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Sleep is a complex regulated process with short periods of wakefulness and different sleep stages.
These sleep stages modulate autonomous functions such as blood pressure and heart rate. The
method of symbolic coupling traces �SCT� is used to analyze and quantify time-delayed coupling of
these measurements during different sleep stages. The symbolic coupling traces, defined as the
symmetric and diametric traces of the bivariate word distribution matrix, allow the quantification of
time-delayed coupling. In this paper, the method is applied to heart rate and systolic blood pressure
time series during different sleep stages for healthy controls as well as for normotensive and
hypertensive patients with sleep apneas. Using the SCT, significant different cardiovascular mecha-
nisms not only between the deep sleep and the other sleep stages but also between healthy subjects
and patients can be revealed. The SCT method is applied to model systems, compared with estab-
lished methods, such as cross correlation, mutual information, and cross recurrence analysis and
demonstrates its advantages especially for nonstationary physiological data. As a result, SCT proves
to be more specific in detecting delays of directional interactions than standard coupling analysis
methods and yields additional information which cannot be measured by standard parameters of
heart rate and blood pressure variability. The proposed method may help to indicate the pathological
changes in cardiovascular regulation and also the effects of continuous positive airway pressure
therapy on the cardiovascular system. © 2010 American Institute of Physics.
�doi:10.1063/1.3518688�

Directional coupling analysis of bivariate time series is an
important subject of current research. In this paper, a
method based on symbolic dynamics1 for the detection of
time-delayed coupling is presented. The symbolic cou-
pling traces (SCT), defined as the symmetric and diamet-
ric traces of the bivariate word distribution, allow the
quantification of coupling and are compared with estab-
lished methods such as cross correlation, mutual infor-
mation, and recurrence analysis. It is applied to coupling
analysis of heart rate and systolic blood pressure during
sleep. Sleep is not just the absence of wakefulness but has
its own internal structure. The internal structure can be
described by different sleep stages based on visual pat-
tern classification.2 It is assumed that these sleep stages
modulate the cardiovascular regulation. The cardiovas-
cular consequences of disturbed sleep are of particular
high medical interest for sleep physicians because they
present a risk factor for cardiovascular disorders such as
hypertension, cardiac ischemia, sudden cardiac death,
and stroke. Our new derived measures may help to detect
pathological mechanisms for these health risks during
sleep. Understanding these cardiovascular mechanisms
during sleep may be useful to predict the effects of treat-

ment in subjects with disordered breathing during sleep
as well as in other sleep disorders and effects of aging in
healthy subjects.

I. INTRODUCTION

Biological systems usually consist of several subsystems
which are interrelated by feedback loops with time delay. To
reveal such time-delayed coupling directions from biosignals
is a basic task in understanding such systems.3–6 Data re-
corded from these systems reflect the biological activities of
living beings and contain real biological information includ-
ing nonstationarities, nonlinearities, intrinsic noise, and arti-
facts. Therefore, the analysis of biosignals, especially the
detection of coupling directions, is complex. Different meth-
ods, starting from cross correlation via mutual predictability
to information-theoretic approaches,7–12 were applied to bio-
signals. All these methods are able to find directions
of interactions. However, due to the nonstationarity and non-
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linearity of the biosignals, the conclusions are not homoge-
neous.

In this paper we take on the problem of analyzing the
cardiovascular regulation during different sleep stages,
which is a current problem in sleep medicine. In Sec. II we
demonstrate the advantage of SCT for coupling analysis by
comparing the different methods on simulated data before we
apply SCT to real data from the sleep laboratory. Using a
new estimation procedure for significant coupling, we quan-
tify the interactions in short-term cardiovascular regulation
and calculate the standard frequency and baroreflex param-
eters as well. In Sec. III we present the results of this com-
parison and show the different abilities of the methods to
quantify the cardiovascular regulation in different sleep
stages and between different patient groups. Finally, in Sec.
IV we discuss and interpret the results on the basis of physi-
ological mechanisms.

