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This paper deals with the problem of modeling and parameter estimation of a deterministic
model of tuberculosis (abbreviated as TB for tubercle bacillus). We first propose and analyze a
tuberculosis model without seasonality that incorporates the essential biological and epidemi-
ological features of the disease. The model is shown to exhibit the phenomenon of backward
bifurcation, where a stable disease-free equilibrium coexists with one or more stable endemic
equilibria when the associated basic reproduction number is less than unity. The statistical data
of new TB cases show seasonal fluctuations in many countries. Then, we extend the proposed TB
model by incorporating seasonality. We propose a numerical study to estimate unknown param-
eters according to demographic and epidemiological data in Cameroon. Simulation results are in
good accordance with the seasonal variation of the reported new cases of active TB in Cameroon.
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1. Introduction

Tuberculosis is a common deadly infectious disease
caused mainly by Mycobacterium tuberculosis. It
basically attacks the lungs (pulmonary TB), but
can also affect the central nervous system, circu-
latory system, the genital-urinary system, bones,
joints and even the skin. Tuberculosis can spread
through cough, sneeze, speak, kiss or spit from
active pulmonary TB persons. It can also spread

through use of an infected person’s unsterilized eat-
ing utensils and in rare cases a pregnant woman
with active TB can infect her foetus (vertical trans-
mission) [Dye & Williams, 2010; World Health
Organization, 2009]. More than 36 million patients
have been successfully treated via the World Health
Organization strategy for tuberculosis control since
1995. Despite predictions of a decline in global inci-
dence, the number of new cases continues to grow,
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approaching 10 million in 2010 [Dye & Williams,
2010; World Health Organization, 2009]. This rise
has been attributed to the spread of HIV, the
collapse of public health programs and the emer-
gence of drug-resistant strains of M. tuberculosis.
It is worth emphasizing that mathematical analy-
sis of biomedical and disease transmission models
can contribute to the understanding of the mech-
anisms of those processes and to design potential
therapies [Anderson & May, 1992; Capasso, 1993;
Thieme, 2003]. A number of theoretical studies have
been carried out on the mathematical modeling
of TB transmission dynamics [Castillo-Chavez &
Song, 2004; Bowong & Tewa, 2009; Bowong, 2010;
Murphy et al., 2003; Blower et al., 1998; Feng et al.,
2000]. A lot of glorious results have appeared. The
basic and important research subjects for these
models are the existence of a threshold value which
distinguishes whether TB disease will die out, the
local and global stability of the disease-free equilib-
rium and endemic equilibria, the existence of peri-
odic solutions, the persistence and extinction of the
disease, etc.

Although TB is not widely recognized as having
seasonal trends like measles, diphtheria, chicken-
pox, cholera, malaria, and even sexually transmit-
ted gonorrhea [Grassly & Fraser, 2006; Hethcote &
Yorke, 1984], some studies have shown variable peri-
ods of peak seasonality in TB incidence rates in late
winter to early spring in South Africa [Schaaf et al.,
1996], during summer in United Kingdom [Douglas
et al., 1996] and Hong Kong [Leung et al., 2005],
during summer and autumn in Spain [Rios et al.,
2000], and during spring and summer in Japan
[Nagayama & Ohmori, 2006]. In northern India, it
was indicated that TB diagnosis peaked between
April and June, and reached a nadir between Octo-
ber and December, and the magnitude of seasonal
variation had important positive correlation with
rates of new smear-positive TB cases [Thorpe et al.,
2004].

The real causes of seasonal patterns of TB
remain unknown, but the seasonal trend, with
higher incidence rate in winter, may be relevant to
the increased periods spent in overcrowded, poorly
ventilated housing conditions, these phenomena
much more easily seen than in warm seasons [Schaaf
et al., 1996; Rios et al., 2000], and/or vitamin D
deficiency leading to reactivation of latent/exposed
infection, which may have been the basic causes for
observed TB seasonality [Thorpe et al., 2004]. Fur-
thermore, in winter and spring, the viral infections

like flu are more frequent and cause immunological
deficiency leading to reactivation of the M. tuber-
culosis [Aron & Schwartz, 1984]. There is a grow-
ing awareness that seasonality can cause population
fluctuations ranging from annual cycles to multi-
year oscillations, and even chaotic dynamics [Rios
et al., 2000]. From an applied perspective, clarifying
the mechanisms that link seasonal environmental
changes to diseases dynamics may aid in forecasting
the long-term health risks, in developing an effec-
tive public health program, and in setting objectives
and utilizing limited resources more effectively [Rios
et al., 2000; Nagayama & Ohmori, 2006; Altizer
et al., 2006]. For these reasons, we need to iden-
tify possible seasonal patterns in the incidence rate
for pulmonary tuberculosis. In addition, a system-
atic construction of a TB model that best matches
parameter estimation of the model equations from
real data is needed. However, relating a model to
observed data is not a straightforward matter due to
the complexity of the model and noise in the data.
Unfortunately, nothing has been done in terms of
estimating all or some parameters of tuberculosis
in developing countries.

