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a b s t r a c t

Human comment is studied using data from ‘tianya’ which is one of the most popular on-
line social systems in China. We found that the time interval between two consecutive
comments on the same topic, called inter-event time, follows a power-law distribution.
This result shows that there is no characteristic decay time on a topic. It allows for very long
periods without comments that separate bursts of intensive comments. Furthermore, the
frequency of a different ID commenting on a topic also follows a power-law distribution.
It indicates that there are some ‘‘hubs’’ in the topic who lead the direction of the public
opinion. Based on the personal comments habit, a model is introduced to explain these
phenomena. The numerical simulations of themodel fit well with the empirical results. Our
findings are helpful for discovering regular patterns of human behavior in on-line society
and the evolution of the public opinion on the virtual as well as real society.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Recently, understanding the regularity in complex human dynamics has attracted more and more attention in various
fields. The classical view has assumed that human activities are homogeneous Poisson processes [1,2]. Such processes have a
well-known statistical property: the time interval between two consecutive events, called the inter-event time τ , follows an
exponential distribution, P(τ ) = λe−λτ . Recent evidence [3–16] from various deliberate human activity patterns, including
email and letter communications, library usage, broker trades, web browsing, etc., have shown that various human activities
are non-Poissonian, with bursts of frequent actions separated by long periods of inactivity, leading to power-law heavy tails
in the distribution of the inter-event time P(τ ) = τ−γ . These findings are very important in areas as diverse as disease
spreading, resource allocation and emergency response, etc. Several mechanisms [3–16] proposed to explain the origin of
bursts and heavy tails are limited in applications. More evidence about non-Poissonian human dynamics are needed. And
the general origin of the heavy tails is still far from being clearly understood.

As an important part ofmodern life, human behavior on the Internet also attractsmore andmore research interest. Dezsõ
et al. found that the time interval between consecutive visits by the same user to the site http://www.origi.hu follows a
power-law distribution [17]. They also showed that the exponent characterizing the individual user’s browsing patterns
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Table 1
The detailed format of one topic.

User (ID) Comment time Topic

ID1 2010/02/12,12:10:01 Topic A
ID2 2010/02/12,12:11:05 Topic A
· · · · · ·

ID3 2010/02/15,10:10:03 Topic A
ID2 2010/02/15,11:02:01 Topic A

determines the power-law decay in a document’s visitation. Chmiel et al. [18] investigated flows of visitors migrating
between different portal sub-pages. Amodel of portal surfing is developedwhere the browsing process corresponds to a self-
attracting walk on weighted networks with a short memory. Grabowski [19] found that the distribution of human activity
(e.g. the total number of books read or songs played in on-line social systems) has the form of a power-law. Zhou et al. focus
on the origin of power-laws in rating of movies. Their results demonstrate a significant role of the activity of individuals
on the society-level patterns of human behavior [20]. All these findings indicate that human behavior on the Internet is
typically non-Poissonian. It is very interesting and important to further study the scaling about the human dynamics on the
Internet.

In this paper, based on the data collected from ‘tianya’ which is one of the most popular on-line social systems in China,
we show that the inter-event time between two consecutive comments on the same topic follows a power-law distribution.
Meanwhile, the distribution of the number of comments in the same topic fromdifferent users also follows a power-law. This
means that there were some ‘‘hubs’’ in the topic who lead the direction of the public opinion. Furthermore, the power-law
distribution of the inter-event time shows that there is no characteristic decay time on a topic. A topic may be ignored for a
long time, and is revisited and intensively commented again sometimes. To obtain more insights into these observations of
the human dynamics in on-line social systems, we propose a model based on the attraction mechanism. Our findings may
be helpful to distinguish different types of public opinions in the virtual society in the future.

This paper is organized as follows: In Section 2, the original of the data and detailed information about the data are
introduced. The statistic results are presented in Section 3. Themodel and numerical simulations are presented in Section 4.
Finally, our conclusions are given in Section 5.

2. Data description

Our data were obtained from ‘‘tianya’’ (http://www.tianya.cn/), which is one of the most popular on-line social systems
in China. Every user is assigned a different identity name (ID). An ID can build a topic, and all the IDs can comment on it.
They can discuss different opinions and communicate on the topic. Until 2010/02/11, there were 33,296,350 IDs in ‘‘tianya’’,
and there were about 200,000 IDs on average on-line at the same time. The topics and the public opinion in ‘‘tianya’’ reflect
part of the public opinions in the real society in China. We randomly sample some topics which were commented more
than 3000 times as our dataset. The types of the topics are different, from public news to personal stories, indicating that
our results are general for different topics. The format of the data is shown in Table 1.

