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Some complex measures based on recurrence plots give evidence about hyperchaos-chaos transi-
tions in coupled nonlinear systems [E. G. Souza et al., “Using recurrences to characterize the
hyperchaos-chaos transition,” Phys. Rev. E 78, 066206 (2008)]. In this paper, these measures are
combined with a significance test based on twin surrogates to identify such a transition in a
fourth-order Lorenz-like system, which is able to pass from a hyperchaotic to a chaotic behavior for
increasing values of a single parameter. A circuit analog of the mathematical model has been
designed and implemented and the robustness of the recurrence-based method on experimental data
has been tested. In both the numerical and experimental cases, the combination of the recurrence
measures and the significance test allows to clearly identify the hyperchaos-chaos transition.

© 2010 American Institute of Physics. [doi:10.1063/1.3498731]

Dynamical systems show a wide range of complex behav-
ior depending on certain order parameters. When the
mathematical model of a dynamical system is known, the
Lyapunov spectrum can be calculated in a quite accurate
way, allowing the extraction of information needed to
characterize the system’s behavior. In fact, one positive
Lyapunov exponent is related to a chaotic behavior, while
two or more positive exponents are a signature of
hyperchaos.1 However, in many applications the math-
ematical model is not available, but only time series are
observable. In these cases, the analysis of recurrences can
give important insights for the detection of transitions in
the dynamical behavior. The aim of this paper is to detect
a hyperchaos-chaos transition numerically and experi-
mentally in a fourth-order Lorenz-like system, which, by
varying the value of a single parameter, can exhibit peri-
odic, chaotic, and even hyperchaotic oscillations. Starting
from recently introduced recurrence-based measures”
and using the numerical equations, the hyperchaos-chaos
transition is identified and confirmed by a statistical test.
Moreover, the same recurrence method is applied to a
suitably designed and implemented electronic circuit able
to mimic the behavior of the considered dynamical
model.

I. INTRODUCTION

The analysis of recurrences of a trajectory of nonlinear
systems in the phase space can often give substantial insights
for understanding their dynamical properties. A recurrence
occurs when the trajectory recurs to a neighborhood of for-
merly visited states in the phase-space. Recurrence plots
(RPs) (Ref. 3) are efficient graphical tools able to unveil
whether or not the system visits similar states.
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It has been shown that the characterization of lines in
RPs allows to determine whether the system behaves peri-
odically, chaotically, or stochastically without any knowl-
edge on the mathematical model.* Typical parameters as cor-
relation dimension and entropy can also be evaluated
through a recurrence quantification analysis.5

Some studies have shown that recurrence-based analyses
are able to identify bifurcation points, especially chaos-order
transitions.® Moreover, measures of complexity based on the
recurrence time have been recently introduced even for a
quantitative analysis of the synchronization of trajectories on
strange nonchaotic attractors (SNAS).7’8 These measures,
able to detect transitions, through different routes, from regu-
lar to chaotic motion via SNAs have been also tested on
experimental data acquired from suitably designed nonlinear
circuits. The analyzed circuits, in fact, show transitions to
SNAs for increasing values of a single system parameter.8

The hyperchaos-chaos transition can be encountered in
many domains of life science,9 such as, for example, in fluid
dynamics,10 dynamics on complex networks,'" transition
from phase to lag synchronization,12 3 and so on. This
hyperchaos-chaos transition can also be characterized by a
recurrence-based analysis. In Ref. 2 a recurrence quantifica-
tion analysis is proposed in order to detect such a transition
starting from the time series generated by a system consist-
ing of two coupled subunits. This system behaves hypercha-
otically when the coupling strength is not sufficiently high
for achieving synchronization; when synchronization occurs,
a transition to simple chaotic behavior occurs. In Ref. 2
through numerical simulations it has been demonstrated that
the approach proposed is able to detect such a transition.
Moreover, the authors of Ref. 2 claim that the proposed
recurrence-based measures are sensitive enough to detect the
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FIG. 1. Phase-plane X-Y and recurrence plots for the model [Eq. (6)]. The plots represent the different regimes shown by the system at two different values
of the parameter c. [(a) and (c)] ¢=90 (hyperchaos); [(b) and (d)] ¢=270 (chaos).

dimension reduction that characterizes such a hyperchaos-
chaos transition even in dynamical systems not necessarily
formed by only two coupled units.