In this paper, motivated by the usefulness of
and the current investigation on the spread of infec-
tious diseases, we intend to systematically inves-
tigate the analysis and parameter estimation of
tuberculosis in the modeling framework. We first
formulate and analyze a tuberculosis model without
seasonality which incorporates the essential biolog-
ical and epidemiological features of the disease such
as exogenous reinfection of latently infected and
recovered individuals, chemoprophylaxis of latently
infected individuals, treatment of infectious and
relapse of recovered individuals. We show that
the model exhibits the phenomenon of backward
bifurcation, where a stable disease-free equilibrium
co-exists with one or more stable endemic equilib-
ria when the associated basic reproduction num-
ber is less than unity. Then, the extension of
our TB model by incorporating seasonality is pro-
posed. Based on this model, we suggest a simulation
method to parameter estimation by exploiting infor-
mation obtained from only real data in Cameroon,
which is crucial for many practical application such
as the prediction and the control of TB. Our results
point out that from the quarterly reported data
(2003-2007) of the National Committee to Fight
against Tuberculosis [National Committee of Fight
Against Tuberculosis, 2001], there is a seasonal pat-
tern in new TB cases. An advantage of the proposed
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simulation study is that it is less computationally
intensive and easier to implement. It is our view,
this study represents the first work that provides an
in-depth TB seasonality and parameter estimation
using real demographic and epidemiological data of
the situation of TB in a developing country like
Cameroon.

The rest of the paper is organized as follows. In
Sec. 2, a model without seasonality for the dynam-
ics of TB is formulated and rigorously analyzed.
Section 3 extends the model formulated in Sec. 2
to describe seasonal incidence rate by incorporat-
ing periodic coefficients. Numerical results are pre-
sented to illustrate analytical results. Finally, Sec. 4
contains concluding remarks.

2. Model

TB is an old disease whose world-wide preva-
lence had been diminishing even before vaccination
and prophylaxis strategies were first accomplished
[Wilson, 1990; Styblo et al., 1969; Daniel et al.,
1994]. Its recent return in developing countries,
mainly in Southeast Asia, has attracted renewed
interest. The current world estimate of prevalence
is about 33% while the number of deaths per year
that it is causing reaches more than 3 million peo-
ple [World Health Organization, 2009]. Depending
on the kind and the intensity of immune response
that the host immune system performs after initial
infection with M. tuberculosis bacillus, the individ-
ual can suffer latent infection, in which the bacteria
are under a growth-arrest regime and the indi-
vidual neither suffers any clinical symptom nor
becomes infectious or actively infected, where the
host suffers clinical symptoms and can transmit the
pathogen by air [Bleed et al., 1982; Styblo, 1986].
Latently infected individuals can, generally after an
immune-depression episode, reach the active phase.
Estimating the probability of developing direct
active infection after a contact, or alternatively,
the lifetime’s risk for a latent infected individual
to evolve into the active phase, are not easy tasks.
However, it is generally accepted that only 5-10%
of the infections directly produce active TB [Bleed
et al., 1982; Styblo, 1986], while the ranges con-
cerning the estimation of typical “half-life” of latent
state rounds about 500 years [Murphy et al., 2002].

2.1. Model formulation

We assume that individuals in a population are
compartmentalized into four groups: healthy or

susceptible S(t), infected but not infectious or
latently infected E(t), sick individuals I(t) which
are infected and are infectious as well and recov-
ered individuals R(t). The transition between
these subpopulations proceeds in such a way
that a susceptible individual acquires the bacte-
ria through a contact with an infectious subject
with the transmission rate (. In its turn, this
newly infected individual may develop the dis-
ease directly with probability p. However, the most
common case is the establishment of a dynam-
ical equilibrium between the bacillus and the
host’s immune system, which allows the survival
of the former inside the latter. When this hap-
pens, newly infected individuals become latently
infected, because despite harboring the bacteria in
their blood, neither becomes sick nor is able to
infect others. Once latently infected, an individ-
ual can follow a chemoprophylaxis. We assume that
chemoprophylaxis of latently infected individuals
reduces their reactivation. On the other hand, after
a certain period of time (which may be several
years) and usually following an episode of immuno-
suppression, the balance between the bacterium and
its host can be broken. In this case, the bacteria
grow and the individual falls ill beginning to develop
the clinical symptoms of the disease. It is also pos-
sible that latently infected individuals who did not
receive effective chemoprophylaxis can be reinfected
(exogenously) through a contact with an infectious
subject with the same transmission rate 3. In addi-
tion, if the infection attacks the lungs (pulmonary
TB), the bacillus is present in the sputum, making
the guest infectious. After receiving effective ther-
apy, the infectious spontaneously recovers from the
disease. Recovered individuals can only have partial
immunity, and hence, they can undergo a reactiva-
tion of the disease or be reinfected against with the
same transmission rate 3. The model flow diagram
is shown in Fig. 1.

