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Summary
Objectives: Scoring sleep visually based on
polysomnography is an important but time-
consuming element of sleep medicine.Where-
as computer software assists human experts
in the assignment of sleep stages to poly-
somnogram epochs, their performance is
usually insufficient. This study evaluates the
possibility to fully automatize sleep staging
considering the reliability of the sleep stages
available from human expert sleep scorers.
Methods: We obtain features from EEG, ECG
and respiratory signals of polysomnograms
from ten healthy subjects. Using the sleep
stages provided by three human experts, we
evaluate the performance of linear discrimi-
nant analysis on the entire polysomnogram
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and only on epochs where the three experts
agree in their sleep stage scoring.
Results: We show that in polysomnogram in-
tervals, to which all three scorers assign the
same sleep stage, our algorithm achieves 90%
accuracy. This high rate of agreement with the
human experts is accomplished with only a
small set of three frequency features from the
EEG. We increase the performance to 93% by
including ECG and respiration features. In
contrast, on intervals of ambiguous sleep
stage, the sleep stage classification obtained
from our algorithm, agrees with the human
consensus scorer in approximately 61%.
Conclusions:These findings suggest that ma-
chine classification is highly consistent with
human sleep staging and that error in the al-
gorithm’s assignments is rather a problem of
lack of well-defined criteria for human experts
to judge certain polysomnogram epochs than
an insufficiency of computational procedures.
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1. Introduction
Sleep is an active and regulated process
with an essential restorative function for
physical and mental health. Sleep disorders
can result not only in impairments in life
quality but also in physiological dysfunc-

tions. Part of the diagnostic process is a
quantitative sleep recording using poly-
somnography. Polysomnography is eval-
uated by a visual scoring of sleep stages.
Sleep scoring is a fundamental aspect of
sleep research and sleep medicine, and in-
volves assigning one of six sleep stages to

the pattern found in consecutive 30-second-
long epochs of the electroencephalography
(EEG), electro-oculography (EOG), and
electromyography (EMG) recordings [1, 2].
The resulting succession of discrete sleep
stages is referred to as hypnogram and
supports diagnostic decisions.

While automatic sleep stage classifi-
cation is taken as the starting point for sleep
stage scoring, its performance is usually in-
sufficient so that the scoring ultimately
requires visual inspection of the polysom-
nograms by expert human scorers. Visual
examination of polysomnogram epochs
constitutes not only a time-consuming
procedure but further, the resulting hyp-
nograms are strongly dependent on the
particular human expert performing the
analysis. It is known that there is a signi-
ficant inter-scorer variability (about 70%
agreements) [3]. Full automatization of
sleep scoring would both increase the time
efficiency and improve the reproducibility
in the generating of hypnograms.

2. Objectives

In this study we address the question as to
why computerized sleep scoring [4, 5] has
failed so far to produce sleep stage assign-
ments that satisfy human experts. In prin-
ciple the observed insufficiency of current
computer-generated sleep stage scores may
arise from a) an inability of the applied al-
gorithms to reproduce the human scorer’s
sleep stages based on polysomnogram
graphs or b) from inconsistency in the
human polysomnogram scoring itself. To
discriminate between the two possibilities
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we apply classic linear discriminant analy-
sis with stepwise feature selection to poly-
somnographic records from ten healthy
subjects that have previously been scored
by three human experts. Using this data set
we can assess to what extent the machine is
able to capture human assignments in the
absence or presence of disagreement be-
tween human experts and in turn whether
the assumed insufficiencies of machine
learning algorithms are due to possibly
oversimplified algorithms or rather are due
to a lack of objective criteria based on
which sleep stages can be assigned.

3. Methods

3.1 Polysomnogram Data

The data utilized in this study was retrieved
from the Siesta database and contains poly-
somnograms of ten healthy subjects suit-
able for multiscoring effects [6]. The poly-
somnograms contain six EEG channels
with references (FP1-M2, FP2-M1, O1-M2,
O2-M1, C4-M1, C3-M2, M1, and M2), one
electrocardiogram channel (ECG modified
II lead), a pulse measurement, two types of
EMG (one m. submentalis and one m. ti-
bialis), nasal air flow, oxygen saturation
and pulse rate, and respiratory movements
of the thorax and of the abdomen. The
corresponding hypnograms were gener-
ated by three experienced scorers. Two of
the scorers assessed the data independently
and the third one reached a consensus be-
tween the two assignments. In the follow-
ing we refer to the third expert as the con-
sensus scorer. All the scorers assigned sleep
stages according to the guidelines of Recht-
schaffen and Kales [1], with the stages:
Wake, Stage 1 (S1), Stage 2 (S2), Stage 3
(S3), Stage 4 (S4), REM, and movement
time. The sleep stages were thereby as-
signed for non-overlapping 30-second
epochs.