In this paper the detection of the hyperchaos-chaos tran-
sition through the application of the recurrence quantification
analysis is studied in a Lorenz-like system, which exhibits, in
dependence on a control parameter, either hyperchaotic or
relatively simple chaotic regimes.14 Both the mathematical
model and an experimental implementation of the considered
hyperchaotic system are investigated. The analysis of the
time series obtained by integrating the model allows to test
the capability of disclosing the hyperchaos-chaos transition
in a system that does not exhibit a synchronization subspace.
Furthermore, the problem of a statistical validation of this
transition is dealt with by using an approach based on a twin
surrogate significance test. The results allow to assess that
the transition is effectively detected by the recurrence mea-
sures. Finally, using the data acquired from a real circuit, the
robustness of the proposed technique is investigated.

The paper is organized as follows. In Sec. II, the
recurrence-based approach for the characterization of a
hyperchaos-chaos transition is discussed. In Sec. III the ap-
plication of the approach on the mathematical model of the
considered hyperchaotic system is discussed. In Sec. IV the
experimental realization of the system under study is given
and the results obtained from experimental data are shown.
Section V draws some concluding remarks.

Il. CHARACTERIZATION OF THE HYPERCHAOS-
CHAOS TRANSITION

The approach, discussed in this paper, to detect the
hyperchaos-chaos transition is based on RPs and twin surro-
gates. RPs allow to visualize recurrences to a certain state
performed by a given trajectory {£;}Y, of a dynamical sys-
tem. To achieve this, a NX N matrix R is calculated. The
elements of R are defined as

R, ;=0(5-|%;-X;

), i,j=1,...,N, (1)

where X; € R”, §is a threshold value, O(-) is the Heaviside
function, and |-|| denotes a norm. Nonzero elements of the
matrix R identify similar (5 closer) states, while zero ele-
ments represent rather different states. The matrix R can be
graphically represented in a two dimensional plot identifying
“1” and “0” elements, respectively, as black and white pixels.
In this study, we use a fixed value of the threshold 6=0.2
with normalized data and the maximum norm.

In order to have a quantitative definition of the distribu-
tion of points in a RP, the recurrence rate R, is defined as the
probability that a recurrence occurs,

1

N
er ]? 2 Ri,j' (2)

iyj=Lii%j

Diagonal lines in the RP occur when a whole segment of the
trajectory runs J-near parallel to another segment. The exis-
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FIG. 2. (Color online) Lyapunov spectrum of the system [Eq. (6)] for dif-
ferent values of the parameter c.

tence of such structures corresponds to the case in which
segments of the trajectory evolve visiting the same region of
the phase space at different times. The measure referred as
determinism (DET) given by diagonal lines can be expressed
in relationship to their length. The longer diagonal lines, in
fact, correspond to wider time intervals during which the
trajectory runs parallel to previous segments. Defining with
P(l) the frequency distribution of the lengths / of diagonal
lines in the RP, the measure determinism is defined as
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=, 1P()

DET = W (3)

In this work, [;,=2 is chosen as the minimum length
allowed for a diagonal line. The maximum length L, of the
existing diagonal lines, except the main diagonal line, will be
also considered in the present analysis.