The dynamics of the disease, in a well-mixed
population, is then described by the following sys-
tem of nonlinear differential equations:

S =A—)\S—uS,
E=(1-p)AS +0I+09(1 —7)AR

—o1(1 —=r)A\E — A1 E,
IT=pA\S+~yR+ (1 —7r)(k+01\E — Asl,
R=a(l—60)I—-o05(1—~)AR— A3R,

(1)
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A=0 ! A + k(1 )
— — = — 7T
Na 1 1% 1)

As=p+d+60+a(l—0) and Az =p+1.
In Eq. (1), N(t) = S(t) + E(t) + I1(t) + R(t) repre-
sents the total population at time ¢, A = BI/N is
the force of the infection; (8 is the effective contact
rate of the infectious that is sufficient to transmit
the infection to the susceptible; A is the recruit-
ment (immigration and birth) rate; u is the natural
death rate per capital; d is the rate of disease-related
death; 1 is the chemoprophylaxis rate of latently-
infected individuals; k is the transition frequency of
latent infection (i.e. the probability that a latently
infected individual becomes infectious); o1 and o9
are respectively, the probabilities that the bacteria
are transmitted to an old latent and recovered host
after a contact with a infectious subject; « is the
recovery rate of infectious (i.e. the probability that
an infectious person recovered from the disease after
a therapy of treatment); 6 is the natural recovery
rate (i.e. the probability that an infectious person
recovered from the disease without therapy of treat-
ment) and v is the relapse rate (i.e. the probabil-
ity that a recovered individual becomes infectious
again). We point out that parameters § and k are
generally difficult to estimate and the rest of the
parameters can be estimated using real data of the
situation of TB.

For model (1) to be epidemiologically meaning-
ful, it is important to prove that all its state vari-
ables are non-negative for all time. In other words,
solutions of the model (1) with positive initial data
have to remain positive for all time ¢ > 0. This can
be verified as follows.

1
(=) —
Bo,( 7)N

Flowchart of the dynamical transmission of tuberculosis.

Assume that t = sup{t >0: S >0,E > 0,1 >
0,R > 0} € [0,¢]. Thus, ¢ > 0 and it follows from
the first equation of system (10), that

ds
—=A—(u+ NS,

which can be rewritten as,

% [S(t) exp{;us + /Ot A(s)ds}]
erxp{ut—i—/ot/\(s)ds}.

so that

S(t) > S(0) exp{— (,uf + /Ot A(s)ds) }

oo (i o))
X /OtAeXp{,U/LL+ /Ou A(w)dw} du > 0.

Thus, S(t) > 0 for all ¢ > 0. Similarly, it can be
shown that the remaining variables are also posi-
tive for all time ¢ > 0.

Now, we will show that all feasible solutions
are uniformly-bounded in a proper subset of ).
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Let, S,E,I,R > 0 be any solution of the sys-
tem with non-negative initial conditions. Adding all
equations in the differential system (1) yields

N =A—uN —dI.

Thus, we can deduce that N < A — uN. It then
follows that limy_, 1o N(t) < (A/p) which implies
that the trajectories of model (1) are bounded.
On the other hand, from the differential inequal-
ity N < A — uN, one can deduce that N(t) <
N(0)e ™ + (A/u)(1 — e #). In particular N (t) <
(A/p), if N(0) < (A/u). Therefore, all feasible solu-
tions of the components of the system (1) enter the
region
4 A
Q= {(S,E,I,R) €ERSy, N(t) < ;}

It then follows from (2) that all possible solutions
of system (1) will enter the region 2. Hence,
the region 2, of biological interest, is positively-
invariant under the flow induced by system (1).
Further, it can be shown using the theory of per-
manence [Hutson & Schmitt, 1992] that all solutions
on the boundary of € will eventually enter the inte-
rior of €. Furthermore, in €2, the usual existence,
uniqueness and continuation results hold for sys-
tem (1). Hence, system (1) is well posed mathe-
matically and epidemiologically and it is sufficient
to consider the dynamics of the flow generated by
system (1) in €.

(2)

2.2. Local stability of the
disease-free equilibrium (DFE)

For the analysis of the infection’s spread, the so-
called disease-free equilibrium is particularly rel-
evant. By definition, this is obtained by taking
I = 0 in equations of system (1) at the equilib-
rium. Then, the disease-free equilibrium is given by

QO = (A/M7Oa070> |

Blp+v)[pp + k(1 —11)]

Linearizing all equations in system (1) around
the disease-free equilibrium, it follows that the Jaco-
bian matrix of the system is

— 0 -0 0
P B A DR

0 k(1—m) fBp—A 0

0 0 a(l—0)  —Aj

Since —p < 0, the triangular structure of the Jaco-
bian matrix implies that its stability is associated
with the stability of the following submatrix:

