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This paper studies time-delay synchronization of a periodically modulated Duffing Van der Pol
(DVP) oscillator subjected to uncertainties with emphasis on complete synchronization. A robust
adaptive response system is designed to synchronize with the uncertain drive periodically modu-
lated DVP oscillator. Adaptation laws on the upper bounds of uncertainties are proposed to guar-
antee the boundedness of both the synchronization error and the estimated feedback coupling gains.
Numerical results are presented to check the effectiveness of the proposed synchronization scheme.
The results suggest that the linear and nonlinear terms in the feedback coupling play a complemen-
tary role in increasing the synchronization regime in the parameter space of the synchronization
manifold. The proposed method can be successfully applied to a large variety of physical

systems. © 2010 American Institute of Physics. [doi:10.1063/1.3515840]

Synchronization phenomena of chaotic systems are of
fundamental importance and have been observed in na-
ture and science. They have been widely investigated for
two decades, and many effective methods have been pre-
sented. Recently, chaos synchronization phenomena of
coupled chaotic self-sustained systems have attracted
much attention, since their well-controllable parameters
and their well-studied nonlinear behavior make them ide-
ally suited for studies of the fundamental synchronization
phenomena of coupled nonlinear systems. Such systems
are of interest for technological applications in industry
and for the understanding of biological processes involv-
ing self-sustained behavior, since the synchronization sce-
nario related to variations of the system parameters is of
high relevance for both aspects. Due to the simple con-
figuration and easy implementation, unidirectional linear
error feedback coupling scheme was adopted in many
real systems. Also, time-delay systems have attracted a lot
of attention in recent years, in part due to finite signal
transmission times, switching speeds, and memory ef-
fects. Therefore, the study of synchronization phenomena
in such systems is of high practical importance. In the
present paper, we develop a practical synchronization
method for self-sustained systems using an adaptive out-
put nonlinear feedback coupling in the presence of
time-delay, uncertainties, and external disturbances.
Numerical simulations suggest that the linear and non-
linear terms in the feedback coupling play a complemen-
tary role for the improvement of the stability of the syn-
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chronization manifold. These results are of significant
interest to infer relationships between parameter mis-
matches, nonlinear feedback coupling, time-delay, and
synchronization.

I. INTRODUCTION

Chaotic synchronization is one of the fundamental non-
linear phenomena actively studied recently,] having both im-
portant theoretical and applied significance, e.g., for informa-
tion transmission by means of deterministic chaotic signals,
in biology and physiology, for controlling lasers and micro-
wave systems etc. (cf. Refs. 1-10 for review). Since the
Volterra predator-prey model,"! time-delay has been consid-
ered in various forms to incorporate realistic effects, e.g.,
distributed, state-dependent, and time-dependent time-delay.
Up to now, the effects of these forms of delay in dynamical
systems have been extensively studied in many fields of
physics,12 biology,ll and economy.13 On the other hand, in
many real situations, a time-delay is inevitable, as the propa-
gation speed of the information signal is finite.'® Strictly
speaking, in experimental situations with signal propagation
delays, it is not reasonable to expect the response system to
synchronize with the drive system at exactly the same time.
It is similar to the telephone communication systems, where
one hears the voice at time ¢ on the receiver side, although it
was uttered on the transmitter side some time earlier, say, at
time ¢— 7. Time-delayed systems are also interesting from the
theoretical perspective because the dimension of their cha-
otic dynamics can be made arbitrarily large by increasing
their delay-time.M’15 In this regard, it is important to under-
stand synchronization of chaotic oscillators with time-delay.
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Additionally, uncertainties occur commonly in many
real-world control systems.w’lé’17 It has been noted that when
chaotic synchronization is applied to engineering such as
communications, these chaos-based synchronization schemes
are rather sensitive to noise and distortions in channels. This
is an undesirable feature, as it is one of the main factors
leading to a failure of the intended synchronization. This
effect should be taken into account when we want to evaluate
the performance of a practical chaos synchronization
scheme. Furthermore, for chaos synchronization of uncertain
dynamical systems, the bounds on uncertainties are impor-
tant parameters and may not be easily obtained due to sev-
eral causes. Therefore, adaptive methods must be employed
to estimate such bounds. At present, little attention has been
given to adaptive synchronization between coupled chaotic
systems without the limitation of knowing the bounds of
uncertainties.