3.2 Human Expert Scoring and
Inter-scorer Variability Reduction

As pointed out in the introduction, the
hypnograms obtained by two scoring ex-
perts do not always coincide. Such incon-

sistencies occur particularly often in sleep
periods with rapid transitions between
sleep stages and are possibly a major source
for classification errors made by any clas-
sification algorithm. Therefore, to obtain
sleep stage assignments with quantifiable
consistency from the scores of the human
experts we shift 3 min intervals in steps of
30 s epochs over the polysomnogram re-
sulting in some 900 intervals per subject
(corresponding to 7.5 hours of sleep re-
cordings). Then, the following data sets,
containing intervals with scores of increas-
ing consistency, are generated:
a) All 3 min intervals (8264) with sleep

stage as assigned by the consensus
scorer. The sleep stage of the covered
30 s epochs are thereby combined in
such a way that if there is a particular
sleep stage occurring in more than 50%
of the 3 min window, we ascribe that
sleep stage as joint assignment to the
interval.

b) Three min intervals for which the joint
assignment is consistent for the three
human scorers (scorers agree on what
stage prevails in the interval).

c) Three min intervals for which the con-
sensus scorer assigned the same sleep
stage to all six 30 s epochs (consensus
scorer finds no sleep stage transitions).

d) Three min intervals for which the three
scorers all assign the same sleep stage to
all six 30 s epochs (no scorer finds tran-
sitions and all scorers agree on every
epoch)

Data sets (b) and (c) can be interpreted in
terms of alternative filtering operations in
that the joint assignment procedure in (b)
smoothes the sleep stages of each scorer
over time, whereas in (c) the consensus
smoothes the stages across the scorers.

3.3 Polysomnogram Feature
Extraction

We first compute several features for each
3 min interval of the polysomnogram. The
EEG features are obtained from the C4-M1
channel after removing outlier values
(beyond four standard deviations) fol-
lowed by standardization (with respect to
the full night signal mean and variance).
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Then we compute the power within the fol-
lowing frequency bands: delta (0.5–4 Hz),
theta (4–8 Hz), alpha (8–12 Hz), and beta
(12–30 Hz). The measure P refers to the
power of these bands within the 3 min
epoch. Subsequently, we compute the fol-
lowing quantities: beta/delta, alpha/delta,
theta/delta, beta/theta, alpha/theta, beta/
alpha, beta/P, alpha/P, theta/P, and delta/P.
This selection of frequency band quantifi-
cation we take from the sleep stage defini-
tions given in the sleep scoring manual [1].
As in previous studies taking into account
properties from cardiorespiratory signals
for computer classification [7, 8] we also
extend our feature pool beyond informa-
tion from the EEG. From the respiratory
and electromyogram signals we compute
the mean, standard deviation, median, and
root mean square standard deviation.
Finally, for the quantification of the ECG
signal, we compute several heart rate varia-
bility (HRV) parameters [9]: mean heart
rate, the standard deviation (sdNN) as well
as the coefficient of variation (cvNN =
sdNN over mean beat-to-beat-interval). A
detailed description and classification of
dynamic changes using standard HRV
measures is often not sufficient, therefore,
we are also applying nonlinear methods
based on symbolic dynamics: POLVAR20,
the probability of low variability below
20 ms quantifies laminar phases in the time
series which have proven to predict life-
threatening arrhythmias as early as 10 min
before the event [10, 11]. FWRENYI4, the
Renyi-entropy of order 4 of the word dis-
tribution – quantifying the global heart
rate dynamics which has been shown to
identify risk patients after myocardial in-
farction [12, 13]. Finally as the third sym-
bolic dynamics parameter we calculated
WSDVAR: the word variability – quantify-
ing the dynamical changes and which has
been proven very helpful to quantify com-
plexity in physiological time series. Using
WSDVAR were top scorers in the Com-
puters in Cardiology 2002 challenge [14]
and applied it also successfully to animal
models [15, 16]. For details we refer to our
previous papers [10, 17, 18].

