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Pre-eclampsia (PE), a serious pregnancy-specific disorder, causes significant neonatal and
maternal morbidity and mortality. Recent studies showed that cardiovascular variability
parameters as well as the baroreflex sensitivity remarkably improve its early diagnosis.
For a better understanding of the dynamical changes caused by PE, in this study the
coupling between respiration, systolic and diastolic blood pressure, and heart rate is
investigated. Thirteen datasets of healthy pregnant women and 10 of subjects suffering
from PE are included. Nonlinear additive autoregressive models with external input are
used for a model-based coupling analysis following the idea of Granger causality. To
overcome the problem of misdetections of standard methods in systems with a dominant
driver, a heuristic ensemble approach is used here. A coupling is assumed to be real when
existent in more than 80 per cent of the ensemble members, and otherwise denoted as
artefacts. As the main result, we found that the coupling structure between heart rate,
systolic blood pressure, diastolic blood pressure and respiration for healthy subjects and
PE patients is the same and reliable. As a pathological mechanism, however, a significant
increased respiratory influence on the diastolic blood pressure could be found for PE
patients (p = 0.003). Moreover, the nonlinear form of the respiratory influence on the
heart rate is significantly different between the two groups (p = 0.002). Interestingly, the
influence of systolic blood pressure on the heart rate is not selected, which indicates
that the baroreflex sensitivity estimation strongly demands the consideration of causal
relationships between heart rate, blood pressure and respiration. Finally, our results point
to a potential role of respiration for understanding the pathogenesis of PE.
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1. Introduction

In recent years, the establishment of a model-based analysis for clinical use
has been one of the greatest challenges in medical physics (Fenner et al. 2008;
Gavaghan et al. 2008). Therefore, understanding the complex interactions in
human physiology is crucial. But the complexity of this system in terms of
structural and functional relationships complicates this task. Especially, the
detection of changes caused by dynamical diseases is difficult, for instance in
pre-eclampsia (PE), which is a serious disorder of the cardiovascular system
during pregnancy. It is characterized by hypertension (mean systolic/diastolic
blood pressure greater than 140/90mmHg) and proteinuria of more than 300mg
in 24 h. The manifestation of PE is the main cause of maternal and neonatal
morbidity and mortality, and about 2–5% of all pregnancies are affected.
In a recent study (Malberg et al. 2007), we have shown that including

heart rate, systolic and diastolic blood pressure, and baroreflex sensitivity
(strength of the influence of systolic blood pressure changes on the heart rate) in
the analysis improves the prediction of the standard diagnostic tool (Doppler
sonography) remarkably from 30 to above 70 per cent. The risk of PE was
indicated by a combination of uterine perfusion (Chien et al. 2000), an increased
normalized power of the very low frequency of the heart rate (Task Force of
the European Society of Cardiology and the North American Society of Pacing
and Electrophysiology 1996), an increased power of the high frequency of the
diastolic blood pressure (Task Force of the European Society of Cardiology
and the North American Society of Pacing and Electrophysiology 1996) and an
increased number of baroreflex ramps in the range of 4–6msmmHg−1 (Malberg
et al. 2007). The selected parameters of diastolic blood pressure variability and
baroreflex characterize the short-term behaviour of the cardiovascular system,
and are mainly determined by respiratory influences on the blood pressure
and heart rate. In this study, the coupling of respiration, blood pressure and
heart rate is investigated in the short-term range in order to understand
these changes.
There are many approaches to quantify the direction and the strength of

