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Genetic and protein networks, through their underlying dynamical behavior, characterize structural
and functional cellular processes, and are thus regarded as “driving forces” of all living systems.
Understanding the rhythm generation mechanisms that emerge from such complex networks has
benefited in recent years by synthetic approaches, through which simpler network modules �e.g.,
switches and oscillators� have been built. In this manner, a significant attention to date has been
focused on the dynamical behavior of these isolated synthetic circuits, and the occurrence of
unifying rhythms in systems of globally coupled genetic units. In contrast to this, we address here
the question: Could topologically distinct structures enhance the presence of various dynamical
regimes in synthetic networks? We show that an intercellular mechanism, engineered to operate on
a local scale, will inevitably lead to multirhythmicity, and to the appearance of several coexisting
�complex� dynamical regimes, if certain preconditions regarding the dynamical structure of the
synthetic circuits are met. Moreover, we discuss the importance of regime enhancement in synthetic
structures in terms of memory storage and computation capabilities. © 2010 American Institute of
Physics. �doi:10.1063/1.3515200�

The understanding of the primary rhythm generation
mechanisms in biological networks in general is a neces-
sary precondition to characterize system’s structures and
elementary design principles. Recently, synthetic biology
has offered a “concept of reduced complexity,” analyzing
the dynamical characteristics of genetic and metabolic
networks in terms of single building blocks (synthetic
switches and oscillators), which are further combined to
display complex cooperative behavior. In accordance
with this concept, we address here the question whether
topologically distinct structures will enhance the presence
of dynamical regimes in synthetic networks. We show
that an autoinducer-mediated intercellular signaling
mechanism organized in local manner inevitably leads to
the formation of complex dynamical structures. Addition-
ally, we discuss the importance of regime enhancement in
synthetic circuits in terms of memory storage and com-
putation capabilities.

I. INTRODUCTION

Cellular populations exhibit complex collective behav-
ior. Their dynamics is generally determined by the underly-
ing genetic or metabolic networks, where the distinct genes
or metabolites communicate with each other through differ-
ent means, e.g., chemically. Thus, understanding the primary
rhythm generation mechanisms would lead to valuable infor-
mation characterizing system’s structures and elementary de-
sign principles. Recently, the study of complex biological
networks has profited from the notion of reduced complexity
which synthetic biology offers. In particular, the design
of artificial genetic units resembling submodules of natural

circuitry �e.g., switches1–3 and oscillators4–7� offers the op-
portunity to study specific cellular functions and signaling
pathways for which limitations occur in the natural environ-
ment. On the other hand, the construction of bacterial strains
that exhibit programmed behavior offers a novel,
engineering-driven approach in biological research, which
focuses on larger-scale changes of existing cellular architec-
tures and on the construction of elaborate synthetic systems
for the solemn goal to improve or regulate the given biologi-
cal properties. The fulfillment of these tasks in turn imposes
new challenges on the current synthetic biology research,
requiring substantially new design principles and improved
understanding of the cellular environment. Thus, it is neces-
sary to design and investigate large-scale systems, allowing
the synthetic units to communicate with each other. This re-
quirement is an absolute requisite to ensure an appropriate
and global cellular response to external signals in both cases:
�i� construction of synthetic networks as a means to exploit
the design principles of natural genetic networks and �ii� de-
sign of synthetic circuits to serve as a control mechanism for
gene expression, protein function, or metabolism in cellular
populations.

Recently, the possibility to use the quorum-sensing
mechanism in order to investigate global synchronization
in synthetic genetic networks has been reported for
deterministic8–10 as well as for noise-driven11 genetic oscilla-
tors. It is important to point out that these circuits are glo-
bally coupled through small molecules of autoinducer �AI�
diffusing between cells. This intercellular signaling mecha-
nism, if governed by the slow time scale in the system,12
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organizes the coupling through the slow recovery variable.
The result is a coupling mechanism with phase-repulsive
properties, mainly known as inhibitory coupling. We have
shown in our previous investigations13,14 that multistability
and multirhythmicity are inherently present in genetic net-
works characterized with global, inhibitory coupling. In par-
ticular, we have shown that multirhythmicity is a result
evoked by interactions �with phase-repulsive inhibitory prop-
erties� of globally coupled identical biological oscillators
with relaxation dynamics. Moreover, the presence of global
coupling between the oscillators resulted also in clustering,
as a main manifestation of multistability.

The ability of genetic units to produce different dynami-
cal regimes which also coexist is significant from various
perspectives. First, multirhythmicity and the coexistence of
several attractors for natural genetic networks imply a sub-
stantially improved adaptability: if one of the regimes be-
comes unprofitable for cell functioning, the genetic unit can
easily switch to some other coexistent regime. Second, the
presence of multistability and multirhythmicity in synthetic
genetic circuits is an important phenomenon from an engi-
neering perspective, since both offer an intriguing potential
for numerous biotechnological applications �biosensors, pro-
gramming genetic units, etc.�. It has been reported, e.g., that
multistability is a main mechanism for memory storage and
temporal pattern recognition.15

It is a well known fact, however, that chains �rings� of
locally coupled identical oscillators, in contrast to the glo-
bally coupled scenario, undergo complicated bifurcation
transitions, including the coexistence of multiple periodic or-
bits with different frequencies and amplitudes, spatial pat-
terns, and modulation instabilities.16–18 Moreover, ensembles
of �uni�bidirectionally coupled oscillators with a ring topol-
ogy play an important role in the information processing in
neuroscience and medicine, e.g., such networks are involved
in the generation of stable periodic motor commands by cen-
tral pattern generation of the nervous system controlling
rhythmic regulation in animals.19

Thus, in contrast to the previous investigations, where
only global communication mechanisms were considered,
we elaborate here the possibility of rhythm enhancement if
the synthetic system is characterized with diffusive, local
coupling architectures. We propose for this purpose a modi-
fied synthetic design where the oscillators are coupled diffu-
sively in a local manner. Using detailed bifurcation20

and numerical analysis, we discuss the underlying mecha-
nisms which give rise to novel collective phenomena and
explore its possibilities for information processing and
memory storage.