The last indicator to detect a hyperchaos-chaos transition
is the average diagonal length L defined as

N _1P()

- 35, PO @

The transition from a hyperchaotic to a chaotic behavior
is characterized by a decrement of the system’s complexity,
since the Lyapunov spectrum passes from at least two to one
positive exponent. In order to identify this, the four previ-
ously introduced recurrence measures have to be evaluated
while varying a bifurcation parameter. An abrupt change in
their values has to be observed at the critical value of the
parameter at which the behavior of the system changes.
However, other peaks may appear, so that the transition
needs to be validated with a statistical test. In order to vali-
date that the detected transition actually occurs at the
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FIG. 3. Recurrence measures for the characterization of the hyperchaos-chaos transition as a function of the system parameter c. (a) Recurrence rate R,, (b)
determinism DET, (c) average diagonal length L, and (d) maximum diagonal length L,.. All the four diagnostics abruptly change at ¢ =265, the value at

which the system begins to exhibit only one positive Lyapunov exponent.
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FIG. 4. (Color online) An attractor of the system for the parameter value ¢=260 and a twin surrogate. (a) Phase space; (b) 500 samples of the time series of
the original trajectory and the twin surrogate. [(c) and (d)] Recurrence plots respectively of the original trajectory and his twin surrogate.

predicted value, the recurrence-based measures should be re-
peated for trajectories generated starting from different initial
conditions. In this paper we develop a significance test which
is effective also when only a single measured data series is
available. To achieve this purpose, an approach based on
twin surrogates (TSs), which are trajectories corresponding
to the same underlying system but starting at different initial
conditions, is used. These surrogates are generated from
recurrence properties as in Ref. 15, where they have been
applied to test the effectiveness of synchronization in data
series.

The first step to generate such surrogates is to find in the
RP of the trajectory of the underlying system those points
which are not only neighbors but which also share the same
neighborhood in phase space. Those points are called twins
and they typically do exist, because in the RP it is possible to
find identical columns. Once the twins have been localized,
an arbitrary starting point for the surrogate trajectory is cho-
sen. The surrogate trajectory is then generated by substitut-
ing randomly the next step in the trajectory by either its own
future or the one of its twin. The surrogates mimic closely
the basic dynamical properties of the underlying system, as
will be shown in Sec. III with a numerical example.

Let us indicate with ¢ the critical value of the bifurcation
parameter, derived by the analysis of the RP measures. In
order to validate that the transition occurs at this point, let us

consider the behavior at two different values of the bifurca-
tion parameter, before and after the hypothetical transition.
We indicate as ¢,,=c—Ac and cy=c+Ac (where Ac is the
step size adopted for the bifurcation parameter variations) the
values of the bifurcation parameter one step before the tran-
sition and one step after the transition, respectively. At this
point, Ntg twin surrogates are generated for the trajectory of
the system with c¢=c,,, and for each surrogate, the four re-
currence measures are computed. These recurrence measures
are also computed for the original trajectory for c=c,,;, where
the term original trajectory refers in the numerical case to a
trajectory directly extracted from the integration of the
model under examination and in the experimental case to the
data acquired at this value. Our null hypothesis is that the
values of the recurrence measures remain unchanged for dif-
ferent parameter values, especially before and after the criti-
cal value, such that, if we compute the recurrence measures
for different trials enabled by the twin surrogates and we
always find that the values of the recurrence measures before
and after the critical value are different, then we can reject
the null hypothesis and conclude that there is a transition at
the value c=c.

In order to quantify how far are the values of the recur-
rence measures obtained for the original data from the dis-
tribution of values obtained for the twin surrogates, the fol-
lowing parameter has been calculated:
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FIG. 5. (Color online) Histogram of the values of the recurrence measures obtained for 100 twin surrogates of the trajectory for the parameter ¢=260. The
vertical line indicates the values of the recurrence measures obtained for the original trajectory for the parameter ¢=270.

v
_l= Vel (5)

o
where m and & are, respectively, the mean value and the
standard deviation of the distribution of values obtained for

the twin surrogates, and V4 is the value of the recurrence
measures obtained for the original data.

lll. NUMERICAL ANALYSIS OF THE HYPERCHAOS-
CHAOS TRANSITION IN A LORENZ-LIKE
HYPERCHAOTIC SYSTEM

We consider the fourth-order dynamical system de-
scribed by the following dimensionless equations:14

X=aly—x)+yz,
y=cx—xz—y—%w,

(6)

Z=xy -3z,

. 1
W= 3x7—bw.