these interactions (Porta et al. 2002; Rosenblum et al. 2002; Nollo et al. 2005;
Verdes 2005; Marwan et al. 2007; Palus & Vejmelka 2007; Faes et al. 2008). In
most of these studies, either the relationship between the heart rate and the
systolic blood pressure or that between the heart rate and the respiration were
investigated. However, a consideration of more than one possible coupling, as
given here, is rare. Various typical nonlinear phenomena, e.g. synchronization or
amplitude–frequency coupling in the cardiovascular system, have been observed
and therefore must be regarded in the modelling process. Cohen & Taylor (2002)
proposed a nonlinear transformation of the inputs in order to describe known
nonlinear phenomena of heart rate, e.g. saturations and threshold effects or
hysteresis. Because such transformations are usually unknown, in this study a
coupling analysis based on a non-parametric model is used, which follows the
idea of Granger causality (Granger 1969; Wessel et al. 2007; Riedl et al. 2009).
The studied groups and their measurements are described in §2. In §3, the

model-based approach that is used for the coupling analysis is described. Our
results are summarized in §4 and interpreted in §5. Finally, §6 includes the
conclusions of the results and their meaning for the diagnosis of PE.
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2. Data and preprocessing

Multiple longitudinal measurements of seven healthy pregnant women (13
datasets) and four suffering from PE (10 datasets) in the course of pregnancy
are considered (Malberg et al. 2007). All women underwent Doppler sonography
at the Department of Obstetrics and Gynaecology of the University of Leipzig.
Immediately after the Doppler examination, continuous blood pressure was
measured non-invasively via finger cuff (100Hz, Portapres device model 2,
BMI−TNO, Amsterdam, The Netherlands). Additionally, the respiration curve
(via respiratory effort sensors at the chest; sampling rate 10Hz) was recorded.
The measurements were performed for subjects in a supine position with relaxed
breathing at times between 8.00 and 12.00.
The study was approved by the local ethics committee and obtained the

informed consent of all subjects.
Measurements with disturbed respiratory signals or pathological respiratory

patterns, e.g. Cheyne–Stokes breathing, are not included in the analysis.
From the electrocardiogram, the detection of the heart beats is done by an
algorithm (Suhrbier et al. 2006). Intervals between successive heart beats
(Bi , the beat-to-beat interval) are calculated and assigned to the latter heart
beat. The maximum values of the blood pressure curve in each beat-to-
beat interval are extracted as the time series of systolic blood pressure (Si).
The corresponding diastolic blood pressure value is estimated by the next
following blood pressure minimum (Di). The values of the respiration signal
are determined at the times of the Bi (Ri , respiration on beat-to-beat basis).
The main objective of the analysis of heart rate and blood pressure is to
investigate the cardiovascular system during normal sinus rhythm. Therefore, it
is necessary to exclude not only artefacts (e.g. double recognition, i.e. R-peak
and T-wave recognized as two beats) but also beats not coming from the
sinus node of the heart, so-called ventricular premature complexes that are
not directly controlled by the autonomous nervous system. These features
are excluded from the time series of the Bi by an adaptive filter algorithm
(MATLAB implementation is available from http://tocsy.agnld.uni-potsdam.de;
Wessel et al. 2000). A representative example of extracted time series is shown
in figure 1.

3. Methods

The aim of this study is the investigation of the coupling between various
cardiovascular measurements (Bi , Si , Di and Ri) in healthy pregnant women
and in subjects suffering from PE. Causality plays an important role in the
explanation of coupling. Therefore, the principle of Granger causality (Granger
1969) is used: given two simultaneously recorded time series, then Granger
causality quantifies the causal directional influence from one time series to
another. For both time series, autoregressive models with and without the other
time series as external input are fitted. If the additional external input leads to
a significant reduction in the variance of the predicting error, then the external
input is said to have a causal influence on the response variable.
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Figure 1. Time series of beat-to-beat intervals (Bi), systolic blood pressure (Si), diastolic blood
pressure (Di) and respiration on beat-to-beat basis (Ri) from measured healthy pregnant woman.