II. MATERIAL AND METHODS

A. Data

For application of SCT, we consider polysomnographic
measurements of 18 normotensive �NT� �age: 44.6�7.6 yr,
body mass index �BMI�: 30.2�2.9 kg /m2, all male� and 10
hypertensive �HT� patients �age: 44.1�8.1 yr, BMI:
34.1�4.9 kg /m2, all male� suffering from obstructive sleep
apnea syndrome �OSAS� �repetitive obstruction of the upper
airway for more then 10 s during sleep� during a diagnostic
night �differential diagnosis �DD�� and during treatment by
means of continuous positive airway pressure �CPAP� �posi-

tive pressure via mask avoids obstructions of the upper air-
way during apneas�. We consider the first 5 min of the largest
undisturbed period of light sleep �LS�, deep sleep �DS�, rapid
eye movement �REM�, and the awake state �W� for each
subject �see Table I�. The epochs for some stages were ex-
cluded due to artifacts �e.g., only nine hypertensive patients
had 5 min of undisturbed LS during CPAP therapy�. Addi-
tionally, a control group of ten healthy controls �C, age:
44.8�6.7 yr, BMI: 25.3�2.7 kg /m2, all male� is exam-
ined. The polysomnographic recordings include electroen-
cephalogram �EEG�, electrooculogram �EOG�, electromyo-
gram �EMG�, respiratory airflow, electrocardiogram �ECG�,
and continuous blood pressure curve. EEG, EOG, and EMG
are used to divide the sleep into different sleep stages fol-
lowing the protocol of Rechtschaffen and Kales.2 The respi-
ratory signal indicates disturbances caused by apneas.

For group specific results, the mean and standard devia-
tion of parameters are calculated for each group. From the
ECG signal �sampling rate of 1000 Hz� of these periods, the
instance of the heartbeats is determined using appropriate
algorithms.13 Intervals between successive heartbeats
��Bi�—beat-to-beat intervals� are calculated and artifacts
caused by, e.g., premature beats were removed in Bi by
means of an adaptive filter.14,15 Additionally, the maximum
blood pressure value in each beat-to-beat interval is extracted
from the continuous blood pressure �via finger cuff of Por-
tapres device model 2, BMI-TNO, Amsterdam, The Nether-
lands; sampling rate of 200 Hz�, which leads to the time
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FIG. 1. �Color online� Extracted time
series of beat-to-beat interval �Bi� and
systolic blood pressure �Si� for a
healthy subject during different sleep
stages �wake—column �a�; light
sleep—column �b�; deep sleep—
column �c�; and REM sleep—column
�d��.

TABLE I. Number of data sets for considered groups �C—healthy controls, NT—normotensive patients, HT—
hypertensive patients, DD—differential diagnosis night, CPAP—night with CPAP therapy after 3 month CPAP
treatment, W—awake state, LS—light sleep, DS—deep sleep, REM—rapid eye movement�.

Subjects Measurement W LS DS REM

C DD 7 10 10 10
NT DD 14 18 18 18

CPAP 13 14 14 14
HT DD 8 10 6 8

CPAP 8 9 9 9
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series of systolic blood pressure on beat-to-beat basis
��Si�—systolic blood pressure�. Examples are shown in
Fig. 1.

B. Symbolic coupling traces

For bivariate coupling analysis we used SCT.16 The first
step of this approach is the transformation of Bi and Si into
symbol sequences sB�t� and sS�t� according to the rule,

sz�t� = �1 z�t� � z�t + ��
0 z�t� � z�t + �� ,

	 �1�

where z represents B and S. For analysis of short-term
couplings in Bi and Si, the value �=1 has been used.16

Next, words of length l are constructed wz�t�
=s�t� ,s�t+1� , . . . ,s�t+ l−1� which can form d=2l different
patterns. For short-term dynamics in Bi and Si, l=3 is used to
reliably estimate the bivariate word distribution.16 wx�t� and
wy�t� are used to calculate the bivariate word distribution
�pij�i=1,. . .,d,j=1,. . .,d���,

pij��� = P�wx�t� = Wi,wy�t + �� = Wj� , �2�

with the d patterns W1 to Wd �see Fig. 2�. The parameter � is
included in order to consider delayed interrelationships be-
tween the signals. From the bivariate word distribution, the
parameters

T = 

i=j

pij��� , �3�

T̄ = 

i=1,. . .,d;j=d+1−i

pij��� , �4�

�T = T − T̄ �5�

are calculated. On the one hand, T only captures influences
which preserve the structure of the transmitted pattern of

dynamics �symmetrical influences�. On the other hand, T̄
only quantifies influences which inverts the dynamical struc-
ture of the driver �diametrical influence�.