Many studies on chaos synchronization have been de-
rived on the basis of a linear feedback coupling has been
limited to the assumption of linear feedback Coupling.m’l&22
However, the implementation of feedback coupling of prac-
tical systems is frequently subject to nonlinearities as a result
of physical limitation. Their presence may lead to serious
degradation of the system’s performance, decrease in speed
of response, and may possibly cause perturbation of the
originally regular behavior if the feedback coupling is not
well designed. In addition, in those works, the design of the
feedback coupling is limited to systems with full state feed-
back. In practical applications, a full measurement of the
state might be neither possible nor feasible. Also, the only
available information is the measured system’s output, which
represents a function of some current linear states of the
system. Usually, the dimension of the vector measured sig-
nals is smaller than the dimension of the corresponding vec-
tor of states.

This paper studies an adaptive time-delay synchroniza-
tion of a chaotic periodically modulated Duffing Van der Pol
(DVP) oscillator subjected to uncertainties and channel time-
delay in the drive-response framework. We will investigate
adaptive synchronization of chaotic systems using an output
nonlinear feedback coupling in the presence of a delay and
uncertainties including parametric perturbations, modeling
errors, time lag, and external disturbances. In the drive sys-
tem, not only are the Lipschitz constants on function
matrices and the bounds on uncertainties unknown but also
the time-delay. A robust adaptive response system will
be designed to practically synchronize the given driven
periodically modulated DVP oscillator. Adaptation laws are
chosen to estimate the unknown bounds of uncertainties and
to repress external disturbances. These results are of signifi-
cant interest to infer relationships between parameter
mismatches, nonlinear feedback coupling, time-delay, and
synchronization.

To the best of author’s knowledge, adaptive synchroni-
zation of chaotic systems using an adaptive output time-
delay nonlinear feedback coupling is to be investigated yet.
Having in mind enormous implications of the application of
chaos synchronization, investigation of synchronization re-
gimes (lag, complete, etc.) in adaptive nonlinear time-delay
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feedback coupling is of immense importance.

The outline of this paper is as follows. In Sec. II, we
recall the dynamics of the periodically modulated self-
excited oscillator. Then, we present the adaptive time-delay
synchronization scheme in Sec. III. We use the Lyapunov
stability theory to ensure the practical synchronization be-
tween the drive and response chaotic systems, whereby the
Lipschitz constants on function matrices and the bounds on
uncertainties as well as the time-delay are unknown. In Sec.
IV, we give a stability analysis of the proposed adaptive
time-delay synchronization scheme. Numerical simulations
are presented in Sec. V to demonstrate the effectiveness of
the proposed adaptive time-delay synchronization approach.
The case of different time-delays in the nonlinear terms of
the feedback coupling is also investigated. Finally, in Sec. V,
concluding remarks are given.

Il. DYNAMICS OF THE DVP OSCILLATOR

Herein, we consider the DVP oscillator.>*" The dy-
namical variables is x and the equations read

X+ E(Dx — £(Dx + B’ + i = (1), (1)

where &)= u(1+¢ cos wr), &;(1)=v(1+¢& cos wt), and u, v,
v, w, B, and & are positive parameters. Physically, » and vy
can be regarded as the dissipation or damping parameters, 3
is the strength of nonlinearity, € and w are the amplitude and
frequency of the driving forces, respectively, and &(7) is an
external disturbance which may be considered as noise. Very
recently, dynamical model (1) was used to describe the motor
pathway in oscine birds. Part of this pathway is the nucleus
RA (robustus nucleus of the archistriatum) containing exci-
tatory neurons, some of which enervate respiratory nuclei
and others enervate the nucleus nXIlts, which projects to the
muscles in the syrinx (Refs. 24-26 and references therein).

