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a b s t r a c t

The coordinated development of multicellular organisms is driven by intercellular communication.

Differentiation into diverse cell types is usually associated with the existence of distinct attractors of

gene regulatory networks, but how these attractors emerge from cell–cell coupling is still an open

question. In order to understand and characterize the mechanisms through which coexisting attractors

arise in multicellular systems, here we systematically investigate the dynamical behavior of a

population of synthetic genetic oscillators coupled by chemical means. Using bifurcation analysis and

numerical simulations, we identify various attractors and attempt to deduce from these findings a way

to predict the organized collective behavior of growing populations. Our results show that dynamical

clustering is a generic property of multicellular systems. We argue that such clustering might provide a

basis for functional differentiation and variability in biological systems.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The coordinated behavior in multicellular systems results from
a cooperative response arising from an integrated exchange of
information through cell–cell communication. Various mechan-
isms for intercellular coupling have been identified in nature,
basically relying on the broadcasting of individual cellular states
to neighboring cells via intercellular signals, which are further
integrated to generate a global system’s response (Heinlein, 2002;
Perbal, 2003). It is known, for instance, that bacteria display
various types of collective behavior driven by a type of chemical
cell–cell communication mechanism known as quorum sensing
(Taga and Bassler, 2003). This ability of living systems is an
absolute requisite to ensure an appropriate and robust global
cellular response of an organism in a noisy environment. Hence,
characterizing the dynamics of multicellular systems should lead
to an improvement of our knowledge about cellular behavior and
biological mechanisms that occur on a population-wide scale,
such as cellular differentiation, adaptability of the system to
different environment conditions, etc.
ll rights reserved.
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In order to understand the basic mechanisms of cell-to-cell
cooperative behavior, several theoretical models have been
successfully developed and investigated by studying both natural
and synthetic genetic networks (McMillen et al., 2002; Taga and
Bassler, 2003; Kuznetsov et al., 2004; Garcı́a-Ojalvo et al., 2004;
Ullner et al., 2007; Balagadde et al., 2008; Tanouchi et al., 2008). A
synchronization scheme has been proposed, for instance, in an
artificial network of synthetic genetic oscillators that produces
and responds to a specific, small signaling molecule (acylated
homoserine lactone), known as an autoinducer ðAIÞ (Garcı́a-Ojalvo
et al., 2004). This small molecule is free to diffuse through the cell
membrane, which provides a means for chemical communication
between neighboring cells. The resulting synchronized behavior
leads to a macroscopic genetic clock. By further manipulations of
this synthetic network, we were able to show (Ullner et al., 2007,
2008) that this communication scheme can be re-engineered to
produce a very diverse dynamics and exhibit a high adaptability
typical to natural systems. Other modification of the same
network (Garcı́a-Ojalvo et al., 2004) was also published recently
(Zhou et al., 2008), but it still waits further dynamical investiga-
tions.

In this paper, we investigate systematically the global
cooperative behavior of a population of synthetic genetic
oscillators called repressilators, coupled via quorum sensing
mechanism (Ullner et al., 2007), and thus showing the emergence
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of a rich variety of clustering behavior that might be interpreted
as a mechanism of dynamical differentiation. Such an interpreta-
tion was pioneered by Turing (1952) in his investigations of
inhomogeneous steady states in reaction–diffusion systems, and
has been further extended by Kaneko and Yomo (1994), who
proposed clustering in coupled map dynamics as a physical
background of biological differentiation. Moreover, it was recently
shown (Nakajima and Kaneko, 2008) that bifurcations driven by
cell–cell interaction may mediate differentiation processes.

Here we use numerical simulations and bifurcation analysis to
study the dynamics of a population of coupled genetic oscillators
for increasing sizes of the population, ranging from a two-cell to a
multicellular system, thus proposing a general explanation for the
emergence of cooperative behavior in large cellular systems. In
our previous work (Ullner et al., 2007, 2008) we investigated and
defined the necessary coupling conditions leading to a complex
dynamical behavior in the system, and furthermore classified its
dynamical structure using a minimal system of N¼ 2 oscillators.
In addition to those earlier results, here we show that the
extended system exhibits various attractors with complex phase
relations, and through their characterization we attempt to (i)
deduce the underlying mechanism that determines the most
likely visited dynamical regimes, and (ii) identify stable cluster
distributions, in order to predict the behavior of the system on a
global scale. The bifurcation analysis and numerical investigations
presented here also aim to characterize the robustness of the
dynamical structure of the system with respect to parameter
variations, and relate these findings to biological processes. We
stress here the importance of investigating dynamical clustering
in multicellular populations with cell–cell communication, since
such coupling generates qualitatively new cellular states different
from the single-cell dynamics, thus providing the basis for
functional differentiation and variability.

Moreover, in Ullner et al. (2008) we identified a biologically
relevant parameter interval where chaotic behavior of the
coupled genetic units was observed. As previously suggested,
this could implicate chaos as an additional source of uncertainty
in gene expression, drawing attention on possible alternative
sources of uncertainty in genetic networks, besides the already
well-established ones. It is therefore important to investigate the
dynamical behavior of cell populations in the chaotic regime, and
identify possible groupings of genetic oscillators and their
relations within, as a base for envisioning an experimental
protocol to detect chaotic behavior in synthetic genetic networks.
2. Model of a synthetic multicellular system

The model considered here consists of a population of
repressilators coupled via quorum-sensing mechanism as pro-
posed in Ullner et al. (2007). The repressilator consists of three
genes whose protein products repress the transcription of each
other in a cyclic way (Elowitz and Leibler, 2000). In its original
experimental implementation, the gene lacI expresses protein
LacI, which inhibits transcription of the gene tetR. The product of
the latter, TetR, inhibits transcription of the gene cI. Finally, the
protein product CI of the gene cI inhibits expression of lacI and
completes the cycle (see Fig. 1). An additional feedback loop
involving the two proteins LuxI and LuxR, which might be placed
on a separate plasmid, realizes the cell-to-cell communication
(McMillen et al., 2002; You et al., 2004; Garcı́a-Ojalvo et al., 2004).
LuxI is responsible for the biosynthesis of a small signaling
molecule, known as autoinducer ðAIÞ, which diffuses through the
cell membrane and thus provides a means of intercellular
communication. By forming a stable AI2LuxR complex, the
transcription of a second copy of the repressilator gene lacI is
activated. Placing the gene luxI under inhibitory control of the
repressilator protein TetR (Fig. 1) introduces a rewiring between
the repressilator and the quorum sensing through an additional
loop, which competes with the overall negative feedback loop
along the repressilator ring and results in an inhibitory, phase-
repulsive intercellular coupling.