These equations, each characterized by a cross-product
term, represent a generalization of the Lorenz system. Sys-
tem (6) is able to show a hyperchaotic but also a simply
chaotic behavior. The numerical bifurcation analysis of Eq.
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FIG. 6. Schematic representation of the considered hyperchaotic circuit. The values of the components are the following: R,=R,=2.5 k(,
R3;=Rs=Ry=200 Q, R,=100 k€, Rs=1 k€, R,=25 kQ, Rg=33.2 kQ, R;(;=66.9 kQ, R;;=1.6 kQ, R;,=R;3=5.6 k), R;;=R5=560 (), and

C,=C,=C;=C,=100 nF.

(6) has been recently performed in Ref. 14, disclosing the
regions of the parameter space in which it evolves along
periodic, chaotic, or hyperchaotic trajectories. In particular,
when a=40, b=-1.5, and ¢=90, the system exhibits two
positive Lyapunov exponents. This leads to the hyperchaotic
behavior shown in Fig. 1(a). However, the system is also
able to show chaotic behavior (i.e., with exactly one positive

0
(b) X[V]

Lyapunov exponent) for a=40, b=-1.5, and ¢=270, as
shown in Fig. 1(b). The two types of behavior are character-
ized by qualitatively and quantitatively strongly different re-
currence plots shown in Figs. 1(c) and 1(d).

The hyperchaos-chaos transition is a codimension-1 bi-
furcation, and it can be demonstrated that the parameter ¢ in
Eq. (6) acts as a bifurcation parameter. To show this, the
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FIG. 7. Phase-plane X-Y and recurrence plots calculated with time series of 2000 samples acquired from the experimental circuit. The plots represent the
different behavior shown by the circuit at two different values of the system parameter c¢: [(a) and (c)] ¢=90 (hyperchaos), [(b) and (d)] ¢=270 (chaos).
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Lyapunov spectrum has been calculated with respect to dif-
ferent values of c. The algorithm of Wolf et al.'® has been
used. A trajectory of 800 000 samples has been integrated
with a fixed step-size integration routine (step size 7=0.001).
The Lyapunov spectrum calculated for values of the param-
eter ¢ in the range [65,330] shows a transition from hyper-
chaotic to chaotic behavior at ¢=265 (Fig. 2). For ¢ <265,
the Lyapunov exponents \; and X\, are positive, A3=0, and A4
is negative; when ¢ approaches the critical value, N\, de-
creases but remains positive while \, tends to zero and \j
becomes negative.

The four RP measures defined in Sec. II, namely, the
recurrence rate R,, the determinism DET, the average diago-
nal length L, and the maximum diagonal length L, have
been evaluated varying the parameter ¢ in the same range in
which the Lyapunov spectrum has been calculated. The plots
reported in Fig. 3 allow to identify the critical value of ¢ for
which a sudden change occurs, indicating a decrement of the
system’s complexity in correspondence of the hyperchaos-
chaos transition occurring approximately at ¢= 265.

This value has been confirmed by a significance test
based on twin surrogates and described in Sec. II. In particu-
lar, in our case Ac=5, ¢,,=260, and ¢, =270. Nys=100 sur-
rogates have been generated for c=c,,. First of all, we show
that these surrogates closely mimic the basic dynamical
properties of the underlying system. This is illustrated in Fig.
4, where an attractor of the system (6) for the parameter
value c=c,, is shown with his twin surrogate. The attractor is
obtained from a time series of length N=5000 points calcu-
lated with a fourth-order Runge—Kutta integrator with fixed
step width 2=0.001. The sampling time is Ar=0.005.

Then, the four recurrence measures have been computed
for each surrogate as well as for the original trajectory
(c=cy;). We recall that the null hypothesis of our significance
test is that the values of the recurrence measures remain un-
changed for different parameter values, especially before and
after the critical value. In Fig. 5, the histograms of the values
of the recurrence measures, obtained for the Ntg twin surro-
gates, are compared with their values obtained for the origi-
nal trajectory for c=c,, (vertical line). It can be seen that, in
all the four cases, the values of the recurrence measures ob-
tained for the original data are outside the distribution of
values obtained for the twin surrogates.