We summarize the influence of the parametric forcing on
the chaotic regime of the periodically modulated self-excited
oscillator of Eq. (1). Figure 1 represents the bifurcation dia-
gram of the system as a function of the parameters € and .
These dynamics are determined by calculating the maximum
Lyapunov exponent A, as a function of the two main forc-
ing parameters € and S. In parameter ranges pertaining to the
darker (blue) regions (\,,,=0), a quasiperiodic behavior is
found. Gray (blue) regions (\,,,>0) correspond to chaotic
dynamical states. Regions colored in light gray (blue) shades
(Amax <0) correspond to periodic motions. The (e, ) space
is characterized by the predominance of periodic motions.
For low values of & and high values of (3, chaotic states are
abundant. Also, one can find a band of quasiperiodic motion
for smaller values of e. When both parameters are increas-
ing, the parameter space exhibits a more complex pattern
whose chaotic regions appear side by side with a periodic
regionlike fingers. Hence, the system generates qualitative
changes for parameter variation. For slight variation in the
parameters, the system can switch from a chaotic motion to a
periodic one and vice versa. These complex dynamics justify
the choice of this system as an illustrative example for the
development of an adaptive time-delay synchronization algo-
rithm in Sec. IV.
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FIG. 1. (Color online) The domains of periodic, quasiperiodic, and chaotic
solutions in the two-parameters diagram (g,f) for v=0.401,u=1.0434,y
=0.1,w=1,&(r)=0. This diagram is determined numerically by finding the
largest Lyapunov exponent of the system. In parameter ranges pertaining to
the darker (blue) regions (\,,,=0), quasiperiodic behaviors are found. Gray
(blue) regions (N ,.=>0) correspond to chaotic dynamical states. Regions
colored in light gray (blue) shades (A,,x<0) correspond to periodic
motions.

lll. ADAPTIVE TIME-DELAY SYNCHRONIZATION
ALGORITHM

In this section, we investigate the adaptive time-delay
synchronization problem of coupled periodically modulated
DVP oscillators with uncertainties and channel time-delay in
the drive-response framework. By adaptive control, we mean
a special type of a nonlinear control system which can alter
its parameters to adapt to a changing environment. The
changes in environment can represent variations in the pro-
cess dynamics or changes in the characteristics of the distur-
bances. In other words, adaptive control is the capability of
the system to modify its own operation to achieve the best
possible mode of operation. We use the solution x of system
(1) as the signal to be transmitted to the response system, i.e.,
y=x. By changing the variables x;=x and x,=Xx, periodically
modulated DVP oscillator (1) can be rewritten in a compact
form as

i=A(a)z+B[f(z,a) + £(1)]

e 2)

where z=(x,,x,)7 is the state, y is the output (measured
variable), a=(u,v,e,8,y)" is the parameter vector, f(z, )
=—gUX| COS wl+EVX, COS wt—,Bx?—yxzxf is the nonlinear
part of Eq. (1), and &(r) is the external perturbation,

0 1 0
, B= , and C=[0,1].
-umv 1

The goal of this paper is to propose a scheme to solve
the adaptive synchronization problem for system (2). That is
to say, if uncertain system (2) is regarded as the drive sys-
tem, a suitable response system should be constructed to syn-
chronize with the drive system with the help of the driving
signal y. In order to do so, we assume the following.

Ala) =
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(i)  There is a bounded region U/CR? containing the
whole basin of drive system (2) such that no orbit of
system (2) ever leaves it.

Thus, the divergence of system (2) can be defined in an
arbitrarily small time interval, because the initial infinitesi-
mal distance between the solutions (2) become finite during
the small interval ATy. It should be pointed out that in the
classical case when a Lipschitz condition is satisfied, the
distance between two diverging solutions can become finite
only at t—o0 if initially this distance was infinitesimal.
Further, the uncertain parameter vector a and the external
disturbance vector &(r) are norm bounded by two unknown
positive constants a,,, and &, namely |a|<e, and

(S

(ii) Let M CR’ be a region containing the relevant pa-
rameter values for which system (2) exhibits a chaotic
behavior. The matrix A(a) and the nonlinear function
f(z, @) satisfy the following Lipschitz conditions:

lA(e) - A(@)] = kJla-a

, YVaaeM, (3)

[f(z, @) = fZ, @) < ky [xy = &1 + kg ey = 51

i

4)
Vxl,)?l € Z/[,

f(z @) - flz, )| = k- &

where k,, kfl’ kf3 , and k, are positive constants.

The Lipschitz properties are satisfied locally if A(a) is
differentiable with respect to «. The following analysis will
remain valid if Eq. (2) is satisfied locally for z el and
a € M. Note also that the Lipschitz constants k,, kf1’ kf3, and
k, are often needed to be known for control design purposes.
However, it is often difficult to obtain the precise values of
kfl’ k., and k, in practical systems. Hence, the Lipschitz
constants are often selected to be larger. This causes the feed-
back gains to be higher, and the results obtained are then
very conservative.