The mRNA dynamics is described by the following Hill-type
kinetics with Hill coefficient n:

_ai ¼ � ai þ
a

1þ Cn
i

ð1Þ

_bi ¼ � bi þ
a

1þ An
i

ð2Þ

_ci ¼ � ci þ
a

1þ Bn
i

þ k Si

1þ Si
ð3Þ

where the subindex i denotes the cell (i¼ 1; . . . ;N, N being the
total number of cells in the ensemble), and ai, bi and ci represent
the concentrations of mRNA molecules transcribed from tetR, cI

and lacI, respectively. The model is made dimensionless by
measuring time in units of the mRNA lifetime (assumed equal
for all genes) and the mRNA and protein levels in units of their
Michaelis constants (assumed equal for all genes). The mRNA

concentrations are additionally rescaled by the ratio of their
protein degradation (different among the genes) and translation
rates (assumed equal for all genes). After rescaling, a is the
dimensionless transcription rate in the absence of a repressor, k is
the maximum transcription rate of the LuxR promoter, and the
parameters ba;b;c describe the ratios between the mRNA and
protein lifetimes (inverse degradation rates). We assume different
lifetime ratios for the protein/mRNA pairs, which results in a weak
relaxator-like dynamics of the repressilator (Ullner et al., 2007).
Ai, Bi, and Ci denote the concentration of the proteins TetR, CI, and
LacI, whose dynamical behavior is given by

_Ai ¼ baðai � AiÞ ð4Þ

_Bi ¼ bbðbi � BiÞ ð5Þ

_C i ¼ bcðci � CiÞ ð6Þ

Assuming equal lifetimes and dynamics for both the CI and
LuxI proteins (since they are both repressed by TetR), we use the
same variable to describe the dynamics of both proteins. The AI

concentration Si in the i-th cell (rescaled additionally by its
Michaelis constant) is proportional to Bi, i.e. the concentration of
LuxI in it, and is further affected by an intracellular degradation
and diffusion toward or from the intercellular space:

_Si ¼ � ks0Si þ ks1Bi � ZðSi � SeÞ ð7Þ
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Se ¼ QS ð8Þ

S ¼
1

N

XN

i ¼ 1

Si ð9Þ

The diffusion coefficient Z depends on the permeability of the
membrane to the autoinducer. Due to the fast diffusion of the
extracellular AI ðSeÞ compared to the repressilator period, we can
apply the quasi-steady-state approximation to the dynamics of
the external AI and replace it by the mean field of the internal AI,
S. The parameter Q is defined as Q ¼ dN=Vext=ðkse þ dN=VextÞ

(Garcı́a-Ojalvo et al., 2004), with N being the total number of
cells in the ensemble, Vext the total extracellular volume, kse the
extracellular AI degradation rate, and d the product of the
membrane permeability and the surface area. In more general
terms, Q is proportional to the cell density, and can be varied in a
controlled way between 0 and 1 in experiment, thus making it a
reasonable choice to follow the dynamical changes of the system
with respect to Q.

Previous investigations carried on a minimal system of two
repressilators coupled via repulsive cell-to-cell communication
(Ullner et al., 2008) have identified a variety of collective regimes,
including constant level protein production (homogeneous steady
state solution, HSS, Fig. 2(a)), an inhomogeneous steady state
characterized by different stationary protein levels (IHSS,
Fig. 2(b)), and self-sustained oscillations. Within the latter case,
we have identified out-of-phase oscillations with different phase
shifts (see e.g. Fig. 2(c), for which the phase shift is p=2), as well as
a complex inhomogeneous limit cycle (IHLC) characterized by one
cell exhibiting very small oscillations around a high mean protein
level, whereas the second cell oscillates in the vicinity of the
steady state with an amplitude just slightly smaller than that of
an isolated oscillator (Fig. 2(d)).

The previous results correspond to a fixed value N¼ 2.
However, in vivo bacterial colonies proliferate and expand. In
order to understand and characterize the cooperative behavior in
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Fig. 2. Time series for different dynamical regimes for the minimal coupled system of

state; (c) Q ¼ 0:1, full amplitude oscillations and (d) Q ¼ 0:3, inhomogeneous limit cyc

ks0 ¼ 1:0, ks1 ¼ 0:01, Z¼ 2:0.
growing populations, it is certainly of outmost significance to
investigate the influence of the size of the population on its
dynamics. To that end, we performed a simple numerical
experiment: we computed 1000 time series with different
random initial conditions for a minimal (N¼ 2 cells), and a
system with intermediate size ðN¼ 18Þ, using a uniform distribu-
tion in the range ½0;220� for the mRNA and protein initial
conditions and ½0;1:2� for the AI initial conditions. Fig. 3 shows
the histograms of detectable stable regimes in both systems for
increasing coupling coefficient Q.

As shown in Fig. 3, already a small increase in the system size
(from N¼ 2 to 18 cells) alters the balance between the coexisting
regimes: the stability regions of IHLC and IHSS are significantly
increased at the expense of the HSS. This fact underlines the
connection between the size of the population and its dynamical
behavior, implying that a detailed analysis of these correlations is
necessary in order to reveal and formulate (predict) a general
statement about the cooperative behavior of growing populations.
3. Clustering in the inhomogeneous regimes

It is well known that genetically identical cells may exhibit
diverse phenotypic states even under almost identical environ-
mental conditions. Thus, populations comprised identical cellular
units can display heterogeneity, manifested by the existence of
several subgroups or clusters where cells exhibit organized
collective behavior, with or without complex relations among
them. The size of the population plays a crucial role in
determining which dynamical behavior is most likely to be
dominant, depending of course on the environmental conditions
as well as on the coupling strengths.