In this study, we consider the time series of Bi , Si , Di and Ri . Because there
are possibly nonlinear functional interactions (Cohen & Taylor 2002; Wessel et al.
2006; Riedl et al. 2008), the following nonlinear additive autoregressive (NAARX)
models with external inputs are fitted to the time series of Bi , Si , Di and Ri :

Bi = B̄ +
p∑

j=1
f Bj (Bi−j)+

p∑
j=0
(gBj (Si−j)+ kBj (Di−j)+ lBj (Ri−j))+ eBi , (3.1)

Si = S̄ +
p∑

j=1
gSj (Si−j)+

p∑
j=0
(f Sj (Bi−j)+ kSj (Di−j)+ lSj (Ri−j))+ eSi , (3.2)

Di = D̄ +
p∑

j=1
kDj (Di−j)+

p∑
j=0
(f Dj (Bi−j)+ gDj (Si−j)+ lDj (Ri−j))+ eDi (3.3)

and Ri = R̄ +
p∑

j=1
lRj (Ri−j)+

p∑
j=0
(f Rj (Bi−j)+ gRj (Si−j)+ kRj (Di−j))+ eRi . (3.4)

The first term of each equation includes the mean value of the considered time
series because the non-parametric fit is unique except for a constant. The second
and the third terms include the autoregressive part and the external inputs,
respectively. The last part of these equations is white noise that describes all
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other external inputs that are not explicitly considered in the model; and p is the
maximal order of the models considered. Because there is no information about
the weight functions li , fi , gi and ki , they are estimated by a non-parametric
iterative least-squares routine (see appendix A) fitting the model. This will ensure
the highest possible flexibility of the additive model. Therefore, not only are
linear functions possible, but also polynomials, jump functions or transcendental
ones, for instance. The weighted predictors are selected by a model selection
approach called adaptive backfitting (see appendix A), in order to increase the
predictability of the response variable. The models are fitted separately to the
time series, i.e. we do not consider closed-loop models. During this algorithm,
the different autoregressive predictors as well as external ones are compared with
each other with regard to the best prediction. The improvement of the prediction
is measured by a cross-validation criterion (see appendix A), which is weighted
by the cost of adding a new predictor or increasing the roughness of the estimated
curve. This criterion is minimized during the iterations. In order to avoid over-
fitting, this loop is stopped when the value of the criterion does not decrease by
about more than 10 per cent after the last iteration. Hastie & Tibshirani (1990)
indicate that the comparison of two successive values of the cross-validation
criterion is equivalent to an approximated F -test. Our simulations show that
the threshold of 10 per cent corresponds to the significance level of a = 0.01.
The selection of an external input indicates its causal influence on the response
variable in relation to Granger causality (Riedl et al. 2009). That is, the additional
values lead to a significantly better prediction of the response variable than the
considered autoregressive part only.
In the case of the considered cardiovascular measurements, the problem of a

coupling analysis is that Bi , Si and Di contain respiratory-induced oscillations
with equal frequency. Simulations show that the proposed method finds not
only the real couplings, but also additional false detections that occur randomly.
To overcome this problem, a heuristic approach is chosen. We assume that the
structure of coupling between Bi , Si , Di and Ri is equal in each subject of a
group. That is, datasets of the group are considered as independent runnings
of one system (ensemble) that differ by a random effect, initial conditions and
boundary conditions. The built ensembles enclose the first 300 data points of
each considered dataset in order to minimize the influence of long-term effects,
e.g. trends, on the estimation process. We expect that almost all real couplings
can be detected, but there are also false detections. Such failures could be caused
by corrupt signals and overfitting. In order to distinguish between existing and
artificial couplings, the relative frequency of the selection of an external input
(table 1) is divided by a chosen threshold. If this relative frequency is greater
than or equal to 80 per cent, then it is assumed that the response variable is
influenced by the considered external input (table 1). Based on these results, the
system of directed interactions between the four measurements is reconstructed
(see figure 2). In a second step, the strength and the morphology of the selected
couplings are analysed. Therefore, the explained variance of the separate one-
step prediction of each external input is calculated and normalized by dividing
by the variance of the response variable (table 2). These resulting values are
indicators for the strength of coupling between the several external inputs and
the response. If it increases, then the strength of the coupling also rises. After
this, the frequently selected delayed predictors in each selected external input
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Figure 2. Coupling structure of heart rate (B), respiration (R), diastolic blood pressure (D) and
systolic blood pressure (S) resulting from analysis by means of a model-based analysis (selection
criterion: lagged predictor appears in more than 80% of cases (table 2)), which is detected in
healthy subjects as well as in patients suffering from PE. The relative explained variance of the
considered external inputs (table 1) is encoded by the thickness of the arrows.