, VYaade M, (5)

(iii) There exists a constant vector L € R*> to make the
transfer function H(s)=C(sl,—(A(a)-LC))"'B be
strictly positive.

Finding a constant vector L satisfying (iii) is not a trivial
task. However, it was shown in Refs. 13 and 17 using the
Kalman—Yakubovich-Popov lemma that there exist two
positive definite matrices P=P” and Q=Q7 with appropriate
dimensions such that the following algebraic equations hold:

(A(@) —LO)"P+ P(A(@) - LC)=-Q (6)
and
B'P=C. (7)

Equation (7) implies that the span of rows of BTP be-
longs to the span of the rows of C. We point out that the
transfer function is commonly used in the analysis of single-
input single-output filters. This function is typically used to
prove that the linear part of a nonlinear control system is
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FIG. 2. (Color online) Relation between the drive and
response systems under the feedback coupling when
0,=0;=1, ¢=0.01, and 7=0.1.
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stable. Indeed, when this function is strictly positive, then all
the eigenvalues of the matrix of the linear part of a nonlinear
control system have negative real parts.

If the Lipschitz constants on A(a) and f(z, @) exist and
the upper bounds of the uncertain parameter « and the un-
certainty &() are known, i.e., k,, Ky, ks, ko, @, and &, are
given a priori, then a robust adaptive response system can be
designed to overcome the effect of unknown parametric per-
turbations and unknown external disturbances and further to
achieve synchronization. However, the main problem is that
kg kfl’ ka, ko @, and &, are unknown.

Taking the time-delay explicitly into account, the re-
sponse system based on chaotic drive system (2) can be de-
scribed as follows:

2=A(&)? + B[f(2,&) + &1)] + Bu(t - 7)

N (8)
y=Cz,

where 7 is the state, y the output, & is the parameter vector

which is assumed to be different from ae M, é(t) is the
external disturbance, 7 is a finite time-delay which is an un-
known constant, and u(z—7) is the feedback coupling, which
will be designed so as to achieve synchronization between
the drive and response systems (2) and (8).

Without the requirement of the information of the
bounds of uncertainties, the objective is to design a nonlinear
adaptive time-delay feedback coupling u(¢—7), such that the
solutions of drive system (2) practically synchronize com-
pletely with the solution of response system (8), i.e.,

k(t-n-d=c, -, ©

where ¢ is the error bound which can be made sufficiently
small. This means that the synchronization is uniformly ulti-
mately bounded.

To perform objective stated above, we propose the fol-
lowing adaptive nonlinear time-delay feedback coupling:

u(t=1 =8t =1 =3 + &t -1 -5 +v(r-1),
(10)

where the adaptive gains 31 and 33 are updated according to
the following adaptation laws:

g (11)

where 6, and 65 are suitable positive constants to be speci-
fied by the designer. The term v(z—7) is a feedback control in
order to suppress the effects of uncertainties and is designed
as follows:

2, S=0h(-1-7

31 =0lyt-1-y

v(t—7) = Fsign(y(r— 7) - §), 12)
where
Gi-1-9 . )
O=0-9) N s20
sign(y(t—=7) =) =1 [y(t— 1 -7 if yt—-7)-9+#

0 if y(t—7)—-y=0.

The adaptation law 7 is generated as the solution of the
linear differential equation,

: (13)

where ¢ is a positive constant chosen suitably.

The proposed adaptive time-delay feedback coupling is
composed of two main terms. The linear controller design is
based on the empirical linear model of Pyragas22 and the
nonlinear controller constructed from a locally supported ba-
sis of nonlinear control theory.13’16 The nonlinear term is
added to compensate the perturbation of the feedback cou-
pling. The coefficients of both terms in the feedback cou-
pling are updated online by using a model reference adaptive
control technique. Also, proposed adaptive nonlinear time-
delay feedback coupling (10)—(13) will guarantee the practi-
cal synchronization of drive-response systems (3) and (8). In
theory, as the adaptation gains are getting larger, the rate of
parameter adaptation is getting higher. In practice, the adap-
tation gains are limited by the bounds of the feedback cou-
pling and other practical considerations. One motivation of
this type of feedback coupling is that it can be constructed
through time varying resistors.