The above measures result in 74 feature
values for each 3 min interval of the poly-
somnogram.



3.4 Stepwise Linear Discriminant
Analysis and Cross-validation

Linear discriminant analysis provides a
framework to classify an object based on the
feature values which describe it. By means of
linear discriminant functions it is possible to
combine these features in such a way that
objects from different classes are as distin-
guishable as possible [19]. The features from
which the discriminant functions are con-
structed must be chosen based on their suit-
ability for performing accurate classifica-
tion. As a method for fast feature selection
we apply forward stepwise selection with
Wilk’s lambda as optimality criterion. Then
we evaluate the performance of this classifi-
cation method beyond the training exam-
ples: we generate one linear discriminant
model by stepwise feature selection on 2/3 of
the 3 min intervals (training set) and then
use the model to classify the remaining 1/3 of
the intervals (validation set). This choice for
the size of randomly chosen training and
validation sets is based on a trade-off be-
tween having a training set as large as pos-
sible, while leaving a validation set large
enough for a solid estimate of classification
performance measures. The training-vali-
dation procedure is repeated 100 times,
yielding 100 linear discriminant models.
This collection of models can be used to as-
sess the reliability of the selected features as
successful candidates for sleep stage classifi-
cation. We accounted for the number of
times (among the 100) a feature was selected
as a good sleep stage predictor. We assess the
performance of each linear discriminant
model on the validation set by computing
accuracy, sensitivity (true positive rate) and
specificity (true negative rate).

4. Results

4.1 Extent of Scorer Disagreement
over Epoch Classification

Classification procedures (human or ma-
chine-performed) require the notion of
“correct category of the object” in order to
allocate objects to a class. To derive a ma-
chine rule that classifies sleep stages, the
source of correct sleep stages is human ex-
pert scorers. Therefore, we analyze to what

extent the notion of correct classification
exists in practice, namely, to what degree
the scorers agree in their assignment of
sleep stages to polysomnogram intervals.

To this end, we define four sets of intervals
with increasing stringency regarding the
consistency of sleep stage class assignments
of human experts (see Methods). Except
from sleep stage S1, we find that between
82% and 86% of intervals have the same
joint assignment (dataset (b), �Table 1).
This indicates that intervals containing
sleep stage S1 are subject to greater contro-
versy among human experts than those
containing other sleep stages.

Similar results are obtained for data set
(c) where we include only those intervals
where the consensus scorer found no
transitions between sleep stages (�Table 1
row c). Such regions likely contain the most
accurate sleep stage assignments. Finally,
data set (d) consists only of those intervals
for which the three scorers all assign the
same sleep stage to all the covered epochs.
We find that only 65% of intervals fall into
this category of highest reliability. This sug-
gests that one third of the data is cause for
ambiguities in sleep stage assignment.

4.2 Performance of Linear
Discriminant Models with
Different Number of Features
on Consistent Data

Supervised learning classification algo-
rithms require data with predefined cat-
egory, although other machine-learning
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Table 1
Percentage of sleep
stage intervals re-
tained in each data-
set

Table 2
Overlap of datasets
(b) and (c)

Dataset Wake S1 S2 S3 & S4 REM Total

(a) 100 100 100 100 100 100

(b) 82 49 83 82 86 82

(c) 71 33 84 84 84 81

(d) 61 13 67 70 68 65

Number of intervals

(b) (c) Overlap

Wake 527 456 417

S1 180 120 79

S2 3586 3621 3242

S3 & S4 1126 1164 1050

REM 1355 1314 1176

Total 6774 6675 5964

Table 3 Feature selection. The table shows the
list of relevant features (according to stepwise
feature selection, see Methods). The rightmost
column shows the frequency with which the fea-
tures got selected as good sleep stage predictors
(among 100 training-validation executions).

Selection of variables according to %
subsets for which Wilk´s lambda is opti-
mized

EEG delta 100

relative delta 99

signal power 78

relative theta 78

theta 78

beta/alpha 38

beta/theta 30

theta/delta 29

beta/delta 36

ECG cvNN 49

POLVAR20 60

sdNN 24

Respiration

WSDVAR

meanNAF

30

21

FWRENYI4 26



techniques could be applied otherwise
[20]. Therefore, here we first supply the al-
gorithm with only those polysomnogram
intervals for which the three human ex-
perts assigned the same stage to all con-
tained epochs (data set (d)). The training
and validation sets generated from this data
are optimally suited as they contain only
the intervals with the least ambiguous sleep
stage. A number of classification algo-
rithms are available [21], here we choose
linear discriminant functions based on the
reliability of this long tested framework
rather than the sophistication of newer
ones, as we are interested in evaluating the
principle behind the possibility of fully
automatic sleep stage classification.