Table 1. Relative number of selection. (The table shows the relative number of cases where
the external input is selected by adaptive backfitting for modelling the response variable (see
equations (3.1)–(3.4)) in the different groups of the time series with a length of 300 data points.
The bold numbers characterise the interactions that are detected in more than 80% of the cases.)

response variable external input healthy patients

Bi Si 0.38 0.5
Di 0.46 0.4
Ri 1.00 0.9

Si Bi 0.69 0.5
Di 0.92 0.9
Ri 0.92 1.0

Di Bi 0.84 1.0
Si 0.38 0.6
Ri 0.84 1.0

Ri Bi 0.69 0.4
Si 0.54 0.3
Di 0.30 0.4

are searched and their parametrized weight functions compared in the group
and between them in order to find out group-specific similarities and differences
between healthy and pathological coupling (figures 3 and 4).
In order to test the reliability of this approach, the described analysis is

repeated for two additional non-overlapping parts of the datasets (data point
intervals [301,600] and [601,900]).
Phil. Trans. R. Soc. A (2010)
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Figure 3. Different results of the weight functions (a,b) lB0 (Ri), (c) kS0 (Di) and (d) kS1 (Di−1) of
the fitted NAARX models (equations (3.1) and (3.2)), which are mostly selected in both groups
of subjects (healthy persons in (a) and (c), and patients suffering from PE in (b) and (d)). Note
the different slopes of lB0 in the two groups, especially for respiratory elongations between −0.002
and 0.002mV.

Table 2. Mean relative explained variance of the external inputs. (The table shows the relative
explained variance of the selected external inputs (table 1) in the nonlinear models of the response
variables (equations (3.1)–(3.3)) for the time series with a length of 300 data points.)

response variable external input healthy patients

Bi Ri 0.16± 0.03 0.15± 0.08
Si Di 0.21± 0.04 0.29± 0.05
Si Ri 0.06± 0.01 0.09± 0.02
Di Bi 0.09± 0.02 0.11± 0.02
Di Ri 0.09± 0.02 0.16± 0.03

4. Results

We obtained the following results analysing the coupling of the cardiovascular
measurements in pregnant women. First, we found a respiratory influence on Bi ,
Si and Di , which was detected in the whole ensemble, i.e. in more than 80 per cent

Phil. Trans. R. Soc. A (2010)
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Figure 4. Different results of the weight function lD0 (Ri) of the fitted NAARX model
(equation (3.3)), which are mostly selected in both groups of subjects (healthy persons in (a)
and patients suffering from PE in (b)).