Now, replace ¢ with 71— in drive system (2), and then
obtain the drive system in terms of the time-delay,

Ht—=7)=A(a)z(t—7) + B[f(z(t - 7),a) + &t - 7)].

For further analysis of the stability of synchronization,
let us define the state synchronization error vector between
the drive and the response system as e(r)=z(t—7)—Z().
Then, by adding and subtracting the corresponding terms, the
closed-loop synchronization error dynamics is obtained as
follows:

é=[A(a)—LCle+LCe +[A(a) —A(&)](z(t—7) —¢)

+B[f(z(t = 7),a) - f(¢, )]+ B[f(Z,a) - f(Z,d)]

1 . 1 . (BTPe)
— —B&,(B"Pe) — —B&(BTPe)® - B )
2 1( 6) 2 3( 8) 7’|BTP€|

n=gly(t—1 -3

(14)

(15)

From the view point of control theory, the synchronization
issue is equivalent to uniform stability of dynamical synchro-
nization error system (15) at e=0. Then, the goal is achieved
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by using the Lyapunov stability theory, whereby a positive

definite energy function is chosen and its derivative is always

made negative. The stability analysis of above closed-loop

synchronization error dynamics (15) is given in Appendix.
The synchronization strategy is first evaluated using nu-

merical simulation in Sec. I'V.

IV. NUMERICAL RESULTS AND DISCUSSIONS

We now present results of numerical simulations to show
the effectiveness of the proposed adaptive time-delay syn-
chronization scheme and provide discussions on the robust-
ness of the proposed adaptive time-delay synchronization
scheme.

X1 =Xy

Chaos 20, 043121 (2010)

A. Numerical simulations

We consider drive system (2) together with response
system (8) and (10)—(13). The gain matrix L is chosen as
L=(0.5,0.5)T to make the transfer function,

s
H(s)=C[sI,— (A(a) - LO)]'B= 55—,
()= Clslo = @) - LOT B = G 0 05017
be strictly positive. Then, the eigenvalues of the matrix
A(a)-LC are —0.2 = 0.6940i
For the sake of clarity, robust adaptive response system
(8) and (10)—(13) can be rewritten as follows:

B == (1 + 8 cos w)f; + (1 + & cos i)y — B — 3828 + 8, (xa(t = 1) = £2) + 83(xa(t = 7) = £)° + # sign(x,(t — 1) = £5),

with the adaptation laws,

8= 0101 = D) = %)% By= O3(xat — 1) — £,)°,
(17)

n=gln(t-1-1%

b}

where 6, 6,, and ¢ are three positive constants to be speci-
fied by the designer.

In the numerical simulations, the parameters of drive
system (14) are as those of Fig. 1, €=3.392 and B=0.3.
These values were chosen according to Fig. 1, such that the
system exhibits chaotic behavior and remains chaotic for
slight variations of the systems parameter. However, large
variation can make the system to switch to periodic or cha-
otic motions changing qualitatively its dynamics. In this
case, the discrepancy between master and slave exponen-
tially increases. Without loss of generality, we assume that
the parameters of the drive and response systems are the
same, that is, with no parameter mismatch.

Suppose the initial values of systems (14) and (A3)
are, respectively, x;(0)=0.1, x,(0)=0 £,(0)=0, £,(0)=0.1,
31(O)=O, 33(O)=O, and 7(0)=0. Now let us set &(r)=0,
0,=0;=1, ¢=0.01, and 7=0.1, and observe response system
(A3).

The relationship between the states of the drive and re-
sponse systems under the feedback coupling is depicted in
Fig. 2. From this figure, it is evident that the manifolds
x,(t=7)=%,(r) and x,(t—7)=%,(¢) are stable. Hence, one can
conclude that the chaotic oscillations of the drive and re-
sponse systems are synchronized completely, so that our syn-
chronization objective has been attained.

Figures 3(a) and 3(b) present, respectively, the time evo-

lution of the adaptive gains 31 and 33. These results show
that the estimated feedback gains 31, 32, and 7 increase with

(16)

time and then soon saturate at values which are optimal pa-
rameters suitable for the implementation process. It should
be pointed out that when the values of the coefficients #, and
65 of adaptation laws increase, the optimal values of the
feedback gains also increase. Also, for fixed values of 8, and
65, one can find lower values of & iy (85 min) for different
initial values 31(0) [33(0)].