Finally, the parameter « in Eq. (5) has been calculated
for each of the RP measures. We have obtained a=2, a=6,
a=9, and a=4 for the recurrence measures R,, DET, L, and
L. respectively. This clearly indicates that the null hypoth-
esis can be rejected.

It is important to mention that, contrary to the long tra-
jectories (800 000 samples) required for computing the
Lyapunov spectrum (Fig. 2), the RP method has the advan-
tage that it can be also applied when rather short data are
available. In this work, in fact, the whole recurrence analysis
has been performed with 5000 samples only.

In the rest of the paper, the implementation of a circuital
analog of the model under study and the use of the described
procedure on related experimental data are discussed in order
to show the robustness of the RP-based approach in detecting

Chaos 20, 043115 (2010)

the hyperchaos-chaos transition from experimental data ac-
quired from this circuit.

IV. EXPERIMENTAL ANALYSIS OF THE
HYPERCHAOS-CHAOS TRANSITION IN THE LORENZ-
LIKE HYPERCHAOTIC CIRCUIT

The experimental data analyzed in this section have been
acquired from an electronic circuit characterized by the same
dynamics of the mathematical model described in Sec. III.
The electronic circuit reproducing Eq. (6) is reported in Fig.
6. It has been designed following an approach based on the
assumption that each state variable is associated with the
voltage of a capacitor.17 The circuit makes use of six opera-
tional amplifiers, four of which are connected in a Miller
integrator configuration, and four AD633 multipliers imple-
menting the nonlinearities of the system. In order to obtain
state variables oscillating within suitable voltage supply lim-
its (i.e. =15 V), the state variables x, y, and z have been
rescaled by a factor 5]—0, while w has been rescaled by a factor
zlm. The time variable has been rescaled by a factor k=100,
which also allows a faster observation of the system behav-
ior. The rescaled system reads as follows:

X =k(a(Y = X) +50YZ),

Y =k(cX-50XZ-Y —4W),
(7
Z=k(50XY - 32),

W=k(3.125XZ - bW),

where X=x/50, Y=y/50, Z=z/50, and W=w/200 are the
new state variables implemented in the circuit.

The circuit equations that can be easily derived from Fig.
6 are as follows:

X 1 1 1
—=k Y- X+ YZ|,
dr R2C1 RICI 10R3C1

dy R13< 1 1 1
— =k X- XZ-——Y
dr R12 R5C2 10R6C2 R4C2
_&Lw»
R4 R7Cy
(8)

dz ( 1 1 )
—=k XY - VAR
dT 10R9C3 R8C3

XZ+ ———W|,
R14R10Cy

dw k(

dr~ \10R,,C,
where k7=t. The components of the circuit have been chosen
in order to match Eq. (7). The values of the components are
given in the caption of Fig. 6.

Operational amplifiers Ul, U2, U3, and U4 act as
algebraic adders and integrators, while US and U6 are invert-
ing buffers. As shown in Fig. 6, the multipliers are driven
by four inputs I, I5, I3, and I, with their output given by
Vi =I1=1) - (I3=1,)/10V.
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FIG. 8. Recurrence measures applied on the data acquired from the circuit implementation of the system [Eq. (5)] for the characterization of the hyperchaos-
chaos transition as a function of the parameter c: (a) recurrence rate, (b) determinism, (c) average diagonal length, and (d) maximum diagonal length.

The hyperchaos-chaos transition can be characterized by
recording the trends of the state variables of the circuit for
different values of the parameter ¢ and applying the analysis
described in Sec. II. In particular we let ¢ vary from c=65 to
¢=330 at steps of five.

From Eq. (8) it can be noticed that the parameter ¢ is
equal to 1/RsC,. This ratio can be varied either by choosing
Rs as a trimmer or, in order to increase the resolution of our
investigation, using an additional multiplier driven by the
state variable X and by a constant digitally fixed voltage V..
The constant voltage V, and the parameter ¢ are then related
through the expression kc=V,/R5C,.