We now show that the parameter stability intervals for given
solutions increase significantly as a function of N, with respect to
the equivalent stability intervals in the minimal model of two
coupled cells (Ullner et al., 2008). These changes in the dynamical
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Fig. 3. Influence of the system size (N ¼ 2 in the left plot and N ¼ 18 in the right plot) on the relative regime separation versus coupling strength Q. Other parameters as in

Fig. 2.
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structure of the model occur in general due to the increased
possibility for cluster formation in growing populations. Cluster-
ing can be defined as a stable dynamical state characterized by the
coexistence of several subgroups where the oscillators exhibit
identical (or nearly identical) behavior. Clustering is a well known
property, especially for globally coupled systems, and has been
investigated for identical phase (Golomb et al., 1992; Okuda,
1993), salt-water (Miyakawa and Yamada, 2001) or electroche-
mical oscillators (Wang et al., 2001; Kiss and Hudson, 2003), in
synthetic genetic networks (Koseska et al., 2007), and in
populations of chaotic oscillators (Kuznetsov and Kurths, 2002;
Manruiba and Mikhailov, 1999; Osipov et al., 2007), among other
cases. The presence of clustering and the complex phase relations
between cells produced therewith can be very important in the
construction of synthetic genetic networks and the mechanisms
behind cell differentiation. Therefore, our attention will be mainly
devoted to clustering that occurs in the inhomogeneous states
(steady or oscillatory), and which could be related to biological
mechanisms of dynamical differentiation. Moreover, different
groupings that occur mainly in the chaotic regime and contribute
significantly to the complex dynamical behavior on a population-
wide scale will be also of significant interest to us. This is because
such groupings can be also seen as a mechanism for temporal
mixing that enhances the diversity in the system, while mostly
maintaining the advantages of a synchronized (ordered collective)
behavior.

As a first step, a minimal extension to N¼ 3 identical cells was
introduced, in order to classify the dynamical changes leading to
clustering. We now present bifurcation diagrams for that case,
with the coupling strength Q as the bifurcation parameter. As
discussed above, Q is proportional to the extracellular cell density
and can be changed experimentally in chemostat experiments in
the range between zero and one. Values beyond this range do not
have a biological meaning but can be helpful for the under-
standing of the bifurcation analysis and the controlling of desired
regimes. Although the complete bifurcation analysis was per-
formed using the Xppaut package (Ermentrout, 2002), the
diagrams presented here depict only those bifurcation branches
and points central to the corresponding discussion, in order to
avoid making the bifurcation charts incomprehensible.

The bifurcation analysis revealed a significant enlargement of
the stability interval for the IHSS (Q A ½0:29� 0:66�, Fig. 4(b)), in
comparison to the minimal case of N¼ 2 coupled oscillators
ðQ A ½0:36� 0:55�Þ (Fig. 4(a) and in Ullner et al., 2008). The IHSS is
stabilized via a Hopf bifurcation, thus displaying no qualitative
changes in the mechanism of occurrence with respect to the
minimal model. However, the significant increase of the stability
region in this case (� 50% in comparison to N¼ 2) is a result of
clustering, or more specifically, of the increased number of
possible distributions of the oscillators between the two stable
protein levels through which the IHSS is defined. In general, given
N total number of cells, the oscillators can have N � 1 different
distributions between the clusters (considering that the IHSS, as
well as the IHLC discussed below, are characterized by two-
cluster decompositions). In what follows, we will define the
different cluster states by the notation mLjðN �mÞU, which
denotes a cluster of m oscillators in the low-protein
concentration state L, while the remaining N �m oscillators
populate the upper state U, characterized by higher protein
concentration. For N¼ 2 cells, there is only one possible
distribution of the oscillators in the IHSS regime: 1Lj1UFone
oscillator populates the lower, where the second one populates
the upper state. However, for an increased number of cells, N¼ 3,
there are two different combinations, namely 1Lj2U (Fig. 4(b), left
stable branch (solid (green) line)) and 2Lj1U (Fig. 4(b), right stable
branch (solid (green) line)). Note that different stable cluster
distributions are located on separate branches of the bifurcation
continuation, thus resulting in the increase of the parameter
interval where IHSS exists. In the case of N¼ 5 oscillators, for
example, four different clusters are stable, as shown in Fig. 4(c). In
that diagram the cluster types are, from left to right: 1Lj4U, 2Lj3U,
3Lj2U and 4Lj1U. This particular structure of cluster distribution is
typical for any number of oscillators: clusters of the type 1LjðN �

1ÞU require small Q values, while the ðN � 1ÞLj1U exist for large Q.
In order to understand this behavior, let us define the ratio of the
oscillators distributed in the upper versus lower Bi states as
r¼ ðN �mÞ=m. Suppose that under small Q, r is larger than one
(r41 means that the majority of the oscillators in the system are
located in the upper B state). Let us know assume that the value of
r decreases, until ro1. This means that the total concentration of
the protein CI ðBÞ in the system is decreased. Moreover, since the
dynamics of the AI follows closely the dynamics of the protein B

(both expressions, that of protein B (cI) and of AI (luxI) are
regulated in a same manner via tetR), the production of internal AI

will also be decreased. In order to compensate for the lack of
internal AI which will destabilize the IHSS, the re-influx of
external AI needs to be increased. This will subsequently lead to
higher Q values which means that in general, if ro1, larger Q is
necessary to observe stable IHSS distributions.

The left and middle plots in Fig. 5 show time traces for two
different cluster decomposition in the IHSS regime for N¼ 18.
Each possible partition shows slightly different levels in the
protein concentrations, and hence a fine tuning of the protein
levels can be accomplished by choosing a specific Q interval for
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proper partition of the oscillators. This specific effect enhances, on
the one hand, the biotechnological applications of synthetic
genetic networks by providing a possible method for fine
manipulation of the protein concentration level, and on the
other hand it might be seen as typical adaptability of a cell
population: when changes in the environmental conditions occur,
the population can easily adjust its cell distribution, adapting
optimally to the environment.