3. Statistic results

The inter-event time plays an important role in many human collective behaviors. For example, the power-law
distribution of the inter-event time about sending two consecutive E-mails can advance the spreading of the computer
virus [21]. The non-Poissonian distribution of arriving rate also has an impact on the classical queue theory [22,23]. Here,
we focus on the inter-comment time τ on the same topic, i.e., the time interval between two consecutive comments made
by any user on the same topic first. And then we also focus on the inter-comment time τ ′ made by a single user later on.
Although the inter-comment time has some relationshipwith inter-visit time on awebsite [17], it is obviously different from
inter-visit time because comment behavior is only a very little part of the web visiting behavior. Human comment dynamics
on the web can reflect how individuals comment with each other while human dynamics of visiting a website cannot. Four
different topics were taken as examples. Topic A is about ‘‘Various kinds of fanciful and fabulous flowers’’. Topic B and Topic
C are about two social events that happened in China. Due to privacy, the detailed contents about these two topics are not
listed here. Topic D is about ‘‘War against those addicted to the Internet: Sound for the freedom’’. The detailed information
about the topics is given in Table 2. Here duration is the time interval between the topic creation and data collection. Total
clicks, total comments and total number of IDs are counted during the whole duration.

The distribution of the inter-comment time is shown in Fig. 1. It is clearly seen that all the distributions are power-law,
although the topics differ by content and popularity. The exponent varies for the different topics. These results show that the
human comment process is non-Poissonian as the human dynamics of letter and E-mail communication, web browsing, on-
line movie watching and broker trades. The heavy tail of the distribution allows for long periods of inactivity that separate
bursts of intensive activity. Here, it also means there is no characteristic decay time in the human comment dynamics. A
topic can be revisited, reactivated and commented upon frequently even after a very long time. For example, topic A was

http://www.tianya.cn/
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Fig. 1. The inter-comment time distribution of four different topics. The black line is the fitting function. In the inset we plot the cumulative probability
distribution. (a) Topic A, slope γ = 1.32± 0.06, (b) Topic B, slope γ = 2.83± 0.30, (c) Topic C, slope γ = 2.67± 0.09, (d) Topic D, slope γ = 2.65± 0.14.

Table 2
The detailed information about four randomly selected topics.

A B C D

Total clicks 792,429 618,885 223,961 524,512
Total comments 5,549 9,822 5,757 7,186
Total numbers of IDs 3,965 1,760 3,959 2,663
Duration(s) 24,989,467 464,957 829,408 1,082,256

created 8 months ago and it is still often commented upon now. A large population would read the topic and their opinions
may be influenced by it.

There were thousands of IDs taking part in the discussion on one topic (Table 2). It is an interesting question to ask: do
they contribute to the topic equally or are there some ‘‘hub’’ IDs who are more important in the topic? In order to answer
this question, we study the number of times ni an ID participates in a topic. The distributions are shown in Fig. 2. It is evident
that they can be described by power-law P(ni) ∝ n−α

i . The exponents are slightly different but all in the range 2 < α < 3.
The power-law distributions mean that most of the users only comment once or very few times in a topic. But there are also
some users who comment many times in a topic. We may call these types of users as the audience and actors, respectively.
The actors play a crucial role in leading the direction of the public opinion formation of the topic followed by the audience.
This could be useful for some commercial applications. For example, the topic could be about some negative news of a
company, which maybe created by its competitor and the ‘‘hubs’’ could belong to or depend on this competitor. In such a
case, the guidance of the opinion by the hubs will be harmful for this company.

4. Model and simulation

We propose a model in order to get a better understanding of our empirical observations from Section 3. Based on our
intuitive experience on comment habit, we can see that the number of the comments grows one by one. After the topic was
created by a user a, some other users b and c et al. will comment on it later on. Then awould respond to their comments. b and
c may come back to respond to the response to their original comments, and the process continues. Comment behavior can
be regarded as a kind of communication. Someone who comments on a topic before would come back to read the response
of others to his comment. And he would comment again with higher probability than other IDs. This discussion indicates
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Fig. 2. The distribution of the frequency of different IDs commenting on a topic. The black line is the fitting function. In the inset we plot the cumulative
probability distribution. (a) A, slope α = 2.65, (b) B, slope α = 2.24, (c) C, slope α = 2.78, (d) D, slope α = 2.39.

that the more times we participate in a topic, the higher is the probability that we make comments again. So our model is
defined by the following scheme:
Step 1. Growing. A topic is created at t = 0. There is an ID commenting on the topic at each time step in the following time.
In other words, the number of the comments increases one by one. This is a simplification of the real situation where the
time needed to make a comment varies due to various length of the comments.
Step 2. Comment habit. A new comment is created with probability P by a new ID who has never commented in the topic
in the past time and with probability 1 − P by other old IDs. The old IDs do not contribute equally to the creation of a
new comment. Rather, the probability that a new comment is created by ID i is a function of the topic attraction of this ID:
Π(i) =

Ai(t)
ΣAi(t)

, where Ai(t) is the attraction of user i at time t reflected by the number of comments ni(t) made by the ID in
the past, i.e., Ai(t) = A(0) + ni(t). Here A(0) represents the initial attraction, which is different for different topics.