To answer the question if the parameters T and T̄ are
significant or not, a critical value Tcrit is estimated, respec-
tively. Therefore, these parameters are calculated for 1000
realizations of bivariate white noise Ni�0,�2� with sample

length N. In the case of T and T̄, we look for the 99th per-
centile where 99% of the 1000 observations are smaller than
that value. It represents the critical value of the significance
level 	=0.01 in a one-side significance test. The pairs of
simulated time series are not shifted because the elements of
the white noise process are independent from each other.
This leads to the same critical values for each delay. For a
fast estimation of these critical values, the dependency of
these limits on N is estimated by means of regression for-
mula. An example for Tcrit�N� is shown in Fig. 3. The for-
mula of this dependency is given in Table II, not only for �T
but also for the alternative methods introduced in the next
paragraph.

C. Alternative measures

Apart from the SCT parameters, the classic cross corre-
lation function �R�, mutual information �I�, and cross recur-
rence analysis ��RR� are calculated for the differentiated sig-
nals as well in order to maintain the comparison to the SCT
results.

For the validation of these coupling measures, the sim-
plest approach is used: simulations of coupled two-
dimensional � autoregressive �AR� processes �cf. Fig. 4, left
panel�. The coefficients of the AR models are varied in order
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FIG. 2. Schematic illustration of the symbolic coupling traces. Each diago-
nal of the bivariate word distribution represents symmetric and diametric
behavior in the signals, respectively.
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FIG. 3. �Color online� Critical value of �T �see Eq. �5�� depending on the
length of time series N �correspondent significance level 	=0.01�. The fitted
power law is shown by the curve ��Tcrit� �2.7005·N−0.5179�.

TABLE II. The critical value of the parameter p depending on the sample
length N which corresponds to a significance level 	=0.01.

Parameter p Critical value of p

�T pcrit� �2.7·N−0.51

R pcrit� �2.6·N−0.51

I pcrit�58.1·N−1.11

�RR pcrit� �0.4·N−0.11
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to study the influence of varying coupling strengths and
noise. For the example given in Fig. 4 �left panel� with pre-
defined lags at �=−2 and �=1, all four methods determine
the lags correctly. In contrast to the SCT, however, the other
three methods have additional false detections. The SCT-
parameter detected the lags in case of delayed coupling with
autocorrelation more clearly than cross correlation, mutual
information, and cross recurrence quantification analysis
based on order pattern �cf. Fig. 4, left panel�. For a further
validation, we also applied it to nonlinear coupled models,
e.g., self-exciting threshold autoregressive model with exter-
nal input systems,17 and found similar results.

For a better interpretation of the results, linear param-
eters of the beat-to-beat and blood pressure variability are
considered.18 The mean value and standard deviation of time
domain parameter as well as high frequency and low fre-
quency components of the power spectra of the signals are
considered. On one hand, the mean value is associated with
the state of the cardiovascular system, which is mainly influ-
enced by the long-term regulation of the neuroendocrine sys-
tem. On the other hand, standard deviation as well as fre-
quency components reflect the dynamics of the
cardiovascular measurements. The power of the high fre-
quency �HF� component, in the range of 0.15–0.4 Hz, re-
flects the respiratory influence as well as the very fast auto-
nomic regulation via parasympathetic nervous system. The
power of the low frequency �LF� component, in the range of
0.04–0.15 Hz, reflects the autonomic regulation of the an-
tagonists parasympathetic and sympathetic nervous system.
This autonomic regulation of the opponent vegetative sys-
tems acts in the time range of hundreds of milliseconds to
several seconds and is called short-term regulation. It is part
of control loops which connect the cardiovascular measure-