All the data have been acquired by using a data acquisi-
tion board (National Instruments AT-MIO 1620E) with a
sampling frequency f,=200 kHz for T=2 s (i.e., 400 000
samples for each time series). In all the acquisitions the other
parameters have been chosen, as discussed in Sec. III. The
circuit implemented is able to reproduce the dynamical be-
havior of the mathematical model (6), as shown in Fig. 7(a)
illustrating an example of the hyperchaotic behavior experi-
mentally observed, and in Fig. 7(b) illustrating an example of
the attractor obtained in the chaotic range of parameters.

The recurrence-based diagnostics defined in Sec. II have
then been applied to analyze the experimental data. Only
5000 samples from the 400 000 samples were used. In Figs.
7(c) and 7(d) the recurrence plots computed from the experi-
mental data for c=90 and ¢=270 are shown.

From the analysis of the four measures defined in Sec. II,
obtained from experimental data and whose trends with re-

spect to increasing values of the parameter ¢ are reported in
Fig. 8, the same conclusion found in the mathematical model
can be derived. The four recurrence measures undergo a
drastic change at ¢~250, which is quite close to that found
in the numerical analysis. We have thus performed the sig-
nificance test based on twin surrogates to validate the bifur-
cation value. In particular, Ac=5, c¢,,=245, and c,,=255.
N1s=100 twin surrogates of data at c=c,, have been gener-
ated. Then, for each surrogate, the four recurrence measures
have been computed and compared with those computed for
the experimental data recorded with c¢=cj. In Fig. 9, the
histograms of the values of the recurrence measures, ob-
tained for the Npg twin surrogates, are compared with their
values obtained for the data at c=c,, (red vertical line). The
comparison shows how the vertical line (obtained for
c=cyy) lies outside the values obtained for ¢=c,,. The calcu-
lation of the parameter « in Eq. (5) confirms that the null
hypothesis can be rejected. In fact, we have obtained a=15,
a=8, a=9, and a=3 for the recurrence measures R,, DET,
L, and L, respectively.

In Fig. 8 it could be noticed that several peaks appear. In
particular, R,, DET, and L show two major peaks at
¢=120 and ¢=210 and some minor peaks. The peak around
¢=~120 indicates a transition from hyperchaos to a more
regular behavior. For this parameter value, the attractor ex-
hibited by the circuit is shown in Fig. 10(a). This behavior,
not shown by the mathematical model as reported in Fig.
10(b), may be due to tolerances on circuit components. How-
ever, the recurrence method is effective in detecting the ex-
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FIG. 9. (Color online) Histogram of the values of the recurrence measures computed for 100 twin surrogates of the data acquired at c=245. The vertical line
indicates the values of the recurrence measures computed for the data acquired at ¢=255.

istence of this transition. Another peak is visible in Figs. 8(a)
and 8(b) for ¢=210. This peak corresponds to an intermit-
tent behavior observed also in the mathematical model for
¢=215, as shown by Figs. 11(a) and 11(b) where the x state
variable for both cases is reported. It can be concluded that
these peaks are not artifacts of the analysis method, but rep-
resent other dynamical behaviors appearing in the circuit.
The presence of these major and minor peaks therefore does
not constitute a particular problem for the method which is
able to deal with them, since major peaks correspond to ef-
fective local changes in the dynamics of the system, and

minor peaks can be discarded according to the significance
test based on twin surrogates.

The existence of parameter mismatches due to tolerances
on circuit components does not significantly affect the detec-
tion of the transition. Furthermore, the method reveals its
robustness to measurement errors allowing the identification
of the critical value of the parameter at which the dynamical
behavior of the observed system changes from hyperchaos to
chaos.