of the considered cases. There is also an influence of Di on Si as well as an influence
of Bi on Di (table 1). Additionally, the influence of Bi on Si is detected at the
beginning of the measurement (first part) in healthy pregnant women as well
as patients suffering from PE. In this part, there is also a detected influence
of Di on Ri in the group of patients. Second, we find a significantly (p < 0.01;
Wilcoxon’s sign test) increased value of the relative explained variance in the
case of the respiratory influence on Di in patients in comparison with healthy
subjects (cf. table 2). The values of the relative explained variance are quite
similar in all three considered parts. The strongest effect is between Di and Si ,
where the diastolic values seem to drive Si for both healthy persons and patients.
It is followed by the respiratory influence on Bi . The third largest effect is the
respiratory influence on Di . Selected couplings of a smaller effect are the influence
of Bi on Di and the respiratory influence on Si (table 2). It is remarkable that
the relative explained variance of the selected couplings is mostly larger than
that in the opposite direction. With this finding, the structure of the couplings
is reconstructed (figure 2). In the first part, there is the same structure with the
mentioned additional selection. Finally, the morphology of the weight function of
the frequently selected external predictors is investigated. The weight function
kS0 (transformation of the diastolic predictor of lag 0 in the NAARX model of Si ,
equation (3.2)) shows an increased linear influence above the mean Di in healthy
subjects (figure 3c). The horizontal shift resulted from the different mean values
of Di in the considered datasets. In the case of patients, the weight function kS1
shows a similar slope for lower values as kS0 but a decreasing linear influence
above the mean Di (figure 3d). It is important to emphasize that the morphology
of lB0 (equation (3.1)) is very different in the groups of healthy subjects and
patients (figure 3a,b). In the case of healthy women, the influence is linear in the
range of mean values of respiratory movement, but decreases at the boundaries.
For patients, a plateau is found in the range of mean value of the predictor and an
increased linear influence at the boundaries. The fit of a piecewise linear function
on the estimations of lB0 in figure 3a,b (cut-offs −0.002 and 0.002) shows that
Phil. Trans. R. Soc. A (2010)
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there is a significantly different slope in the interval [−0.002, 0.002] (p < 0.01;
Wilcoxon’s sign test). For healthy persons, there is a mean slope of −6800± 1000,
whereas −1700± 800 is the value in the case of PE patients. The weight function
lD0 (equation (3.3)) has a similar form in both groups, with a linear slope in
the range of the mean value of the predictor and lower slopes at the boundaries
(figure 4). There is a slightly increased middle range in the case of patients.

5. Discussion

In the first step of this analysis, the structure of the couplings between Ri , blood
pressure and Bi is reconstructed. A main point is to answer the question whether
the respiratory fluctuation in Bi is caused directly by respiratory modulation
of the neuronal activity (Eckberg 2003) or indirectly via respiratory-induced Si
oscillations that are transmitted to Bi by the baroreflex (deBoer et al. 1987).
The reconstruction shows that there is no significant influence of Si on Bi in the
short-term range, but a respiratory influence on both measurements. This result
supports the model of a respiratory modulation of the neuronal activity (Eckberg
2003), which leads to the found respiratory fluctuation of Bi . The selected
respiratory influences on Di could be explained by a change of the intrathoracic
pressure filling the lungs, which leads to higher pressure on the aortic tree because
Di is mainly determined by the ‘Windkessel’ function of the aortic tree. Di also
depends on the cardiac stroke volume, which depends on Bi (Starling’s law).
Instead, the selection of the respiratory influence on Si indicates the dependence
on the peripheral resistance, which is controlled by the respiratory-modulated
neuronal activity. The strong influence of Di on Si (see figure 1) could be
explained by the function of the ‘Windkessel’ system of the aortic tree, which
is influenced by stroke volume and the compliance of the vascular system. The
‘Windkessel’ function means that about half of the cardiac stroke volume is
buffered by stretching the vessels near the heart and release during the filling
time in order to decrease the differences between Si (ejection time of the heart)
and Di (filling time of the heart). This buffer is mainly determined by the
elastic property of the aortic tree (compliance rather than stiffness). It is known
that there is a decreased compliance caused by PE that results in increased Si
(Dart & Kingwell 2001).
The explained structure (figure 2) is found in healthy subjects and patients

during the second and third parts of the measurement. The additional selected
interaction from Bi to Si during the first part seems to be the end of a transient
phase, which is caused by a change of posture from sitting or standing to the
supine position.
The morphology of the weight functions of the frequently selected external

predictors has mostly a nonlinear shape that could be quantified by fitting
piecewise linear functions (threshold autoregressive models with external input).
The weight function lB0 (equation (3.1)) is substantially different in the groups
of healthy subjects and patients (figure 3a,b). In the case of healthy women,
there is a linear dependence in the range of mean values of respiratory movement
and saturations at the boundaries. These saturations can be explained by the
limit of the respiratory gating (Eckberg 2003). For patients, there is no influence
in the range of the mean value of the predictor and a linear dependence at