ments to each other. The baroreflex is a prominent example
of this mechanism. It protects the body from sudden dramati-
cal blood pressure changes by regulation of beat-to-beat in-
tervals and peripheral resistance of the vessels and is quan-
tified by the baroreflex sensitivity �BRS�. BRS is estimated
by means of sequence method where the slope of simulta-
neously rising of beat-to-beat intervals and blood pressure as
well as falling is estimated.19 To quantify the influence of a 3
month CPAP therapy on the cardiovascular regulation, these
standard parameters �partly shown in Table III� are compared
before and after using the Kruskal–Wallis test.

III. RESULTS

As introduced in Ref. 16, the SCT results are compared
to other standard methods such as R, I, and �RR by means of
linear as well as nonlinear autoregressive models �see Fig.
4�. In contrast to Ref. 16 in this paper, R and I are calculated
also for differential time series to have a more appropriate
comparison. Nevertheless, both parameters still have prob-
lems to detect time-delayed couplings in oscillating signals
with noise interaction which results in additional coupling
terms, as seen in Fig. 4. �RR is only able to produce similar
results in the simulation of Fig. 4; however, it shows one
false coupling and is computationally very intensive. For real
data, we see a similar picture: R and I detecting too many
lags, whereas the SCT and �RR consistently detect the lags 0
and 
2. In addition, the SCT detects also lag +2 for that
example of deep sleep.

For all groups and for all sleep stages, we obtain the
same characteristic pattern of �=−2 for diametric coupling

�T̄� and �=0 for symmetric coupling �T�, as one can see in
Fig. 5. Moreover, there are additional lags in light and deep
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FIG. 4. �Color online� Comparison of different methods: symbolic coupling traces �T, cross correlation R, mutual information I, and cross recurrence
quantification analysis with order patterns �RR for a simulation �left� and normotensive patients without therapy during deep sleep �right� at different lags �.
The simulation was calculated with symmetric coupling at �=1 as well as diametric coupling at �=−2 �xi=a ·xi−1+b ·yi+1+�i and yi=c ·yi−1+d ·xi−2+�i, two
coupling terms yi+1 and xi−2; �=N�0,0.1�, a=0.3, b=0.7, c=0.3, d=0.7�. SCT was able to localize the simulated lags better than the other methods. Cross
correlation and mutual information are not very specific, where by �RR and �T both detect lags 0 and −2. In real data from the diametric lag, +2 represents
regular deep breathing during deep sleep and was not detected by �RR.
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sleep which reach 
8 to +4. The hypertensive DD group
was the only group with other detected lags beside 0 and 
2
in the wake and REM stages �Fig. 5, wake �d��. As quantified
by the Kruskal–Wallis test, there are significant differences
in the strength of the detected lags 0 and 
2 �stars in Fig. 5�.
The most prominent difference can be seen between REM
and deep sleep, except in the NT CPAP group, Fig. 5�c�.

Considering the standard parameters presented in Table
III, we obtain the following results. There are significant dif-
ferences between the sleep stages in the parameters HF-S
and LF-S in the normotensive DD group as well as in HF-B
and LF-B in the hypertensive DD group �p
0.05, Kruskal–
Wallis test�. Interestingly, these differences are not present
under CPAP therapy and in healthy controls, pointing to
sleep disturbances such as snoring and/or apneas as the main
cause for these differences. In the normotensive group, dif-
ferences between the DD and the therapy CPAP night can be
detected for HF-S in light and deep sleep as well as BRS in
light sleep. For the normotensive group, differences are
present for HF-S in light and deep sleep, for LF-B and LF-S
in light sleep, as well as for BRS in deep sleep. Comparisons
of patient groups with the control group show significant
differences in HF-S, light and deep sleep �NT DD versus C�,
in HF-S, LF-S during REM �NT CPAP versus C�, as well as
in LF-S during light sleep and HF-S during REM �HT CPAP
versus C�.