In order to provide additional evidence efficiency of the
proposed adaptive time-delay synchronization scheme, we
plotted the parameter space considering the coefficients 6;
and 6; of the adaptation laws. To characterize the degree of
synchronization, we used the following error quantity:

T =0, (t = 1) = £,(0))% + (ot = D) = £(1))%,

where after a very long transient, we computed the average
value (I') over time.

Figure 4 presents the three dimensional (3D) plot of (I")
as a function of #; and 6; when 7=0.1. One can observe that
the synchronous regimes are reduced by increasing 6; for
small 6;. Also, desynchronous regions only exist for lower
values of #; and 6; not exceeding the value of 0.1. Hence,
we find a general trend toward synchronization when in-
creasing the coefficients of the adaptation laws.

B. Complementary roles of the linear and nonlinear
terms of the feedback coupling

To understand the effects of the linear and nonlinear
terms of the feedback coupling on the synchronization pro-
cess, we analyze each term separately in detail.

First, we consider the drive and response systems with
identical parameters. Figure 5(a) presents the 3D plot of (I")
as a function of 6, and 7 when 6;=1. This figure shows that
the drive and response systems (14) and (16) are synchro-
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FIG. 3. (Color online) Time evolution of the adaptive gains 31 and 33 when
7=0.1.

nized for small values of the time-delay 7. Note also that
when the delay is greater than a critical value, increasing 6,
does not help to improve the existence of synchronous states.
Hence, a better synchronizability will probably lead to less
cost in terms of the linear control coefficient.

Figure 5(b) presents the 3D plot of (I') as a function of
05 and 7 when 6,=1. Contrary to the pattern in Fig. 5(a), Fig.
5(b) presents a general trend toward synchronization for in-
creasing coupling strength and delay. However, we note
some important differences depending on the time-delay. For
a large value of 65, one observes an island of unsynchronized
regime in the region from 7~0.7 to 7~ 1.2 in spite of the
fact that the coupling is strong. This can be explained by the
fact that for large values of the time-delay, €, is not construc-
tive for reaching synchronization. Also, these parameters
make the synchronization error system to be oscillating with
a high amplitude. Generally in this case, high values of the
coefficients of the adaptation laws are needed to enhance
synchronization. The nonlinear term of the feedback cou-
pling can help resolve the problem by keeping 6, at a low
value.

To test the robustness of the proposed adaptive time-
delay synchronization scheme, we performed simulations
similar to those leading to Fig. 5, with 1% of mismatch on

FIG. 4. (Color online) 3D plot of (I') as a function of the coefficients of the
adaptation laws 6, and 63 when 7=0.1.
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FIG. 5. (Color online) 3D plot of (I') as a function of the time-delay and (a)
6, and (b) 6;.

the parameters of the response system. The results show that
the role of parameter mismatching in synchronization phe-
nomena is quite versatile. In certain cases, the parameter
mismatching is detrimental to the synchronization quality: in
the case of small parameter mismatches, the synchronization
error does not decay to zero with time, but can show small
fluctuations around zero or even a nonzero mean value;
larger values of parameter mismatching can result in the loss
of complete synchronization. In some cases, parameter mis-
matching changes the time shift between the synchronized
systems.ZI However, in other cases their presence is neces-
sary for synchronization. The result of our numerical simu-
lations is presented in Fig. 6. The parameters of the response
system are chosen with a difference of 1% from the param-
eters of the drive system. Hence, synchronization is robust
with respect to mismatch. In spite of the fact that the cou-
pling is weak, the mismatch does not change the structure of
the curves compared to Figs. 5(a) and 5(b). As observed,
there is a similarity between these figures.

From this analysis, we find that the linear and nonlinear
terms of the feedback coupling play a complementary role in
the proposed adaptive time-delay synchronization process.

To show the effectiveness of this complementary effect
of the linear and nonlinear terms of the feedback coupling
and to confirm the robustness with respect to parameter mis-
matching of the proposed synchronization algorithm, we
consider the following.

Step 1: Redefine the coefficients of adaptation laws as a
function of a unique parameter ¢ as 6,= 0, 63=b;, and
$=0p.