—A1 ﬁ(l — p) + 0 0
Jo= k(1 —7m1) Bp— Az g
0 Oé(l — 9) —Asg
Now let
A=A, B=[B(1—p)+0 0,
C = [k(l N Tl)] and D = [Bp — Az 7 .
0 04(1 - 0) —A3

Then, using the results of [Kamgang & Sallet, 2005]
on the computation of the eigenvalues of a matrix
of dimension n, one can show that the stability of
the submatrix Jy is associated with the stability of
the following matrix of dimension 2:

Ji=D—- CA™'B

op— s+ g0 -y o

04(1 - 0) —A3
The matrix J; is stable if its trace is negative and
its determinant non-negative. Therefore, a suffi-
cient condition for this equilibrium to be stable is
given by

(b4l +d+0) + k(1 —r1)(n+ d)] + pe(1 — ) [+ k(1 —ry)] —

Model of this type demonstrates clearly the infec-
tion threshold. In the presence of a threshold,
disease eradication requires the reduction of the
infection rate below a critical level where a stable
infection-free equilibrium is guaranteed. In epidemi-
ological terminology, the infection threshold may
be expressed in terms of the basic reproductive

<1 (3)

number TRy, the average number of infections
produced by a single infected individual in a pop-
ulation of susceptible individuals. From this defini-
tion, it is clear that TB infection cannot spread in
a population only if Ry < 1. It then follows that
the basic reproduction number Rg < 1 is given by
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Table 1. Numerical values for the parameters of model.
Parameters Symbol Estimate Source

Recruitment rate of susceptible A 397800/yr NIst

Transmission rate 15 Variable Assumed
Fast route to active TB P 0.015 NCFAT?
Reinfection parameter of latently infected individuals o1 3 Assumed
Reinfection parameter of recovered individuals ) 3 Assumed
Slow route to active TB class k 0.00013/yr Assumed
Natural mortality 1 0.019896/yr NIS

TB mortality of infectious d 0.0575/yr NCFAT
Chemoprophylaxis rate of latently infected individuals r1 0/yr NCFAT
Recovery rate of infectious a 0.7311/yr NCFAT
Natural recovery 0 0.1828 /yr Assumed
Relapse of recovered individuals 0.0986/yr NCFAT

INational Institute of Statistics.

?National Committee of Fight Against Tuberculosis.

B+ ) [pp + k(1 —71)]

Ro =

In conclusion, crossing the threshold reduces the
basic reproductive number Ry below unity and the
infection is prevented from propagating.

The TB model (1) was simulated with the
parameter values using demographic and epidemi-
ological data of Cameroon and summarized in
Table 1.

Now, let us analyze the effects of the transmis-
sion rate § and the recovery rate a on the basic
reproduction ratio Ry. Figure 2 shows the effects
of # and « on the basic reproduction ratio Rgy. All

Basic reproduction ratio R
o =1 o
2 ®» » -

o
IN)

v o

Fig. 2.
in Table 1.

(+ Ml +d+0) + k(1 —r)(p+d)] + pa(l —0)[p+ k(1 —r)]

(4)

other parameters are as in Table 1. From this figure,
one can see that Ry decreases if 5 decreases even in
the case of large values of . This means that if the
transmission coefficient 3 is sufficiently small, TB
infection could be eliminated even if « = 0. How-
ever, it is difficult to control 3. Therefore, the recov-
ery of infectious individuals is an efficient interven-
tion. Thus, combining recovery of infectious with
reduction of contacts can reduce Ry to be less
than 1. Then, the optimal control strategy will be a

. = . .
e - 88T 14

45F N 0032 k!

" &1
r A AN 12
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35 9 El
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0.5 ;/0,14333//0‘14333 B
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o

(b)

Graphs of the basic reproduction number R of system (1) depending on 8 and «. All other parameters are as
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combination of recovery of infectious, chemoprophy-
laxis of latently-infected individuals, and reduction
of contacts.

2.3. Equilibria and bifurcation

Herein, we investigate the number of equilibrium
solutions that model (1) can have. To this end,
let Q* = (S*,E*, I*,R*) be any arbitrary equi-
librium of model (1). To find conditions for the
existence of an equilibrium for which tuberculosis
is endemic in the population (steady state with
I* nonzero), the equations in model (1) are set

at zero, i.e.
|

A AN

* * *

pENT T Bt das

L

2005

A—NS* —puS* =0,
(1= PN'S* + aa(1 — )N R

—o1(1—r )N E*4+0I" — A E* =0,
pA*S*  + o1 (1 —r)NE* + k(1 —rp)E*

+’7R* - A2I* = 0,
a(l — 0)I* — o9(1 — Y)N*R* — A3R* = 0,
where
* I*

is the force of infection at the steady state. Solving
the above equations in (5) at the steady state gives

al(1 —0)A and

" (Bu+ dX)[A3 + oa(1 — 7)M]

— p)(Bp + dX*) + 0(p + A)][As + 02(1 — V)X + 020l — ) (1 — O)(p + A)A"

(7)