We take the features which, among 100
training-validation iterations, are most
often selected as good predictors (see
Methods and �Table 3) and specify the
number of features by observing if the
results are satisfactory for the five sleep
stages. For comparison we point to the im-
provement of taking 3 or 15 features: the
overall performance (agreement with hu-

man consensus scorer) increases from 90%
to 93%, the true positive classifications
increase, for stage Wake from 66% to 83%,
for S2 from 93% to 97%, for deep sleep
from 93% to 94%, and for REM from 84%
to 90% (�Fig. 1). We observe the general
tendency that the classification accuracy
improves with more features. However, an
analysis of true positive classifications per
sleep stage shows that the inclusion of more
features benefits the classification of some
sleep stages but deteriorates it for others.
We find that for stages Wake, S2, and deep
sleep (S3 and S4) performance is optimal at
around 9, 6, 2 features respectively. For
stage REM there is a drop in performance
already at two features (although the maxi-
mum occurs with 18 features).

True negative classifications are high
(for all stages above 90%), with the lowest
value occurring for S2. This result holds
even using very few features (observe right
panel in �Fig. 1).

4.3 Quality of Machine Classifica-
tion Depending on Consistency
of Human Expert Scorers

Having established that linear discriminant
models can reproduce over 90% of sleep
stages uniformly assigned by all three
human expert scorers we now assess how
well our automatic classification agrees with
the human consensus scorer on the datasets
including intervals on which the three
human scorers disagreed with each other
(intervals of less certain sleep stage).

When applying the linear discriminant
classification to only those 2892 intervals
with least reliable sleep stage (dataset (a) –
dataset (d)) we obtain a performance of
only ≈ 61%. For dataset (a) (which includes
all 8264 intervals) the sleep stages assigned
by the algorithm agree with those of the
consensus scorer in 80% of cases (0.90 ×
0.65 + 0.61 × 0.35 = 0.80). This represents a
drop in performance of about 10% com-
pared to what has been achieved on the
intervals with most reliable sleep stage (see
datasets (a) and (d) in �Fig. 1).
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Fig. 1
Performance of
linear discriminant
models on the four
consistency datasets.
Each curve cor-
responds to the
agreement of the
linear discriminant
model with the
human consensus
scorer on the indi-
cated dataset. Left
panels show the per-
centage of true posi-
tives (%TP) for in-
creasing number of
features included in
the linear discrimi-
nant model. Right
panels show the cor-
responding percent
of true negatives
(%TN).



Interestingly, dataset (b) (where scorers
agree on what stage is prevalent in the inter-
val) and dataset (c) (where the consensus
finds no transitions) overlap to a large ex-
tent (approximately 90%, �Table 2). This
indicates that if the scorers agree in their
joint assignment, then the consensus likely
scored no transitions (and vice versa), con-
firming that disagreements occur mostly in
determining transitions. Concordantly, the
performance of the linear discriminant
analysis on dataset (c) resembles that on
dataset (b) (�Fig. 1).

The largest drop in true positive classifi-
cations (≈ 14%) is observed in Wake indi-
cating that the classification of this stage is
most strongly contaminated by controver-
sial scoring (among stages REM, S2 and
deep sleep). The classification of deep sleep
also improves considerably by removing
intervals of ambiguous sleep stage (observe
the drop of ≈ 11% in the true positive clas-
sifications).

5. Discussion

We have shown that linear discriminant
analysis with only three features (EEG low
frequency) can reproduce over 90% of
sleep stages when these are unambiguously
assigned by three human experts. Ignoring
the problem of ambiguities in sleep staging,
the automatic classification agrees with the
human consensus scorer in 80% of the in-
tervals (83% using nine features). As
pointed out in the Results section, the true
positive classification curves have different
optima for different sleep stages, and using
15 features may come at the cost of slightly
overfitting some sleep stages. This result is
nevertheless higher than the 70% agree-
ment between human experts as reported
in other studies [22, 23]. On this matter we
point out that our analysis, because it is
based on 3 min intervals using scores avail-
able at higher resolution (of 30 s), makes it
possible to distinguish heterogeneous dy-
namics within the interval. Through the
joint sleep stage assignment procedure
such local information is combined to the
effect of smoothing sleep stage variability
in the longer interval. Human experts also
perform such smoothing in visually scor-
ing the data by assigning the sleep stage that

dominates in the 30 s epoch, whenever
they observe characteristics of several sleep
stages.