The Hopf bifurcation through which the IHSS is stabilized gives
rise also to a branch of stable inhomogeneous limit cycles (IHLC),
already introduced for the case of N¼ 2 oscillators in Fig. 2(d) (the
corresponding bifurcation diagram is given in Fig. 6(a)). However,
in comparison to that minimal case, the IHLC regime for higher
population sizes is more complex, due to the increased number of
possibilities for distributing the oscillators in the two clusters (a
stable and an oscillating one).

Analogous to the formation of IHSS clusters for N¼ 3, two
distinct IHLC clusters can be observed here as well. We have
identified these regimes as 1Lj2U (left solid (red) line in Fig. 6(b)),
and 2Lj1U (right solid (red) line in Fig. 6(b)), emerging from the
correspondent IHSS branches (Hopf bifurcations of the IHSS, HBs1

and HBs2 in Figs. 4(b) and 6(b)). This results again in an interval
where the IHLC regime is stable in comparison to the two-
oscillator case (compare Figs. 6(a) and (b)). Moreover, the IHSS
and IHLC regimes coexist in certain Q ranges (for instance, Figs. 5
and 6). This new behavior is also a result of the formation of
clusters for increasing system size. The possibility that one of the
IHLC distributions will overlap with the IHSS from another cluster
distribution (containing less elements in the lower level)
increases significantly. Hence, we can state that the increase of
the stability regions of the inhomogeneous states (IHSS and IHLC)
unraveled by the numerical simulations (Fig. 3) is a result of the
cluster formation for growing populations, as we have determined
from the bifurcation analysis presented.

Interestingly, the population displays even more complicated
behavior when analyzing the clustering effect in the IHLC regime.
This complexity is manifested through the formation of sub-
clusters in the lower (oscillatory) state, where oscillators exhibit
identical behavior within a single sub-cluster, but with various
phase relations among them. The simplest case consists of only
two oscillators located on the lower oscillatory level—they are
organized in anti-phase. However, increasing the number of
oscillators in the lower state reveals multitude of relations
between the oscillators grouped in sub-clusters and hence,
besides the distribution of oscillators between the upper and
lower states, one needs to consider also the composition of the
oscillatory sub-clusters in the lower protein level. Figs. 7–9
illustrate some examples of possible combinations of partitions
and phase relations in the sub-threshold oscillations for an
ensemble of N¼ 18 oscillators which we discuss next.

Due to the technical difficulty to handle a high-dimensional
system with the Xppaut package, we present here only numerical
findings. Note the non-uniform distribution of the phase in some
situations. The basic distribution of IHLC can be seen in Fig. 7(left),
with only one element in the lower state. However, if an
additional element is located in the lower state as well (Fig. 7,
middle), the phase-repulsive cell-to-cell communication evokes
anti-phase oscillations, as already mentioned. In the situation
where three cells are located in the lower state, stable out-of-
phase oscillations with a phase-shift of 2p=3 between clusters
(Fig. 7, right) are observed, since the phase-repulsive coupling
maximizes their phase difference.

Additional oscillators in the lower state contribute to the
formation of more complex distributions. A fourth cell expressing
a low CI protein concentration can establish a separate sub-
cluster, which leads to the regime ð1 : 1 : 1 : 1ÞLj14U (each sub-
cluster is composed of isolated cells, as shown in Figs. 8, left and
middle) or to a sub-cluster with more than one cell (e.g. two sub-
clusters are formed, each containing two cells, as in Fig. 9 middle).
It is interesting to note, that the regime ð1 : 1 : 1 : 1ÞLj14U has two
realizations with different phase relations between the self-
oscillatory cells in the low CI level. The left panel of Fig. 8 shows a
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nearly equal spaced phase shift of about 2p=4, while the middle
panel shows the case of an inhomogeneous phase shift. In
particular, the cells are observed to come close to each other
(two of them), but they never merge to form a sub-cluster. The
right panel in Fig. 8 shows a more complex phase relation in
which 5 out of the 18 cells are in the low-protein state, oscillating
separately with an inhomogeneous phase-difference. This phase-
regime is similar to the one in the middle plot of Fig. 8, but with
an additional oscillator in between the other four clusters. The
corresponding six time series given in Figs. 7 and 8 correspond to
the same parameter values, for N¼ 18 and a fixed coupling value
Q ¼ 0:2. Thus the different dynamical behavior observed here
originates only from different initial conditions.

It is important to note once again that a particular cluster
distribution is characterized with a distinct level of protein
concentration expressed in the cell. Namely, larger number of
oscillators in the lower state reduces the protein concentration in
the higher state. Moreover, we have also observed that the ratio
ðr¼ ðN �mÞ=mÞ of the number of oscillators in both levels affects
the amplitude of the limit cycle oscillations located in the lower
protein level: ro1 results in increased amplitude values.
Additionally, the ratio r contributes to the changes in the period
of oscillation, having as a consequence a well pronounced
multirhythmicity in the system. Table 1 lists the observed
periods and phase relations for the different ratios in the cases
discussed in Figs. 7 and 8. In the present case of N¼ 18 and
Q ¼ 0:2, every additional oscillator in the lower CI level of the
IHLC lengthens the period by � 1:2 time units, which leads to a
significant change in the period between different distributions. A
modification of the phase relation by a fixed partition ratio does
not influence the period (left and middle panels of Fig. 8).

Due to the dynamical complexity of the system, which as
mentioned above is a direct consequence of the clustering, it is
useful to look into the stability of the different regimes (HSS, IHSS,
IHLC), in order to define a general prediction scheme to determine
which solution is dominant under different conditions. We have
therefore calculated 1000 time series for a growing population
size N, with different random initial conditions for every
parameter set, using the approach discussed in Section 2. These
initial conditions cover the 7N�dimensional phase space of the
system (7 degrees of freedom per oscillator) densely enough such
that one can detect stable coexisting attractors with a significant
basin of attraction. Fig. 10 shows in detail the system size effect
for two specific coupling values, (Q ¼ 0:24 and 0:3). In both cases,
the results show a clearly monotonic increase of the probability
that the IHSS is reached from random initial conditions at the
expense of the HSS, as the size of the population grows. For
ensembles larger than several hundred cells the IHSS is the
dominant region, allowing us to speculate that the artificial
differentiation of cells is strongly dependent on the size of the
population, becoming more likely with proliferation (Koseska
et al., 2009). In other words, the stable inhomogeneous steady
state resembles Turing’s dissipative structures (Turing, 1952),
only without space variables. In a sense, instead of the spatial
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Table 1
Examples of the dependence of the IHLC oscillation period on the oscillators

distribution between the high- and low-protein levels for N¼ 18 and Q ¼ 0:2.