Finally, we consider the more technical results of this
paper which deal with a faster calculation of coupling mea-
sures. The dependency between the critical values of the cou-

pling parameters �T, R, I, and �RR and the time series’
length N is given by power laws and can be estimated by the
formulas noted in Table II. Using these relationships, the
calculation of surrogates each time can be avoided.

IV. DISCUSSION

The time-delayed coupling analysis of the theoretical
models and our measurements demonstrates the advantage of
the SCT in comparison to standard methods. We confirm the
results of Ref. 16 where SCT detects significant lags at
�=−2 and �=0 for all subjects. This strengthens the prevail-
ing opinion about the cardiovascular short-term regulation.
The symmetric lag at �=0 reflects the respiratory induced
arterial pressure and heart rate fluctuations, whereas the dia-
metric lag at �=−2 represents the vagal feedback from Bi to
Si. Moreover, we show that this coupling pattern does not
change generally in different sleep stages; however, the
strength of interactions may differ. During deep sleep only,
we see a loss of heart rate and blood pressure asymmetry as
well as an effect of CPAP therapy on the cardiovascular cou-
pling.

In this paper, we demonstrate that the SCT is more spe-
cific than the standard methods regarding the detection of
delays and directions of interactions. In Ref. 16, we applied
the cross correlation, mutual information, and the cross re-
currence analysis to the original simulated time series. Here
we applied them, for a better comparability, to the differen-
tiated time series and still obtain false lags. We assume that

TABLE III. Mean and standard deviation �mean�std� of high frequency component of Bi and Si �HF-B, HF-S; 0.15� f �0.4 Hz�, low frequency component
of Bi and Si �LF-B, LF-S; 0.04� f �0.15 Hz�, and baroreceptor sensitivity �BRS� for healthy controls �C� and NT and HT patients suffering from OSAS
during night �DD� as well as treatment by means of CPAP. For testing, a Kruskal–Wallis test is used.

Sleep stage Parameter

NT OSAS HT OSAS C

DD CPAP DD CPAP DD

W HF-B 20.38�13.28 62.97�146.52 8.44�6.36 a 15.23�23.25 20.75�16.59
LF-B 72.79�84.72 89.47�167.56 44.17�54.03 a 32.46�40.17 33.43�10.19
HF-S 0 .21�0 .12 a 0.26�0.27 0.14�0.08 0.21�0.17 0.18�0.11
LF-S 0 .64�0 .40 a 0.91�1.02 0.93�0.95 0.55�0.38 0.74�0.45
BRS 11.19�3.56 10.42�3.77 8.87�2.40 9.27�3.32 11.44�2.26

LS HF-B 46.43�46.78 42.79�66.49 37.1�26.90 20.16�17.89 40.80�43.73
LF-B 108.95�120.88 75.81�66.14 142.21�121.11 b 36.92�28.65 74.67�85.31
HF-S 0 .6�0 .67 c,b 0.1�0.11 0.35�0.21 b 0.1�0.08 0.24�0.28
LF-S 1.78�2.58 0.89�1.14 1.61�1.22 b 0.56�0.53 c 1.32�1.01
BRS 9 .26�2 .66 b 12.64�3.95 9.88�1.96 11.24�3.70 11.49�3.49

DS HF-B 35.37�35.30 45.99�87.22 33.22�19.04 16.97�14.23 29.91�28.89
LF-B 42.78�38.04 55.19�81.62 33.09�31.92 51.23�95.74 41.03�33.30
HF-S 0 .65�0 .51 c,b 0.12�0.10 0.77�0.68 b 0.14�0.16 0.26�0.24
LF-S 0.64�0.59 0.46�0.42 1.84�3.33 0.59�0.68 0.61�0.40
BRS 7.68�3.23 11.38�3.83 6.87�1.72 b 10.76�3.85 11.02�3.70