Mathematically, themodel is similar to growing networks in Ref. [24], where an existing node is selected to be connected
to a new node with a probability depending on the degree ki as Π(i) =

(B+ki(t))
Σ(B+ki(t))

. Basing on the analysis of the growing
network in this work, we obtain that the distribution of ni is a power-law P(ni) ∝ (ni)

−αat a large enough time t and with
the exponent α = 2 + A(0).

To compare our model with data, let us take topic C in our data as an example. Here α(c) = 2.78, and we take A(0) =

α(c) − 2 = 0.78 in the model simulation. There were 5757 comments and totally 3959 IDs made comments in topic C. As
a result, there are 3959 comments which are made by new IDs when they first join the topic. Thus, we can estimate that
P = 3959/5757 = 0.687. We then simulate the model with A(0) and P obtained in this way. The results are shown in
Fig. 3(a). The distribution of the simulation is indeed a power-law with a similar exponent as found from the data.

Comparing the model to the empirical data in Fig. 2, we note that there are a few IDs with extremely large ni in the data.
Based on our experiencewith on-line comments, this could result from the fact that some users, for example, the author and
his strong supporters, have a different behavior in the topic. They comment on the topic with higher probability than others.
This could be accounted in the model with larger A(0) for these users. We test this by assuming that there was a user whose
A(0) = 35which is much larger than others, so that most of the comments by the old users of the topic in the early stage are
from this particular user. The result is shown in Fig. 3(b). We can see that indeed there is an ID whose ni is much larger than
the others, as observed in the data. Comparison of the results averaged over many realizations of simulations in the insets of
Fig. 3(a) and (b) shows clearly that the probability to generate large number of comments ni ∼ 102 is significantly enhanced
when introducing a large value A(0). So the difference between the data and the power-law fitting can be accounted by
different initial attraction of some special users. In reality, A(0) may follow a heterogeneous distribution and its effects will
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Fig. 3. The simulation result of the model (+) compared to data (◦). (a–b) The distribution of frequency of different IDs commenting on a topic. Model
result is from one random realization of the simulation generating the same number of comments as in the data. The slope of the dash line is the same as
in Fig. 2(c). The Parameters are (a) A(0) = 0.78, P = 0.687, (b) A(0) = 0.78, P = 0.687, A(0)1 = 35. The results averaged over 100 realizations with the
same event size are shown in the insets. (c–d) Inter-comment time distribution of themost active ID. (c) Data, slope of the line is β = 1.36. The inset shows
the cumulative probability distribution. (d) Result from one random realization of model simulation (+) compared to data (◦), the slope of the dashed line
is the same as in Fig. 3(c). The inset shows a non-Poisson broad distribution from the result averaged over 100 realizations of model simulations.

be analyzed in more detail in the future. These types of users with the largest A(0) are the ‘‘hubs’’ who could deliberately
try to lead public opinion formation of the topic.

It is very hard to know exactly the time used for a comment because the size of the comments can be very different.
Therefore the model cannot simulate the distribution of the inter-event time directly. But we can do it in another way. We
assume one comment takes one time step, i.e. the number of the comments between two comments can be taken as the
time interval between the two comments. For example, the time interval between Ith and Jth comment was τ ′

= J − I .
In this way, we can study the inter-event time between two consecutive comments made by the same ID. We analyze the
most active user to have good statistics. Furthermore, it is important to understand his behavior as an ‘‘opinion leader’’. We
find that his inter-event time distribution is also a power-law, as shown in Fig. 3(c). Meanwhile, the corresponding result of
the model is compared to the data in Fig. 3(d). It is interesting that our model reproduces a broad distribution, even though
it does not fit precisely to the distribution from the data. This is likely due to many other complications that may not be
captured by our simple model. It clearly implies that individual user’s behavior is non-Poissonian. He/She may not take part
in the discussion for a long time and may make comments in the topic frequently in a short time. From the analysis above,
we can see that while simple, our model can well describe most important features in the human comment dynamics in
on-line social systems.

5. Conclusion

In this paper, we present clearly new evidence that human comment behavior in on-line social systems, a different type
of interacting human dynamics, is non-Poissonian. The inter-comment time follows a power-law distribution asmany other
human dynamics. Amodel based on personal attractionwas introduced to explain the human comment behavior. Numerical
simulations of the model fit well with the empirical results. Our work would be useful to understand human comment
behavior in realistic society, for example, human discussion behavior in a meeting, group communications in trunked
mobile telephone [25]. We expect that quantitative understanding of the human comment dynamics, when combined with
additional content analysis, will open a new perspective on how to distinguish fraudulent public opinion from realistic
opinion.
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It is important to note that various human activities are likely interactingwith each other in an intricateway. For example,
the human comment behavior on a topic is expected to be related to the behavior of web site visits [17] or the interval
between clicks on the comments. When commenting on a particular topic, some special groups of words could be used
more frequently. This could lead to a long-tailed inter-event distribution ofwords,which is observed recently [26]. Following
the same line of thinking, the complex structures in language in other sources [27] could be related to some other human
activities. Studying the interplay among various human activities is therefore an interesting topic for future investigations.
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