We have performed our analysis on
polysomnograms from healthy subjects,
however, the scoring of data from individu-
als suffering from sleep disorders poses a
greater challenge to both human scoring
experts and to computerized sleep staging
procedures. In such setting the application
of our classification method is expected to
be less accurate and the study of multi-
scoring effects is likely to be of even greater
relevance.

The removal of sleep stage transitions is
an oversimplification of sleep dynamics.
These intervals represent a problem both in
the context of classification algorithms and
in the context of humans performing the
scoring. Even if the transitions would be
unequivocally defined by the human ex-
perts, an interval containing transitions is
only partially classifiable (it is not a stage,
but rather a mixture of stages). We find that
approximately 20% of the intervals contain
sleep stage transitions according to the con-
sensus scorer.

The aim of having unambiguous defini-
tions of sleep stages is to separate polysom-
nogram segments accordingly. Therefore,
unclear sleep scoring criteria result in dif-
ficulty for experts to agree about successive
data epochs as being “different” stages (and
if so, which stages), that is, in their scoring
of transitions. This lack of definiteness is
evidenced by the fraction of intervals con-
taining transitions (�Table 1) and the
overlap between datasets (b) and (c)
(�Table 2). Datasets (b) and (c) largely co-
incide, so an interval from (c), namely, one
with no transitions (according to the con-
sensus) likely results in an unanimous joint
assignment. Therefore, disagreements be-
tween experts occur mostly where at least
one scorer (here, the consensus) finds tran-
sitions (and for S1 disagreement occurs
even despite lack of transitions). For these
intervals there is no sleep stage that can
serve as a rule for training our classifier.

Sources of controversy in sleep staging
arising from the definition of sleep stage
leave some space for individual interpre-
tation [22]. Hence, in order to achieve a
higher agreement rate, a better refined
sleep stage definition is needed. Actually

this was one of the reasons for the recent
revision of the guidelines for sleep stages
[2].

We have evaluated the EEG with features
that assume stationarity. Applying our
analysis to 3 min intervals with transitions
introduces error. Using 30 s windows does
not remove the error introduced by clas-
sifying transition segments because the ex-
perts have provided no information of the
varying dynamics within intervals shorter
than 30 s. With longer intervals we can
segregate in dataset (d) the intervals for
which sleep stage stationarity best holds
in the sense that all scorers agree that the
3 min interval consists of a steady sleep
stage. In intervals with transitions, sepa-
rating error due to stationarity-based
methods on instationary data vs. error due
to scorer disagreement requires more care-
ful analysis.

More sophisticated techniques for poly-
somnogram quantification, classification
and feature selection are candidates for im-
proving the present classification. We have
not taken into account the possibly com-
plex interaction between features. An out-
look on improvements includes adaptive
quantification of the EEG (for coping with
transition segments), branch and bound
feature selection and support vector ma-
chines or fuzzy logic as alternative auto-
matic classifiers.

6. Conclusions

We conclude that a classification algorithm
based on linear discriminant analysis can to
a very large extent reproduce the judgment
of sleep scoring human experts. Only three
frequency features from the EEG suffice to
accomplish an accuracy of 90% if the inter-
vals are such that no disagreement arises
between experts and are all free from sleep
state transitions. On such epochs we can in-
crease the accuracy to 93% by including
features from the ECG and respiratory sig-
nal parameters, mainly to the advantage of
improving the classification of Wake and
REM. Removing sources of sleep stage am-
biguity improves classification consider-
ably: 10% overall. In contrast, on intervals
of ambiguous sleep stage, the agreement
between the automatic classification and
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the human expert is approximately only
61%. The problem of ambiguous scoring
affects the classification stages Wake and
deep sleep more than S2 and REM. With
these findings we conclude that fully auto-
matic sleep staging is achievable through
resolving ambiguities in the assignment of
sleep stages.
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