REM HF-B 29.57�44.61 42.30�106.72 33.08�51.98 15.21�13.29 42.15�58.62
LF-B 60.84�44.32 95.84�192.31 170.48�280.99 62.96�39.73 127.07�159.03
HF-S 0.24�0.19 0.17�0.27 c 0.29�0.22 0.10�0.07 c 0.24�0.18
LF-S 1.17�0.83 0.76�0.78 c 2.08�2.85 1.10�0.73 2.20�2.79
BRS 9.73�3.60 10.85�3.58 9.25�2.74 10.87�3.10 10.34�4.09

aSignificant differences between sleep stages within the patient groups �p
0.05�.
bSignificant differences between DD and CPAP �p
0.05�.
cSignificant differences between patient groups NT/HT and C, respectively �p
0.05�.
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these methods are more sensitive to nonstationarities, nonlin-
earities, and noise. Nevertheless, for the general assessment
of coupling directions in time series, both new and estab-
lished methods should be used. Coupling in stationary data
with strong noise can be well detected via mutual informa-
tion and cross correlation, whereas in deterministic data
cross recurrence should be preferred. The parameters of the
SCT method and cross recurrence based on order pattern
close the gap in the coupling analysis of nonstationary time
series with strong autocorrelation and moderate noise, where
cross correlation, mutual information, and other methods are
not sufficient to localize the lags exactly.

The prevailing opinion about the cardiovascular short-
term regulation is based on antagonistic nervous control via
vagus and sympathicus. Here, we confirm the results of Ref.
16 with significant lags at �=−2 and �=0. Moreover, we
show that this coupling pattern does not change generally in
different sleep stages; however, the strength of interactions
may differ. The highest amplitudes for �T we find for deep
sleep, the lowest for REM �cf. Fig. 5�. This relation can be
explained with a reduced sympathetic activity during deep
sleep as quantified by LF-B in Table III,20 leading to more
pronounced respiratory influence and an increased vagal

feedback. Again, during deep sleep, where many physiologi-
cal regulatory mechanisms such as cerebral blood flow and
cerebral metabolic rate are reduced,21 we find an increased
heart rate and blood pressure symmetry leading to multiple
lags of �=−2 and �=0. It shows a limitation of the coupling
traces for symmetric oscillations, but this is a limitation of all
methods for the detection of coupling directions.

Considering the CPAP therapy, we see that there are no
different coupling patterns before and after treatment during
the wake and the REM state. However, during deep sleep, we
see clear differences in the cardiovascular couplings �Fig. 5�.
These results are confirmed by the parameters of heart rate
and blood pressure variability �see Table III�, mainly by
HF-S, which reflects the mechanical effects of respiration on
blood pressure:22 the higher the HF-S, the higher the respi-
ratory effort. The influence of the CPAP device on systolic
blood pressure variations is obvious for all sleep stages, ex-
cept wake. The baroreflex sensitivity shows no consistent
effects for all sleep stages regarding the CPAP therapy. We
see significant improvements during light sleep in the nor-
motensive group and during deep sleep in the hypertensive
group, which confirms the results of Ref. 23 where mean
BRS increased only slightly during CPAP application. By
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FIG. 5. �Color online� The comparison between the sleep stages �wake=W, REM−sleep=REM, light sleep=LS, deep sleep=DS� and the different patient
groups �healthy controls �a�, NT DD �b�, NT CPAP �c�, HT DD �d�, HT CPAP �e�� clearly shows the short-term asymmetry in the coupling during wake and
REM characterized by lags �=−2 and �=0. This asymmetry becomes less in light sleep and is lost in deep sleep when periodic breathing leads to a modulation
of Bi and Si. Significant differences in the coupling strength at �=0 and �=−2 between the sleep stages are indicated by �a� �p
0.05, Kruskal–Wallis test�.
Differences exist at both lags in the control patients group as well as HT CPAP. In NT DD and HT DD, only the lag �=0 is significantly different between
the sleep stages.
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comparing the significant differences in the standard param-
eters and the results of SCT analysis before and after CPAP
therapy in light and deep sleep, we can conclude that the
coupling information is independent of the variability param-
eters.

In summary, the proposed method of the symbolic cou-
pling traces may help to indicate the pathological changes in
cardiovascular regulation and also the effects of continuous
positive airway pressure therapy on the cardiovascular sys-
tem.
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