(1 + A) (B + dA*)[Ar + o1 (1 — 1) A*][As + o2(1 — 7)A*]

Substituting (7) in (6), it can be shown that the
nonzero equilibria of system (5) satisfy the follow-
ing cubic equation in terms of A\*:

az(\)? +as(A)2+ a1 () +ao =0,  (8)
where
az = o102(1 —r)(1 =),
ag = 0102(1 —r)(1 = y)p(p+d - B)
+o1(1—r)plp+v+ ol —0)]
+oa(l = Y)plp+ 0+ a(l —0) + k(1 —r1)],

a1 = o1(1 = r)plpa(l —0) + (n+7)(n+d — B)]
+02(1 =) pu[=Blpp + k(1 —r1)]
+ulpt+d+0+al —0)]+ k(1 —r)(p+d),
—d(p+7)pp+ k(1 —r)] + R,

ap = pR*(1 = Ro),

with R* = (u+v)[p(p +d+6) + k(1 —r)(p +
d)] + pa(l — 0)u+ k(1L — )]

The positive endemic equilibria @* are obtained
by solving for A* from the cubic equation (8) and
substituting the result (positive values of A\*) into
the expression of the force of infection at the steady
state. Clearly, the coefficient a3 in Eq. (8) is always
positive, and ag is positive or negative depending

|
on whether Ry is less or greater than unity, respec-

tively. Thus, the number of possible real roots of
the polynomial (8) depends on the signs of as,
az, a1 and ag. This can be analyzed using the
Descartes Rule of Signs on the cubic polynomial
FO*) = az(V)? +a2(A*)* +a1 () +ag given in (8).
The various possibilities for the roots of f(\*) are
tabulated in Table 2

The following result follows from various possi-
bilities enumerated in Table 2

The TB model (1)

Lemma 1.

(i) has a unique endemic equilibrium if Ro > 1
and whenever Cases 1, 2, 4 and 5 are satisfied.
(ii) could have more than one endemic equilibrium
if Ro > 1 and Case 3 is satisfied.
(iii) could have one or more endemic equilibria if
Ro <1 and Cases 1, 2, 3 and 5 are satisfied.

The existence of multiple endemic equilibria
when Ry < 1 (shown in Table 2) suggests the
possibility of backward bifurcation [Dushoff et al.,
1998; Brauer, 2004]|, where the stable disease-free
equilibrium co-exists with a stable endemic equilib-
rium when the basic reproduction number is less
than unity. This is explored below via numerical
simulations.

The backward bifurcation phenomenon is illus-
trated by simulating model (1) with the parameters
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Table 2. Number of possible real roots of f(A\*) for Rg < 1 and Ry > 1.
Cases as as aq ag Ro Number of Sign Changes Number of Possible Positive Real Roots
1 + — — — Ro>1 1 1
+ - +  Re<1 2 0,2
2 + + - - Ro>1 1 1
+ + + Ro <1 2 0,2
3 + — + — Ro>1 3 1,3
+ - + + Ro <1 2 0,2
4 + + + - Re>1 1 1
+ + + + Ro <1 0 0
5 + - - - Ro > 1 1 1
+ - — + Ro <1 2 0,2

of Table 1. The associated backward bifurcation dia-
grams are depicted in Figs. 3 and 4.

Figure 3 presents the backward bifurcation dia-
gram of the force of infection as a function of the
basic reproduction ratio R, while the backward
bifurcation diagrams of all the state variables of the
model (1) as a function of the transmission rate 3
are depicted in Fig. 4.

A time series of the model when § = 0.3 (so
that Rg = 0.0682) is shown in Fig. 5. This clearly
shows that for the case when Ry < 1, the profiles
can converge to either the disease-free equilibrium
or an endemic equilibrium point, depending on the
initial sizes of the population of the model (owing
to the phenomenon of backward bifurcation). It is
worth stating that, for the set of parameter values
used, the simulations have to be run for a long-time
period (in hundred of years).

07
06
05F
<
C
S
T o4l
2
£
i Stable EEP
o
@03}
<
o
w
02}
01}
Stable DFE Unstable EEP Unstable: DFE
0 ‘ ‘ ‘ ; ; J
0 0.2 0.4 0.6 0.8 1 1.2 14
Ro
Fig. 3. Bifurcation diagram for the model (1). All other

parameters are as in Table 1.

The epidemiological significance of the phe-
nomenon of backward bifurcation is that the clas-
sical requirement of Rg < 1 is, although necessary,
no longer sufficient for disease eradication. In such a
scenario, disease elimination would depend on the
initial sizes of the population (state variables) of
the model. That is, the presence of backward bifur-
cation in the TB transmission model (1) suggests
that the feasibility of controlling TB when Ry < 1
could depend on the initial sizes of the population.
Further, as a consequence, it is instructive to try
to determine the “cause” of the backward bifurca-
tion phenomenon in the model (1). This is explored
below.