# High # Low Phase Figure Period

17 1 – Fig. 7, left � 31:7

16 2 Equal Fig. 7, middle � 32:9

15 3 Equal Fig. 7, right � 34:0

14 4 Equal Fig. 8, left � 35:3

14 4 Complex Fig. 8, middle � 35:3

13 5 Complex Fig. 8, right � 36:5
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Turing structure, in IHSS we have a two cluster decomposition
present. This state, as discussed above, is characterized by two
different stable protein concentration levels, which might be
biologically interpreted as dynamical differentiation. Thus, one
can further speculate that a robust dynamical differentiation of
the cells strongly depends on the size of the population.
4. Full-amplitude oscillatory regimes—regular and chaotic
attractors

For couplings smaller than a given critical value Qcrit � 0:129
(the value of Qcrit slightly varies depending on N), the system can
only exhibit self-oscillatory solutions: we have identified out-of-
phase oscillations with a number of different phase-shifts (e.g.
p=2, 3p=4, etc.). In contrast to the IHLC solution, the attractors
here share the same phase space. These full-amplitude oscillatory
regimes, as we will further denote them, are dynamically very
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rich, displaying a diversity of sub-regimes for increasing coupling
values. In particular, similarly to the minimal system of N¼ 2, we
found two main types of behavior depending on the coupling
strength Q:
�
 regular oscillations with stable cluster formation;

�
 chaotic self-oscillations with only a temporary cluster forma-

tion (we will denote this as grouping in the following
discussion).

In what follows, we investigate the general characteristics of
these regimes by means of bifurcation and numerical analysis.
However, in order to distinguish between separate cluster
formations for increasing population sizes via numerical simula-
tions, we use the following definition: oscillators i and j belong to
the same cluster K at time t if the difference between the internal
AI concentrations SiðtÞ and SjðtÞ at consecutive sampling time
events is smaller than a pre-defined value e¼ 0:001:

½osciðtÞ;oscjðtÞ�AclustK ðtÞ if jSiðtÞ � SjðtÞjre
and jSiðt � DtÞ � Sjðt � DtÞjre: ð10Þ

The cluster sampling occurs every Dt¼ 64 time units, which is
larger than the average period of the oscillations (the average
period of oscillations is between 40 and 50 time units or approx.
200 min). Using these criteria, we classify the clustering of the
oscillators, and present the resulting structures in the form of
cluster plots (Figs. 12, 13, 15 and 16), where the x-axes denote
time, and the y-axes represent the oscillator index. There, we use
different colors to encode the cluster number to which each
element belongs (white color represents a free-running oscillator,
which does not belong to any of the clusters). Although these
plots do not show the dynamics of the self-oscillations in detail,
they focus on the difference in the protein concentrations of
separate cells over time, and therefore enable a visualization of
the long-time cluster dynamics.
4.1. Regular attractors

Under small and intermediate couplings ð0rQ t0:55Þ, the
system demonstrates regular oscillations with a fixed unique
amplitude and common period for all oscillators (Fig. 12, top
panel). In this case, the repulsive cell-to-cell communication
evokes the preference of phase-shifted oscillations, and small
ensembles with Nr4 show solutions without clustering and
homogeneously distributed phases (Fig. 2(c)). The phase shift here
depends on the size of the system, and obeys the relation 2p=N (a
solution known also as a ‘‘splay-phase’’ solution, Kaneko, 1991;
Watanabe and Strogatz, 1993; Nicolis and Wiesenfeld, 1992).
Hence, in a system of three coupled repressilators, one can find
stable full-amplitude oscillations phase-shifted by 2p=3 between
HB1 ðQ ¼ 1:253Þ and TR1 (torus bifurcation for Q ¼ 1:11), and from
Q ¼ 0 until TR2 ¼ 0:55 (see Fig. 11). No other stable cluster
decomposition was identified from the bifurcation analysis. For
Q o0:129, and as mentioned above, this is the only stable solution
of the system, whereas for increasing coupling the full-amplitude
regime coexists with HSS, IHSS, and IHLC states, as shown in
Fig. 11.

In systems where N45, clustering is observed in the regular
oscillatory regime. Here, the three-cluster decomposition dom-
inates, with a nearly equal number of oscillators in each one (for
details see Table 2), and a distinct phase relation between
separate clusters. Moreover, the periods of oscillation are
slightly shorter than those of isolated elements, and decrease as
Q increases (Table 2). We show here an example of a system of
N¼ 18 cells. The onset of clustering can be seen in the cluster plot
in the bottom panel of Fig. 12. After a long transient (about 1.200
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Table 2
Examples of the clustering of the full amplitude oscillations.