We have then calculated the Lyapunov spectrum from
the experimental data and compared the results obtained with
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FIG. 10. Phase-plane X-Y for ¢=120. Behavior exhibited by (a) the circuit
of Fig. 6 and (b) the mathematical model [Eq. (6)].

the analysis based on recurrence measures. The Lyapunov
spectrum has been calculated by taking into account the
same number of points (N=5000) of the RP-based analysis
and by using the measurements of all the four state variables
of the circuit. The TISEAN package18 has been used for this
purpose. The Lyapunov spectrum calculated on experimental
data is shown in Fig. 12. We have insight in the system
dynamics by monitoring mainly the exponent \,, since \;
remains positive while A3 and A, remain negative during the
transition: ideally A,>0 in the hyperchaotic region and
N,=0 in the chaotic region. In the practice, the value of \, is
quite small in the whole parameter region and identifying the
transition is quite difficult. The value of N\, becomes small
and negative for ¢ =230. Therefore, if the same number of
points in the trajectory is used, the Lyapunov spectrum is
much less reliable than the RP method. Longer trajectory
may be required for a more accurate identification of the
transition when using the Lyapunov spectrum.

V. CONCLUSIONS

In this paper, the four recurrence-based measures intro-
duced in Ref. 2 have been used in combination with a statis-
tical method based on twin surrogates generated from recur-
rence properties in order to detect the hyperchaos-chaos
transition in nonlinear systems. The approach has been ap-
plied numerically and experimentally, and in both cases the
method was efficient in detecting the transition.
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FIG. 11. Intermittent behavior of the state variable x. Time series related to
(a) the circuit of Fig. 6 for c=210 and (b) the mathematical model [Eq. (6)]
for ¢=215.

The considered recurrence measures exhibit a sudden
change when the Lyapunov spectrum of the system passes
from two to one positive Lyapunov exponent. A significance
test has been then applied to validate the transition point and
to discard minor peaks which may appear in the recurrence
measures. The effectiveness of the detection method has
been proven through the analysis of the mathematical model
of a fourth-order generalization of the classic Lorenz system.
In this case a drastic jump is observed in each of the recur-

~

A ~t_

300 330

-2 I I I I
60 100 150 200 250
Cc

FIG. 12. (Color online) Lyapunov spectrum computed using the data ac-
quired from the circuit of Fig. 6 for different values of the parameter c.
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rence measures, at the value at which the system begins to
show a chaotic behavior, and the statistical test validates the
estimated transition point.

The experimental part of the paper has been achieved
through a circuit realization referring to the considered math-
ematical model. The circuit, based on operational amplifiers,
has been designed and implemented in order to obtain an
electrical analog of this mathematical model. The waveforms
generated by the circuit have been acquired and the experi-
mental data have been analyzed using the same recurrence-
based measures. Even if the tolerance on electrical compo-
nents introduces some parameter mismatches, the detection
method proves its robustness. The hyperchaos-chaos transi-
tion can be identified with a good matching between the
recurrence measures computed from the numerical and ex-
perimental data.

This result confirms that the recurrence-based approach
is able to correctly identify transitions between different
complex behaviors not only when numerically generated
data are available, but also when data are obtained from ob-
servations from real systems, whose model is not accessible
as, for example, it may happen in fluid dynamics, biological
systems, and so on. The proposed approach has the advan-
tage to be still applicable when only rather short data are
available.

ACKNOWLEDGMENTS

This work was supported by DAAD/Ateneo Italo-
Tedesco under the VIGONI Project. E.J.N. and J.K. also ac-
knowledge the support of SFB 555; project C1 (DFG).

'0. E. Rossler, “An equation for hyperchaos,” Phys. Lett. A 71, 155
(1979).

’E. G. Souza, R. L. Viana, and S. R. Lopes, “Using recurrences to charac-
terize the hyperchaos-chaos transition,” Phys. Rev. E 78, 066206 (2008).

Chaos 20, 043115 (2010)

P Eckmann, S. O. Kamphorst, and D. Ruelle, “Recurrence plots of
dynamical systems,” Europhys. Lett. 4, 973 (1987).

4N. Marwan, M. C. Romano, M. Thiel, and J. Kurths, “Recurrence plots for
the analysis of complex systems,” Phys. Rep. 438, 237 (2007).