Herein, the role of exogenous reinfections on
the backward bifurcation phenomenon will be inves-
tigated. We consider the case where there are no
exogenous reinfections in the population, that is,
01 = 03 = 0 in system (1). Then, the model has the
same disease-free equilibrium @y than system (1).
Apart from this equilibrium state, the model can
also have a unique positive endemic equilibrium
state. In the absence of exogenous reinfections (i.e.
o1 = o9 = 0), the coefficients ag, a1, a2 and a3 in
Eq. (8) reduce to

a1 = —d(+7)[pp + k(1 — )] + R*  and
ap = uR*(1 — Ry).
In this case, the force of infection at the steady
state is
_ pR* Ry — 1)

2\* L S A
al ’
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Simulations of the model (1). Backward bifurcation diagrams for (a) susceptible individuals, (b) latently-infected

individuals, (c) infectious and (d) recovered individuals. All other parameters are as in Table 1.

which is positive when Rg > 1. Then, one can
tediously prove that an endemic equilibrium Q* =
(S*, E*, I*, R*) exists and is unique, and, S*, E*,
I and R* are given as in Eq. (7).

Hence, in this case (with 07 = 09 = 0), no
endemic equilibrium exists whenever Ry < 1. It
then follows that, owing to the absence of multiple
endemic equilibria for system (1) with o1 = 09 =0
and Rg < 1, a backward bifurcation is unlikely for
system (1) with o7 = 09 =0 and Ry < 1.

The absence of multiple endemic equilibria sug-
gests that the disease-free equilibrium of model (1)

is globally asymptotically stable when Ry < 1.
Then, we claim the following:

Lemma 2. The disease-free equilibrium of model
(1) with o1 = o9 = 0 is globally asymptotically sta-
ble in ) whenever Ro < 1.

Proof [Proof of Lemma]. All solutions starting in
Q) remain in €2, and all other solutions approach
Q. Thus, it may be assumed that S/N < 1, for
all t > 0. Consequently, the last three equations of
system (1) in the absence of exogenous reinfections
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Simulation of system (1). Time series of (a) susceptible individuals, (b) latently infected individuals, (c) infectious

and (d) recovered individuals when 8 = 0.3 (so that Rg = 0.0682). All other parameters are as in Table 1.

can be expressed with the following differential
inequality:

E E
R R

where Jy is the submatrix of the Jacobian at the
disease-free equilibrium defined as in Sec. 2.2. Con-
sider the linear ODE system given by the inequal-
ity in (9). If Ry < 1, Jp have all its eigenvalues
in the left-half plane. It follows that the linear sys-
tem given by the inequality (9) is stable whenever
Ro < 1, thus (E(t),I(t), R(t)) — (0,0,0) as t — oo
for this linear ODE system. Consequently, after

using a standard comparison theorem [Lakshmikan-
tham et al., 1989], the variables (E(t), I(t), R(t)) —
(0,0,0) as well for the nonlinear system given by
the last three equations of system (1). Returning
now to the first equation of system (1) and sub-
stituting £ = I = R = 0 in this equation gives
a linear system with S — A/u as t — oo. Thus,
(S(t),E(t),I(t), R(t)) — (A/p,0,0,0) as t — oo for
Ro < 1, so that Qg is globally asymptotically stable
if Rp < 11in €. This concludes the proof. M

Numerical results for system (1) without exoge-
nous reinfections are depicted in Fig. 6. Fig-
ure 6(a) shows simulation results converging to the
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Time series of system (1) with o7 = o2 = 0 showing the total number of infected individuals as a function of time,

using various initial conditions. (a) When 8 = 0.3 (so that Ry = 0.0682) and (b) when 8 =5 (so that Rg = 1.1371). All other

parameters are as in Table 1.

disease-free equilibrium for the total cases of infec-
tion using various initial conditions when § = 0.3
(so that Ry = 0.0682). This illustrates that the
disease disappears in the population. Figure 6(b)
shows the convergence for the total cases of infec-
tion to the endemic equilibrium using various initial
conditions when 5 =5 (so that Ryp = 1.1371). This
illustrates that the disease persists in the popula-
tion. Although the stability analysis of the endemic
equilibrium of the model (1) without exogenous
reinfections has not been carried out in this study,
this result is certainly expected (since the DFE
is unstable in this case, and, typically, the dis-
ease persists when the reproduction threshold (Ry)
exceeds unity; as is the case in this particular
simulation).

In model (1), we have assumed that all param-
eters are positive and constant. Indeed, some of the
parameters may vary and it will be useful to esti-
mate these parameters using only real data. Then,
we need to extend the model (1) to take into account
the seasonality and to estimate unknown parame-
ters. This is the aim of the next section.