Q Cluster Phase Period

N ¼ 2

0.1 1 : 1 Equal 51.3

0.15 1 : 1 Equal 50.0

0.2 1 : 1 Equal 49.4

0.3 1 : 1 Equal 47.7

0.4 1 : 1 Equal 46.0

0.5 1 : 1 Equal 44.5

0.6 1 : 1 Complex Many

N ¼ 3

0.1 1 : 1 : 1 Equal 51.3

0.15 1 : 1 : 1 Equal 50.7

0.2 1 : 1 : 1 Equal 50.0

0.3 1 : 1 : 1 Equal 48.8

0.4 1 : 1 : 1 Equal 47.2

0.5 1 : 1 : 1 Equal 46.1

0.6 1 : 1 : 1 Complex Many

N ¼ 4

0.1 1 : 1 : 1 : 1 Equal 51.3

0.15 1 : 1 : 1 : 1 Equal 50.7

0.2 1 : 1 : 1 : 1 Equal 50.1

0.3 1 : 1 : 1 : 1 Equal 48.8

0.4 1 : 1 : 1 : 1 Equal 47.6

2:2 Unstable –

0.5 1 : 1 : 1 : 1 Equal 46.0

2 : 1 : 1 Asymmetric 45.0

0.6 2 : 2 Complex Many

N ¼ 5

0.0 – – 52.7

0.15 2 : 2 : 1 Equal 50.7

0.2 2 : 2 : 1 Equal 50.0

0.3 2 : 2 : 1 Equal 48.6

0.4 2 : 2 : 1 Equal 47.2

0.5 2 : 2 : 1 Equal 45.5

3:2 Unstable –

0.6 2 : 2 : 1 Equal 44.1

N ¼ 6

0.2 2 : 2 : 2 Equal 50.1

3 : 3 Unstable –

0.3 2 : 2 : 2 Equal 48.4

0.4 2 : 2 : 2 Equal 47.3

N ¼ 18

0.2 6 : 6 : 6 Equal 50.0

7 : 6 : 5 Equal 50.0

8 : 5 : 5 Equal 50.0

7 : 7 : 4 Unstable –

8 : 6 : 4 Unstable –

9 : 9 Unstable –

N ¼ 100

0.4 34 : 34 : 32 Equal 47.2

35 : 33 : 32 Equal 47.2

35 : 34 : 31 Equal 47.2

36 : 33 : 31 Equal 47.1
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Fig. 12. Top: time series of the protein Bi concentration in the regular oscillating

regime, exhibiting three cluster decompositions with 7 : 6 : 5 distribution of cells

between them. After a transient, a synchronous behavior inside each cluster

emerges and the individual dynamics of the cells inside each cluster are

indistinguishable. Bottom: cluster-plot representation of the case above. The

parameters are those of Fig. 2, except Q ¼ 0:3.
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time units, in this particular case) a distribution of three clusters
is stabilized, with a 7:6:5 distribution of oscillators (cells)
between the clusters, and a phase shift of about � 2p=3 among
them. Time series of the separate clusters (the oscillators within
each cluster display synchronous behavior) are given in the top
panel of Fig. 12 (the coloring corresponds to the cluster plot). The
long transient in the simulation looks unphysiological at first
glance, but all simulations are drawn from random initial
conditions with a very large diversity amongst the cells. We use
those unrealistic initial conditions in order to underline the ability
of the system to form stable clusters under any condition. After
proliferation, the daughter cells are in a similar phase as the
mother, which decreases the formation of stable clusters
significantly.
In the cases investigated, all the oscillators are identical and
coupled via a mean field, hence there are no preferences amongst
them to establish a given set of clusters. Thus the distribution of
the oscillators between the clusters depends exclusively on the
initial conditions. Several typical attractors observed for different
system sizes and coupling values Q are listed in Table 2, together
with the values of their periods. As shown here, the three-cluster
decomposition with nearly equal distribution of oscillators
between the clusters dominates for large system sizes and over
wide ranges of coupling. An exception to this case, as discussed
above, is the formation of clusters for Nr4. In the case for N¼ 4,
for instance, the three-cluster decompositions lose stability, and
stable four-cluster decompositions are formed. Interestingly, the
coupling Q has an inverse influence on the oscillation period.
Normally, stronger coupling lengthens the period of coupled
systems (Crowley and Epstein, 1989; Volkov and Stolyarov, 1994),
but the situation is different in the present case because Q

controls the reinflux of AI and a higher internal AI concentration
shortens the repressilator cycle. Compared to the coupling
strength Q, the system size N and the cluster composition have
a minor influence on the period.
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4.2. Influence of parameter heterogeneity on the regular-attractor

regime

The previous investigations analyzed in detail the dynamics of
the regular attractors, as a first step in the understanding of the
global cooperative behavior of large populations. However, the
assumption that the elements of the system are identical
(differing only in the initial conditions) is very strong, since
cellular populations are heterogenous. It is therefore important to
account for diversity among parameter values in separate cells by
introducing, for e.g. certain mismatch in the a parameter values.
In particular, we consider here that for each cell i¼ 1; . . . ;11
different a’s are assigned from a defined set of values
½210;211; . . . ;220�, which leads to variability larger than 3% in
the oscillation periods. Introducing the diversity exactly in a is
realistic, since this parameter defines the expression strength of
the repressilator genes, which is proportional to the concentration
of repressilator plasmids present in the cell. The control of the
number of plasmid copies in experiments was discussed in
Paulsson and Ehrenberg (2001), and it can be coordinated with
the cell’s growth and division. Additionally, an increase in a
lengthens the period of oscillations, as already mentioned.

We have observed that even in the presence of diversity, the
three-cluster decomposition is the most probable state in the
system (an example for Q ¼ 0:5 is given in Fig. 13). However, in
contrast to the case of identical oscillators, some of the cells (in
the case of Fig. 13, the two elements with the smallest parameter
a, i.e. the cells with the shortest period), are not phase locked and
jump periodically from one of the three stable clusters to the
other one. Moreover, the heterogeneity introduced via
the parameter mismatch breaks the symmetry present in the
system of identical oscillators, and leads to a situation where
oscillators with similar properties (i.e. similar ai) group together
in a cluster, preferentially.
0 1 2 3 4
x 104

0

time

Fig. 13. Cluster plot of N¼ 11 non-identical repressilators in the self-oscillatory

regime. A small diversity in parameter ai makes the oscillators non-identical.

ai increases from bottom to top. The parameters are n¼ 2:6,

ai ¼ 210;211 . . .219;220, ba ¼ 0:85, bb ¼ 0:1, bc ¼ 0:1, k¼ 25, ks0 ¼ 1:0, ks1 ¼ 0:01,

Z¼ 2:0, and Q ¼ 0:5.