Phil. Trans. R. Soc. A (2010)
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the boundaries. It seems that the setting points for gating is dilated to more
extreme values of nerve activity, e.g. baroreflex activity caused by extreme
mean blood pressure values. This indicates an adaptive neuronal change that
is caused by larger blood pressure fluctuations during developing PE. The weight
functions lD0 (equation (3.3)) and lS1 (equation (3.2)) show a linear dependence
of the blood pressure value on Ri in the range of the mean value of the
predictor. This respiratory influence of blood pressure can be explained by a
direct respiratory modulation of the stroke volume by changing the pleural
pressure that caused greater changes in Di than in Si (Guz et al. 1987). At
the boundaries of this range, the curves are saturated, which indicates that
the respiratory movement at the end of inspiration and expiration leads to no
significant additional change in the pleural pressure. The significantly different
effect sizes of Ri on Di that are found are explained by a delayed saturation phase
in patients.
The weight function f D0 (equation (3.3)) shows rather linear dependence of Di

on Bi , which describes the second main influence on the stroke volume.
With the analysis of three successive parts of the measurement, it is shown that

the coupling analysis by means of an adaptive backfitted NAARX model leads
to reliable results. The comparison of the most commonly selected predictors
shows that there are group-specific shapes of the estimated weight functions.
For values of the relative explained variance of several external inputs smaller
than 0.1, this property strongly decreases, characterized by a changed ratio of
random effects and deterministic behaviour. There are, however, some limitations
to this approach. The most important one is the analysis of short-term couplings.
Expected interaction, for instance, the baroreflex or the renin–angiotensin system,
seems to work beyond the order of five.

6. Conclusions

The investigation of the couplings between Bi , Si , Di and Ri shows that the
resulting reliable structure of interaction is equal in healthy pregnant women
and patients suffering from PE (figure 2). For both groups, there is a significant
respiratory influence on Bi and blood pressure, an influence of Bi on Di and a
dependence of Si on Di for pregnant women in a supine position with relaxed
non-pathological breathing.
Although the structure of the interactions is equal, there are clear differences

in effect size and morphology of several interactions, which indicates a neuronal
change by the resetting of the respiratory gating to more extreme respiratory
values in patients. As expected, there is an increased respiratory influence on
Di in patients, which corresponds with a higher power of the high frequencies
in diastolic blood pressure variability (Malberg et al. 2007). Additionally, the
nonlinear form of the respiratory influence on the heart rate is significantly (p =
0.002) different between the two groups. This result supports the model of a
respiratory modulation of the neuronal activity (Eckberg 2003), which leads to
the found respiratory fluctuation of Bi .
Interestingly, no influence of Si on Bi is found (figure 2). Therefore, the

baroreflex events (Malberg et al. 2007) result from the simultaneous short-
term influence of respiration on heart rate and systolic blood pressure rather

Phil. Trans. R. Soc. A (2010)
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than from influences of systolic blood pressure on heart rate. This finding
supports the conclusions of Porta et al. (2000), where it is clearly shown that
a physiologically meaningful estimation of the baroreflex sensitivity demands the
consideration of the causal relationship between heart rate, systolic blood pressure
and respiration.
In further studies, this approach should be expanded to larger scales in

order to include the baroreflex as well as interaction resulting from pathological
respiratory patterns that frequently appear in pregnant women. Another point for
future studies is to add the sympathetic activity to the considered cardiovascular
measurements because it probably contains information that is masked by
the interaction of Si and Di . Finally, one needs to analyse whether the
change of the respiratory influence is an adaptive change as a response of the
development of PE or an important factor by itself in the pathogenesis of
this disease.