3. A Seasonal TB Model and
Parameter Estimation

In this section, we extend the model proposed in
the previous section by incorporating periodic coef-
ficients based on the possible fact that there is a
seasonal trend in the new TB cases. In view of

the periodic trend of quarterly new TB cases in
Cameroon [National Committee of Fight Against
Tuberculosis, 2001] and the possible causes of
the seasonal pattern [Liu et al., 2010], a model
with periodic infection rate [((¢) and reactivation
rate k(t) may be a natural choice to describe
the TB transmission. Thus, we assume that k(t)
and [(t) are periodic positive continuous func-
tions in ¢ with period w for some w > 0. This
can be due to the fact that the seasonal trend
may be mainly attributed to increasing times spent
in overcrowded, poorly ventilated housing condi-
tions [Schaaf et al., 1996; Rios et al., 2000; Altizer
et al., 2006], and/or more frequent viral infections,
hence immunological deficiency leading to reactiva-
tion of the M. tuberculosis [Rios et al., 2000]. Then,
the compartmental model (1) is now described by
the following system of nonautonomous differential
equations:

S =A—\t)S — uS,
E = \t)(1 —p)S + oo(1 — )At)R + 61
—o1(1 = r)AOE — A (t)E,
I =\t)pS+ R
+ (1 —r)[k(t) + o1 A(t)|E — Aal,
R= a(l—0)I —oa(1 —y)A\t)R — A3R,

(10)

where A(t) = B(t)(I/N), A1(t) = p+ k(t)(1 — ry),
Ay =p+d+0+a(l —0)and Az =+ u.
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One of the most important problems in epi-
demiology is to reconcile the available data with the
mathematical model. Indeed, in most epidemiolog-
ical models discussed in the literature, the question
of estimating unknown parameters has not been
played a central role.

From the National Committee for Fight against
Tuberculosis of Cameroon [National Committee of
Fight Against Tuberculosis, 2001], we have obtained
quarterly numbers of newly reported TB cases from
January 2003 to December 2007. The quarterly
reported TB cases in Cameroon from 2003 and
2007 show an obvious seasonal fluctuation, with a
seasonality peak in the first quarter of each year.
The quarterly reported TB cases in Cameroon from
2003 to 2007 are given in Table 3. The quarterly
numbers of new TB cases in Table 3 correspond
to the term:

F() = Me)pS(t) + (1 —r1)[k(t) + o A()]E(?),

(11)

in the third equation of system (10).

Table 3. The number of quarterly reported new TB cases
in Cameroon.

Quarter 2003 2004 2005 2006 2007
First quarter 3032 2875 3334 3703 3491

Second quarter 2778 2854 3323 3626 3160
Third quarter 2475 2655 3187 3171 3157
Fourth quarter 2624 3122 3325 3315 3208

Since the variables and parameters in sys-
tem (10) are continuous functions of ¢, we use
trigonometric functions to fit f(¢) as a periodic
function with five years of observations. Let

~
=

I

Q

o

+
[~

(dp cosmLt + ey, sinmLt), (12)

m=1

in order to let the expression of f(t) be simpler and
more exact, where L = 2x/5 is the fundamental
frequency. We use the least-squares trigonometric
of the software Mathematica to determine those
coefficients d,,, and e,,, which yield the function
f(t) given as follows:

ot drt 6rrt
F(t) ~ 3120.75 — 232. 102cos< : >+449921005< - >+370004cos< 75T>

10t 127t 14mt
398381 cos [ ) 179 cos [ 2070 1 19.7421 cos [ 2270 68,5405 cos [ LT
5 5 5 5
— 313.023sin <?) — 63.8465 sin (%) _ 54.4061 sin <?) _ A7.7114sin (%)

107t 127t 14t
+14.7sin<T7r> —29.93725111(?”) +12. 4314sm< ;) (13)

The comparison of the data with the curve is shown in Fig. 7. The data and the curve match quite

well.

After simulations and comparisons, the infection rate ((t) and the reactivation rate k(t) have been

chosen to be [3(t)
periodic functions:

= Bof1(t) and k(t) = koki(t), respectively, where (3;(t) and k;(t) are the following two

ot At 6t
ﬂ()—2600601934cos< . >+00375005< - >+00308005< 75T>

107t 127t 14t
—o. 0274cos<85 ) 4 0.1492 Cos< 0; > 1 0.0165 cos(%) —0.0571 cos<T7T>
— 0.2609 sin (?) — 0.0532sin (%) — 0.0453sin <%) — 0.0398sin <%)

10t 127t 14t
+0.0122 sin(TW> —0.0249 sin(Tﬁ) +0.0104 sin<T7T>, (14)
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curve.

New TB cases: reported number and simulation

ot Ant Gt
ki (t) = (1077) [9.3125 — 0.6926 cos (%) +0.1343 cos (%) +0.1104 cos (%)

8t 107t 127t 14rt
—0.098 cos(%) + 0.5343 cos (Tﬂ) +0.0589 cos(T”> — 0.2045 cos (Tﬂ)

—0.9341sin (?) — 0.1905 sin <%> — 0.1624 sin <%) — 0.1424 sin (?)