Step 2: Plot of the 3D graph of (I') as function of the
new constant ¢ and the percentage of mismatch parameters
of the response system when 7=0.1.
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FIG. 6. (Color online) plot of (I') as a function of the time-delay 7 and (a)
the linear adaptive coefficient 6;, (b) the nonlinear adaptive coefficient 6,
with parameters mismatching.

Figure 7 indicates the robustness of the proposed syn-
chronization scheme with respect to parameter mismatch.
The discrepancy between master and slave exponentially in-
creases periodically with respect to the mismatch in the sys-
tem due to the structure of the system and the chosen param-
eters as shown in Fig. 1. Although the synchronization error
is higher for low values of ¢, increasing this constant in-
creases the rate of synchronization. Hence, the proposed syn-
chronization scheme is robust with respect to any mismatch
parameter.

Some specific questions can be posed, e.g., how much
time-delays our synchronization scheme can tolerate to
achieve the goal of vanishing synchronization error? Would
it be possible to compensate the effect of different time-
delays in the linear and nonlinear terms of the feedback
coupling by increasing the magnitude of the coefficients
of adaptation laws? These questions will be addressed in
Sec. IV C.

FIG. 7. (Color online) Response of the coupled systems to parameter
mismatching.

Chaos 20, 043121 (2010)

<>

FIG. 8. (Color online) 3D plot of (I') as a function of 7, and 7, when
6,=6;=1 and ¢=0.01.

C. Enhancement of the coupled systems
under different delays

Multifeedback and multidelay systems are ubiquitous in
nature and technology. Prominent examples can be found in
biological and biomedical systems, laser physics, and inte-
grated communications (see Ref. 28 and references therein).
Here, we are interested in studying the behavior of two
coupled DVP oscillators with different time-delays. For
many technical applications, an important class of chaos con-
trol methods with time-delayed feedback have been used to
synchronize chaotic systems. Contrary to most conventional
multiple time-delays, the second time-delay in our work is
introduced into the nonlinear term of the feedback coupling.
For this purpose, we consider response system (16) and (17)
with two different time-delays. The adaptive feedback cou-
pling is chosen as follows:

u(t = 1,1t = 1) = 31()52(1— ) = Xp) + 33(x2(t - 1) - %)’
+ 7 sign(x,(r— 7)) — %), (18)

where 7, and 7, are finite time-delays, 31, 33, and 7 are
solutions of the differential equations,

31 = 0,(x,(t— ) - %)% 33 = 05(xy(t = ) - )%,
(19)

7A7= Pt = 1) =%,

>

in which 6,, 6,, and ¢ are three positive constants to be
specified by the designer, and 7; and 7, are the two different
time-delays. The same phenomenon is also observed for
large values of the time-delay. Due to this fact, it is not
necessary to look for the robustness of the feedback coupling
with different time-delays.

Numerical simulations are depicted in Fig. 8. Our results
show that complete synchronization only occurs when
71="T,. This result is valid for large values of the time-delay.
Also, when increasing the delay, the amplitudes of the oscil-
lations increase extremely.

V. CONCLUSION

In this paper, we have studied an adaptive time-delay
synchronization of a periodically modulated DVP oscillator
subject to uncertainties and channel time-delay in a drive-
response framework. A robust adaptive response system has
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been constructed to synchronize a periodically modulated
Duffing Van der Pol oscillator with unknown Lipschitz con-
stants on function matrices, unknown bounds on uncertain-
ties, and time-delay. Efficiency of the proposed adaptive
time-delay synchronization scheme was also demonstrated
through numerical simulations. They show that a coupled
DVP oscillators can be synchronized through nonlinear adap-
tive time-delay feedback coupling. We have demonstrated
that the linear and nonlinear terms in the feedback coupling
play a complementary role for the improvement of the sta-
bility of the synchronization manifold. There are two main
characteristics of the adaptive time-delay feedback coupling
concerning the occurrence of complete synchronization.

(1) The linear and nonlinear terms in the feedback cou-
pling act as a combined fashion to fasten synchroni-
zation.

(i)  The proposed adaptive time-delay synchronization is
only efficient for identical time-delays in the linear
and nonlinear terms in the feedback coupling.

