10.1103/PhysRevLett.92.028101
http://dx.doi.org/10.1103/PhysRevLett.92.028101
http://dx.doi.org/10.1103/PhysRevLett.93.134101
http://dx.doi.org/10.1016/j.physa.2008.02.067
http://dx.doi.org/10.1103/PhysRevLett.81.5692
http://dx.doi.org/10.1103/PhysRevLett.81.5692
http://dx.doi.org/10.1103/PhysRevE.64.011920
http://dx.doi.org/10.1103/PhysRevE.64.011920
http://dx.doi.org/10.1103/PhysRevLett.88.138103
http://dx.doi.org/10.1103/PhysRevLett.88.138103
http://dx.doi.org/10.1007/BF00275821
http://dx.doi.org/10.1007/BF00275501
http://dx.doi.org/10.1093/emboj/17.16.4695
http://dx.doi.org/10.1093/emboj/17.16.4695
http://dx.doi.org/10.1063/1.2920175
http://dx.doi.org/10.1063/1.2920175
http://dx.doi.org/10.1103/PhysRevE.71.061916
http://dx.doi.org/10.1103/PhysRevE.71.061916
http://dx.doi.org/10.1016/j.physa.2003.09.046
http://dx.doi.org/10.1137/S0036144500378302
http://dx.doi.org/10.1038/32567
http://dx.doi.org/10.1038/32567
http://dx.doi.org/10.1073/pnas.0901049106
http://dx.doi.org/10.1073/pnas.0901049106
http://dx.doi.org/10.1038/20676
http://dx.doi.org/10.1038/20676