We are grateful for financial support by the Deutsche Forschungsgemeinschaft, grant nos.
KU-837/20-2 and KU-837/23-1, as well as by the EU Network of Excellence, grant no. NoE 005137
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Appendix A

(a) Fitting additive models

The additive model is defined by

Y =C +
p∑

j=1
fj(Xj)+ e, (A 1)

where C is a constant value, Xj is the jth predictor having the effect fj(Xj) on
the influencing variable Y , and e is a N (0, s2)-distributed random variable that is
stochastically independent of the predictors. If the assumptions for equation (A 1)
are correct, then, for any k,

E

⎛
⎝Y − C −

p∑
j �=k

fj(Xj)

∣∣∣∣∣∣
Xk

⎞
⎠ = fk(Xk). (A 2)

By backfitting, the transformations fk(Xk) are estimated as follows:

1. Set C to the mean value of Y and choose the starting values of the
transformations f 0j .

2. For each j , a non-parametric regression of the partial residue is made over
the values of the jth predictor (estimation of equation (A 2)):

f j = Sj

⎛
⎝y − C −

p∑
k �=j

f k

∣∣∣∣∣∣
x j

⎞
⎠. (A 3)
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Here, Sj is a scatter plot smoother (like a running mean, running line
regression or kernel estimators) for the jth predictor; (y,x1, . . . ,xp) is a
multivariate time series of the random variables Y ,X1, . . . ,Xp; and f k are
the transformed values of kth predictor.

3. Continue with step 2 until each estimated transformation no longer
changes.

Details can be found in Hastie & Tibshirani (1990, p. 82 in section ‘Fitting
additive models’).

(b) Running line smoother

The running line smoother is defined by

y ′
0 = s(x0)= a(x0)+ b(x0) ∗ x0. (A 4)

Here, s(x0) is the new value of Y at the point x0; and a and b are the coefficients of
the linear regression over the neighbours of x0. Because the estimation is a kind
of linear procedure, it can be expressed by the vector product of a smoothing
matrix S and the values of the response variable. There is a trade-off between
the bias and the variance of the smoothing that is regulated by the number of
neighbours in the regression. The variance of the smoothing decreases and the bias
tends to increase if the number of considered neighbouring points rises and vice
versa. This value controls the smoothing and is called the smoothing parameter l.
Asymptotic analysis of the nearest-neighbour smoother has shown that l =N 4/5

(N , sample size) is the optimal value of the smoothing parameter if the values of
the predictors are equidistant. More about this smoother can be found in Hastie &
Tibshirani (1990, p. 15 in section ‘Running-mean and running-line smoothers’).

(c) Adaptive backfitting

The adaptive backfitting uses the minimization of the approximated cross-
validation criterion (general cross-validation (GCV)) in order to select the
best model:

GCV(l1, . . . , lp)=
∑n

i=1(yi − ∑
j f̂ j ,lj (xij))

2

n[1− (1+ ∑p
j=1 trSj(lj)− 1)/n]2 . (A 5)

Here li are the smoothing parameters that are used in the backfit; fj and lj(xij)
are the estimate functions at the target point xij , which are dependent on the
chosen smoothing parameter; n is the number of considered data points and p
the number of predictors; and tr Sj is the trace of the smoothing matrices in the
backfit. The criterion is constructed in order to estimate the mean prediction
error of the considered additive model. It is based on the estimation of the
transformations fi at the target point xi without the value at this point (Hastie &
Tibshirani 1990). The comparison of the estimation and the real value at the
target point mimic the training and test set of a cross-validation approach.
The minimization of GCV is carried out for one predictor at a time,

by applying the corresponding partial residuals looking for the smoothing
parameter to minimize this criterion. Having obtained the best smoothing for
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each of the p available predictors, only the minimizing smooth is updated.
This is continued until the criterion converges. Details can be found in
Hastie & Tibshirani (1990, p. 262).
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