. Ort . 127t . 147t
+0.0439 sin = — 0.0893 sin 5 + 0.0371 sin = | (15)

1

Note that Gy and ko are related to the mag-
nitudes of the seasonal fluctuation. After simu-
lations and comparisons, we choose fy = 0.01
and ky = 0.133. In the sensitive analysis, those
two parameters are varied to see the influ-
ences of the infection rate and the reactivation

rate on the new TB case numbers. All other
|

,

S = 397800 — Bof1 (t)% — 0.0198965,

RI
R = 0.59751 — 0.81126501 (1) 7= — 0.1185R,

|
parameter values in the simulations are as in

Table 1.

Substituting those values of parameters and
functions into system (10), we obtain the following
TB transmission model to simulate TB infection in
Cameroon:

SI RI EI
B = 0.98556061(t) 5 + 0811260031 (t) - + 018287 — 07601 (1)~ — ok (1) E — 0.019806E,

(16)

SI EI
1= 0.0156001(t) 5 + 0.0986R + kok1 (1) +0.7601 (1) - — 0.85771,
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We take the first quarter of 2003 as the
start time of our simulation. The statistics of
the National Institute of Statistics of Cameroon
[National Institute of Statistics, 2007] show that the
total population of the whole Cameroonian popu-
lation in 2003 is N(0) = 15685000. According to
the National Committee of Fight against Tubercu-
losis of Cameroon, the number of new and relapse
cases of TB was 3650, then we take I(0) = 3650.
We assume that 70% of the Cameroonian popula-
tion is infected with Mycobacterium Tuberculosis,
that is, S(0) = 4705500. From the average age of
the active TB cases, the death rate, and the life
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expectation, we get the estimation that R(0) =
2669. Then, the direct computation implies that
E(0) =10973681.

The simulation results are reported in Figs. 8
and 9. Figure 8 illustrates the comparison of the
quarterly reported data and the simulation curve of
new TB cases in Cameroon. The stars in the curve
stand for the reported new TB cases, from Jan-
uary 2003 to December 2007. The simulation result
based on our model exhibits the seasonal fluctua-
tion and matches the data with some small error
between 2003 and 2005 but after 2005 the model
matches the data well. This implies that the model
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(d)

Simulation of system (10) performed with 3y = 0.01 and kg = 0.133. Time series of (a) susceptible individuals,

(b) latently infected individuals, (c¢) infectious and (d) recovered individuals. All other parameters are as in Table 1.
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The relationship between new TB cases for different values of g and kg. (a) In the green-line curve, 3y = 0.0105

and in black-line curve, Gy = 0.009 when kg = 0.133 and (b) in green-line curve kg = 0.14 and in black-line curve ko = 0.12
when Gy = 0.133. Other parameter values are given in Table 1. Here, the stars correspond to the real data from Cameroon

and the red-line curve stands for 5y = 0.01 and kg = 0.133.

is in transient period between 2003 and 2005. We
believe that this is certainly due to the choice of the
initial conditions which may not be the exact ini-
tial conditions corresponding to the first quarter of
2003. To resolve this problem, we need more data.
Figure 9 gives the trends of susceptible, latently-
infected, infectious and recovered individuals in the
future years, respectively.

Sensitivity analysis of parameters is not only
critical to model verification and validation in the
process of model development and refinement, but
also provide insight to the robustness of the model
results when making decisions [Saltelli et al., 2000].
Figure 10 illustrates the impact of Gy and kg on
the quarterly new TB cases. From this figure, one
can see that By and ko have evident impacts on the
numbers of new TB cases. The number of new TB
cases increases substantially with a rise in Gy and
ko, and fails with a decrease in Gy and k.

4. Concluding Remarks

We have discussed a comprehensive, continuous
deterministic model for the transmission dynamics
of tuberculosis without and with seasonality. The
model has been rigourously analyzed to gain insight
into its qualitative dynamics. We have mainly found
that the model without seasonality exhibits the phe-
nomenon of backward bifurcation, where the sta-
ble disease-free equilibrium coexists with a stable

endemic equilibrium, when the basic reproduction
number is less than unity. It is shown that this
(backward bifurcation) dynamics feature is caused
by the reinfection of latently infected and recov-
ered individuals. By analyzing this model with-
out exogenous reinfections, we have found that
it is globally asymptotically stable and possesses
only the globally stable equilibrium state. Depend-
ing on the basic reproduction number, this steady
state is either the endemic or the disease-free one.
This model has been extended to describe TB sea-
sonal incidence rate by incorporating periodic coef-
ficients. We have proposed a numerical study to
estimate unknown parameters of the model from
real data of the situation of TB in Cameroon. It
has been found that there is a seasonal pattern
of new TB cases in the mainland of Cameroon.
Throughout numerical simulations, we found that
the number of new TB cases is an increasing func-
tion of By or kg and is more sensitive to kg than Gy.
Although, our analysis has been applied on a TB
model, the basic idea and the proposed methodol-
ogy can be applied to other models of infectious
diseases.
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