Fig. 14. Maximal Lyapunov exponent (top) and a numerical bifurcation plot for

the full amplitude oscillations (bottom) for increasing coupling Q. The simulations

have small genetic noise s2
a ¼ 10�8 to avoid tracking unstable orbits. N¼ 18, and

other parameters are as in Fig. 2.
4.3. Irregular self-oscillations

The bifurcation analysis we have performed on the model for
N¼ 3 cells shows that for Q \0:55, the system goes beyond the
range of regular oscillations: the periodic branch loses its stability
between two torus bifurcations (TR1 and TR2 in Fig. 11), which
contributes to the appearance of oscillations with strong varia-
tions of the amplitude. These irregular oscillations look very
similar to chaotic time series (Fig. 15, top plot), however, in order
to classify this as a chaotic behavior, certain criteria need to be
fulfilled, e.g. at least one of the Lyapunov exponents of the system
needs to be positive. Therefore, we integrate forward in time a
small perturbation of the trajectory, the random tangent vector,
by means of the Jacobi matrix. The logarithm of the norm of the
tangent vector is related to the maximal Lyapunov exponent
(Eckmann and Ruelle, 1985) and we normalize it by the
integration time. The result is plotted in the top panel of Fig. 14,
and shows that for Q 4Qchaos � 0:6 (upper boundary of Q � 1),
clear chaotic behavior with a positive maximal Lyapunov
exponent is observed. The bottom panel of Fig. 14 displays
a bifurcation diagram computed as a series of Poincaré sections,
with the ordinate showing the value of the B1 when the trajectory
crosses A1 ¼ 4:0. We avoid the tracking and evaluation of unstable
attractors and numerical artifacts by adding small dynamical
noise to the transcription dynamics of the tetR mRNA, i.e. we add
the term xiðtÞ to the rhs of Eq. (1). The local noise term xiðtÞ is
assumed to be Gaussian, with zero mean and intensity s2

a defined
by the correlation /xiðtÞxjðt þ tÞS¼ s2

adðtÞdi;j. Beside being
technically useful, the noise is biologically relevant, as it is
caused by random fluctuations in transcription due to the small
number of involved mRNA (Elowitz and Leibler, 2000).

In contrast to the case of the minimal system ðN¼ 2Þ, where a
similar irregular dynamic with chaotic behavior was observed
(Ullner et al., 2008), the extended system studied here (N¼ 18 in
Fig. 14) is characterized by the ability to build temporal clusters,
which we refer to as grouping. The coupling Q changes the chaotic
behavior gradually (top panel in Fig. 14). A first weak increase of
the maximal Lyapunov exponent is followed by a fast rising
interrupted by short collapse and a final decline to zero at Q � 1.
The degree of chaos influences the grouping ability, as chaos
destabilizes and shortens the grouping. In the parameter range of
Q where more irregular than simple periodic oscillations are
observed, 0:55tQ , temporal 2-, 3-, 4- or 5-grouping decomposi-
tions with a significant lifetime have been observed, in contrast to
the regular attractors, where the three-cluster decompositions
were the dominant ones.
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Fig. 15. Time series (top panels) and the corresponding cluster plots (bottom panel) in the self-oscillatory regime of N ¼ 18 oscillators with weak chaotic behavior and long

lasting grouping. Parameters are n¼ 2:6, a¼ 216, ba ¼ 0:85, bb ¼ 0:1, bc ¼ 0:1, k¼ 25, ks0 ¼ 1:0, ks1 ¼ 0:01, Z¼ 2:0, s2
a ¼ 10�10, and Q ¼ 0:6.
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The example in Fig. 15 shows a weak chaotic dynamics of
N¼ 18 oscillators at Q ¼ 0:6, with long-living 3- and 4-grouping
constellations. The cluster plot (bottom panel of the figure)
illustrates the interplay of long-time grouping and recurring
transients with less ordered states, while a rearrangement to a
new grouping happens. The groupings are long living up to 20,000
time units, i.e. about 4000 cycles. Due to the symmetry of the
system in the case of identical elements, separate oscillators
do not have local grouping preferences. The top plot of Fig. 15
gives a detailed insight on the oscillatory dynamics at different
times, and shows the long-living 3- and 4-grouping constellations,
and transients with a high degree of decomposition. However,
once the oscillators are distributed in a long-living grouping state,
they oscillate synchronously within the group and cannot be
distinguished by their time series until the next decomposition
occurs and spreads the phases.

The second example of irregular chaotic self-oscillations
(Fig. 16) illustrates a regime of fully developed chaos at high
coupling Q ¼ 0:75. The maximal Lyapunov exponent (Fig. 14)
increases significantly above zero, which confirms the chaotic
character of the dynamics. Interestingly, the temporal grouping of
the oscillators is conserved, but with a significantly shorter
lifetime and faster mixing as compared to the weak chaotic
dynamics discussed above (Fig. 15). Despite the fact that clusters
are not stable in this parameter range, some of the oscillators run
in-phase over long time and fulfill the clustering condition
(Eq. (10)) temporarily. In this typical situation shown here for
fully developed chaos at Q ¼ 0:75 (Fig. 16) the grouping of the
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Q ¼ 0:75.
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oscillators can last over a relatively long time and cover up to
5000 time units, i.e. more than 100 oscillations. The individual
repressilators oscillate in an irregular manner with fluctuating
amplitude and period. The top panels of Fig. 16 shows different
snapshots of the time series, and the bottom panel of the figure
shows the corresponding cluster plot and illustrates the interplay
between grouping and decomposition. Note the larger maximal
amplitudes in the more ordered case than in the situation where
higher degree of decomposition is observed.