The method applied here can be successfully applied to a
large variety of physical systems. The motivation of such a
choice comes from the similarity of the controlling force
with a nonlinear capacitors that can be easily implemented
practically using a varicap diode. However, to realize such
synchronization in experiments, we have to determine the

exact values of the estimated feedback gains 5 and &. Note

that the estimated feedback gains 5 and & are dynamical
parameters and when the synchronization is accomplished,
these parameters remain on constant values, which are the

Chaos 20, 043121 (2010)

optimal parameters suitable for the implementation process.
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APPENDIX: STABILITY ANALYSIS
OF THE PROPOSED ADAPTIVE TIME-DELAY
SYNCHRONIZATION ALGORITHM

In this appendix, we show that the proposed adaptive
time-delay synchronization scheme will guarantee practical
asymptotical stability for synchronization error system (15).

Consider the Lyapunov function candidate,

1 A 1 A 1
V=ePe+—(8,- 8)*+ — (8- &)+ —(n- 9%,
6, 03 ®

(A1)

where 6;, &, and 7 are positive constants to be determined
later and P is a positive and symmetric matrix defined as in
Eq. (6). It can easily be verified that V is a non-negative
function and that it is radically unbounded, i.e., V—+% as
e(t), (n—7), (&— 3k), k=1,3 — +o. The time-derivative of V
along the trajectories of closed-loop system (15) satisfies

V=e[(A(a) = LO)TP + P(A(a) - LC)]e + e"PLCe + 2¢"P[A(a) = A(&)](z(t — 7) — €) + 2¢"PB[f(z(t - 1), @) - f(¢,a)]

+2¢"PB[f(2,a) — f(2,&)] + 2¢"PB&(t — 7) — 25,|B"Pe|* — 285| BT Pe|* — #|B" Pe|

2 A A 2 A A 2 s
-—(8,- 60, _(53 - 53)53 -—(n-n7,
0, 03 ®

(A2)
== e'Qe + 2k N (P)a = dlllel(lell + [lz(z = DI + 2k |B Pe| + 2k |B" Pel* + 2|L" Plel[|B" Pe| + 2(65,, + £,)|B" Pe|
SRTPL2 _ A5 IRTP,4 _n 2 RT 2 fos 2 s 2 A\ A
—26)|B"Pe|* —26/||B" Pe|* — 27|B" Pe| - ;(51 - 6))o) - ;(53 — 03)03 - ()_D(ﬂ— 7).
1 3
[
Now, let Aa,,=|a-al|. Since trajectories of system (2) are Now, let
contained in an attractor, we can suppose that ||z(t—7)|=<r B B B T
for some r>0. Moreover, we can also suppose that or=kp,  O3=kpp M=t bnt 2rL"P| and
there exists >0 large enough, such that whole synchroniza- 5
tion error system (15) is contained in the domain {=12k,r Npax(P)A . (A4)
- 2
2={ee R [el|=2r,r>0}C M. Then, one has Using adaptation laws (11) and (13), one finally gets
V=—e"Qe+ 12k N\, (P) A, + 2k, |BTP .
‘ Qe "R ( ) “ fl| e| V=- )\min(Q)”e”Z + g’ (AS)

+ 2kf3|BTPe|3 + 4r||LTP|||BPe| +2(¢,, + fm)|BTPe|.
(A3)

where N\, (Q) is the minimum eigenvalue of Q. Then, from
Eq. (A1), it follows that if
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el =N o

then V<0. Hence V decreases, which implies that |l¢| de-
creases as well [see Eq. (A1)]. It then follows from standard
invariance arguments that asymptotically the error satisfies
the following bound:

le@®)] = ¢, (A6)
where ¢ =/{/Nyin(Q) (see, e.g., Refs. 13, 16, and 17).

From Eq. (A2), one can see that the asymptotic error
depends linearly on the free parameter {. Hence, if this pa-
rameter is small, the resulting error will be small as well. The
dependence of the error on Ag,, deserves special attention.
Note that {=12k,r*\ . (P)Aa,,. Hence as Aa,, decreases, {
will increase, which decreases the asymptotic error bound.
This argument shows that with the proposed synchronization
method, Aa,, should be made as small as possible. There-
fore, the state error would be contained within a neighbor-
hood of the origin. Note that if Aw,,=0, i.e., a=d& (so that
£=0), the synchronization error system is globally asymp-
totically synchronized on M.

Practical synchronization
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