M. Thiel, M. C. Romano, P. L. Read, and J. Kurths, “Estimation of dy-
namical invariants without embedding by recurrence plots,” Chaos 14,
234 (2004).

°L. L. Trulla, A. Giuliani, J. P. Zbilut, and C. L. Webber, Jr., “Recurrence
quantification analysis of the logistic equation with transients,” Phys. Lett.
A 223, 255 (1996).

E.J. Ngamga, A. Nandi, R. Ramaswamy, M. C. Romano, M. Thiel, and J.
Kurths, “Recurrence analysis of strange nonchaotic dynamics,” Phys. Rev.
E 75, 036222 (2007).

8E. I. Ngamga, A. Buscarino, M. Frasca, L. Fortuna, A. Prasad, and J.
Kurths, “Recurrence analysis of strange nonchaotic dynamics in driven
excitable systems,” Chaos 18, 013128 (2008).

°T. Kapitaniak, Y. Maistrenko, and S. Popovych, “Chaos-hyperchaos tran-
sition,” Phys. Rev. E 62, 1972 (2000).

1°0. Meincke and C. Egbers, “Routes into chaos in small and wide gap
Taylor-Couette flow,” Phys. Chem. Earth, Part B 24, 467 (1999).

TA. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, “Synchro-
nization in complex networks,” Phys. Rep. 469, 93 (2008).

M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “From phase to lag
synchronization in coupled chaotic oscillators,” Phys. Rev. Lett. 78, 4193
(1997).

133, Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, “The
synchronization of chaotic systems,” Phys. Rep. 366, 1 (2002).

14y, Wang, Z. Chen, G. Chen, and Z. Yuan, “A novel hyperchaotic system
and its complex dynamics,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 18,
3309 (2009).

M. Thiel, M. C. Romano, J. Kurths, M. Rolfs, and R. Kliegl, “Twin sur-
rogates to test for complex synchronisation,” Europhys. Lett. 75, 535
(2006); P. Van Leeuwen, V. Geue, M. Thiel, D. Cysarz, S. Lange, M. C.
Romano, N. Wessel, J. Kurths, and D. H. Grnemeyer, “Influence of paced
maternal breathing on fetal-maternal heart rate coordination,” Proc. Natl.
Acad. Sci. U.S.A. 106, 13661 (2009).

164, Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining
Lyapunov exponents from a time series,” Physica D 16, 285 (1985).

G. Manganaro, P. Arena, and L. Fortuna, Cellular Neural Networks:
Chaos, Complexity and VLSI Processing (Springer-Verlag, New York,
1999).

R, Hegger, H. Kantz, and T. Schreiber, “Practical implementation of non-
linear time series methods: The TISEAN package,” Chaos 9, 413 (1999).

Downloaded 12 Nov 2010 to 193.174.17.92. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions


http://dx.doi.org/10.1016/0375-9601(79)90150-6
http://dx.doi.org/10.1103/PhysRevE.78.066206
http://dx.doi.org/10.1209/0295-5075/4/9/004
http://dx.doi.org/10.1016/j.physrep.2006.11.001
http://dx.doi.org/10.1063/1.1667633
http://dx.doi.org/10.1016/S0375-9601(96)00741-4
http://dx.doi.org/10.1016/S0375-9601(96)00741-4
http://dx.doi.org/10.1103/PhysRevE.75.036222
http://dx.doi.org/10.1103/PhysRevE.75.036222
http://dx.doi.org/10.1063/1.2897312
http://dx.doi.org/10.1103/PhysRevE.62.1972
http://dx.doi.org/10.1016/S1464-1895(99)00078-2
http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.1103/PhysRevLett.78.4193
http://dx.doi.org/10.1016/S0370-1573(02)00137-0
http://dx.doi.org/10.1209/epl/i2006-10147-0
http://dx.doi.org/10.1073/pnas.0901049106
http://dx.doi.org/10.1073/pnas.0901049106
http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://dx.doi.org/10.1063/1.166424