In general, it can be stated that inside the chaotic ensemble
there exists an everlasting tendency to build and break temporal
groups, which leads to their mixing. Many different temporal
distributions of the oscillators into groups are possible, which
survive over several oscillation periods until the next mixing
occurs. In the case investigated here in detail, N¼ 18 oscillators,
we have observed, e.g. two temporal groups with a distribution
9 : 9 of the oscillators between them, three groups with distribu-
tions 7 : 6 : 5, and 7 : 7 : 4, four temporal groups with distribu-
tions 8 : 6 : 3 : 1, 7 : 6 : 4 : 1, 5 : 5 : 5 : 3, and 5 : 5 : 4 : 4, as well as
several examples of five groupings decompositions, with dis-
tributions such as 6 : 5 : 4 : 2 : 1, 5 : 5 : 4 : 2 : 2, 5 : 5 : 4 : 3 : 1 or
5 : 4 : 4 : 3 : 2. Several other examples with a higher degree of
decomposition can be observed as well, however, they exhibit a
much shorter lifetime. The observed clustering effects resemble
the dynamical behavior of globally coupled maps reported by
Kaneko (1990). The transition from an ordered to a partially
ordered and turbulent phase, where the number of clusters is
significantly increased is similar to the case of a weak and well
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developed chaotic clustering decomposition ordering, discussed
in this section. Moreover, we show that a growing system size
increases the possibility for grouping formation significantly, as
well as the number of different distributions of the oscillators
between the groups, which on the other hand enhances the
flexibility of the system. This means that by varying environ-
mental conditions, the population can switch between different
distributions to adapt to its surroundings and improve its fitness.
Although the chaotic dynamics observed here and the effect of
intrinsic noise in synthetic oscillators (Elowitz and Leibler, 2000;
Stricker et al., 2008) have very similar manifestations despite
their different origins, we intend to draw the readers’ attention to
chaos as an alternative source of uncertainty in genetic networks.

The chaotic dynamics and the grouping phenomena appear
graduately for increasing coupling Q, i.e. at cell densities which
could be a cause for stress. One could speculate that the
population has the flexibility to respond to environmental stress
by distributing its cells within stable clusters, and thus increasing
the variability and diversity amongst the different cells to
enhance the probability to survive the stress situation. The
gradual chaotic behavior enables the population to adapt the
mixing velocity and the degree of diversity to the stress
conditions.
5. Discussion

The mechanism how a multicellular system assures a robust
and coordinated response in a noisy and fluctuating environment
is still an intriguing question. It has been suggested however, that
the intercellular signaling plays one of the crucial roles in the
establishment of cooperative functioning in populations. In that
context, we attempt here to characterize the dynamical behavior
of multicellular systems using phase-repulsively coupled syn-
thetic genetic repressilators [Eqs. (1)–(7)]. The focus in the current
paper is on the dynamics of large and growing ensembles, but we
also compare our results with the recent findings on the basic
ensemble of two coupled repressilators, by means of numerical
simulations of the dynamics and bifurcation analysis.

We show that a multicellular population of synthetic genetic
repressilators displays various dynamical behavior, e.g. full-
amplitude self-oscillations, homogeneous steady state (HSS),
inhomogeneous steady state (IHSS), and inhomogeneous limit
cycle (IHLC). These regimes are present for all population sizes,
and may in general coexist with each other. Moreover, the size of
the system affects the relative sizes of the basins of attraction of
each regime. For instance, the inhomogeneous states become
more likely for larger populations. Interestingly, those inhomo-
geneous regimes can be associated with permanent artificial cell
differentiation in synthetic genetic networks, and the simulations
predict that a growing system size, e.g. due to proliferation,
enhances the probability of differentiation. Additionally, large
system sizes widen the parameter range of the IHLC and IHSS
regimes significantly, and further enhance the differentiation
probability.

Furthermore, the understanding of cell differentiation (Kaneko
and Yomo, 1997; Furusawa and Kaneko, 2001) and its connection
to the emergence of stable attractors from cell-to-cell coupling is
still not clear. Here, we have investigated systematically the
mechanisms through which coexisting attractors arise in the
multicellular system. Namely, a closer look into the inhomoge-
neous regimes (IHLC and IHSS) shows a splitting of the single
attractor that exists for two coupled elements into multiple
coexisting solutions for many oscillators, and the number of
stable attractors increases with the system size. A combination of
numerical simulations and bifurcation analysis revealed that the
different stable IHSS solution branches differ by the number of
elements in the high and low protein levels, and that each
distribution implies a new attractor with different stability ranges
and individual protein levels. The IHLC is on the other hand,
directly bounded to the IHSS with the same distribution of the
oscillators via a Hopf bifurcation. The ability of the IHLC regime to
build oscillating clusters with different phase relations in the low
protein level increases further the number of sub-regimes, and
includes multi-rhythmicity as a tunable clock (similarly to the
tunability of the IHSS regimes) because the attractors express
different typical frequencies. One can further speculate that this
feature can be seen as an example of the adaptability of a
population to easily adjust its cell distribution when environ-
mental changes occur, in order to respond and adapt optimally to
the surrounding.

Similar behavior was observed in the full-amplitude self-
oscillatory regime: various oscillatory clusters with different
partitions of the oscillators amongst them. Moreover, the spectra
of possible constellations increases with the system size. For small
and intermediate coupling Q, stable self-oscillations characterized
with a three-cluster decomposition, and phase shifted by � 2p=3
appear. These three-cluster decompositions are very robust to
perturbations, in the form of e.g. random initial conditions,
dynamical noise or parameter heterogeneity. The direct numerical
investigations performed here cannot guarantee the ‘‘mathema-
tical’’ stability of the discussed clustering regimes. However,
taking in mind recent results (Ashwin et al., 2007) we can suggest
that these clusters belong to a heteroclinic network and
demonstrate switching which is manifested more effectively in
the presence of detuning. This question itself deserves further
attention but in any case, the regimes observed here have very
long life times which certainly makes them interesting and
important for biology.

Furthermore, an increasing cell density caused by cell growth
and proliferation increases effectively the coupling Q, and up to a
critical coupling Qcrit � 0:6 the regular self-oscillations become
unstable, turning into chaotic oscillations with high variability in
their amplitude and frequency. Interestingly, also in the presence
of chaos the population tends to build temporal clusters, which
we refer to as groups. These temporal groups of co-jointly
oscillating repressilators have a significant lifetime, depending
on the degree of chaos, and are interrupted by recurring
decomposition of the groups and a reassembling into different
groups. The chaotic dynamics appears gradually with Q, and
allows the population to respond flexibly and sensitively to
increasing stress via a higher dynamical diversity inside the
ensemble.

In summary, our results show that a population of synthetic
genetic clocks coupled via the mean field exhibit a significantly
enhanced range of possible dynamical regimes with very different
properties. One could speculate that the observed multi-stability
and multi-rhythmicity, which increase with the system size,
enhance the fitness of the cellular population under environ-
mental stress, and optimize the adaptation of the colony by a
sensitive adjustment of the protein dynamics.
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