II. MODEL EQUATIONS

The model considered here is a modification of a
hysteresis-based relaxation genetic oscillator coupled by a
quorum-sensing mechanism proposed in Ref. 12. In particu-
lar, the oscillator is constructed by combining two engi-
neered gene network components, a toggle switch,1 and an
intercell communication system.21,22 The synthesis of both
repressor proteins constituting the toggle switch is mutually
exclusive, providing bistability. The intercellular signaling is

based on the dynamics of the AI, which, on the one hand,
drives the toggle switch through the hysteresis loop, and on
the other hand provides intercellular communication via dif-
fusion through the cell membrane.

In contrast to the original model, where oscillators in
separate cells communicate with each other in a global man-
ner, here we define a synthetic design where local communi-
cation is established �see Fig. 1�. In the most general case,
each of the oscillators communicates only with the neighbor-
ing synthetic unit�s�. The time evolution of the elements in
the system is governed by the dimensionless equations �see
Ref. 12 for details�,

dui

dt
= �1f�vi� − ui + �3h�wi� ,

dvi

dt
= �2g�ui� − vi, �1�

dwi

dt
= ���4g�ui� − wi� + 2d�wi+1 + wi−1 − 2wi� ,

where N is the total number of cells �oscillators�, ui and vi

represent the proteins of which the toggle switch is made in
the ith cell, and wi represents the concentration of AI mol-
ecules which diffuse through the cell membrane. The dimen-
sionless parameters �1 and �2 regulate the operation of the
repressor in the toggle switch, �3 is the activation due to the
AI, and �4 is the repressing of the AI. The coupling coeffi-
cient in the system is given by d and depends mainly on the
diffusion properties of the membrane as well as on the ratio
between the volume of the cells and the extracellular vol-
ume. The presence of multiple time scales in the model �es-
tablished for ��1� allows the system to produce relaxation
oscillations.

III. DYNAMICAL CHARACTERISTICS OF LOCALLY
COUPLED OSCILLATORS

Contemporary models of synthetic networks consist of
oscillators, globally coupled with AI exchange,8,9 exhibiting
mainly in-phase oscillatory behavior. Additionally, the
existence of inhomogeneous steady state �IHSS� has been
reported.12–14,23 Moreover, in our previous investigations,
we have determined the underlying mechanisms leading to
the appearance of multiple dynamical regimes and
clustering.13,14 In particular, we have defined that a necessary
condition for multistability and multirhythmicity in synthetic
genetic networks is the presence of inhibitory diffusive cou-
pling with phase-repulsive properties. In contrast to these,
we report here that the observed rhythmicity in synthetic

c)b)a) d)

FIG. 1. Schematic representations of the investigated systems. �a� N=2, �b�
N=3, �c� N=5, and �d� N=16 locally coupled oscillators.
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networks can be enhanced if coupling mechanisms with local
characteristics are defined. We discuss here two main phe-
nomena: the existence of different possible modes of orga-
nized collective behavior manifested via constant protein
concentrations and a complex dynamical behavior obtained
for coupled ring structures. Moreover, we show and charac-
terize a specific feature of identical genetic oscillators locally
coupled on a ring: the manifestation of an inhomogeneous
steady state in a multiple cluster distribution. This is not
standard and previously not reported for genetic networks.
Additionally, we compare and discuss the differences in the
dynamical structure of locally and globally coupled systems
in terms of biotechnological applications. It is important to
note here that our results, although obtained for relatively
small networks �N=2, 3, 5, and 16 oscillators�, could be
further generalized for large-scale systems.

A. Identification of characteristic dynamical regimes
via bifurcation analysis

The dynamical structure of the minimal case of N=2
locally coupled oscillators �Fig. 1�a�� does not differ from the
corresponding globally coupled example. This is, of course,
expected, since both coupling mechanisms have identical
characteristics in the restricted case of two coupled units.
Thus, the bifurcation analysis in this case shows the presence
of both in-phase and antiphase oscillations �the second being
present for low coupling values�, which in turn depend on
the diffusion properties of the membrane. Both periodic
branches, as shown in Fig. 2�a�, are marked with Hopf bifur-
cations �HBs�, showing a clear coexistence of these oscilla-
tory regimes. The behavior of the system is however changed
when the coupling coefficient �d� is increased. In particular,
for dcrit=0.003, stable inhomogeneous steady state emerges
in the system.

The IHSS �also called oscillation death �OD��, as in the
case of globally coupled oscillators, is a result of symmetry
breaking of the steady state in the system through a pitchfork
bifurcation �PB in Fig. 2�b��.24–26 This means that the un-
stable homogeneous steady state splits into two additional
branches which gain stability through Hopf bifurcations, de-
noted as HBs1 �HBs2� in Fig. 2�b�. We note here that in the

minimal case of N=2 locally coupled oscillators, the OD
phenomenon is manifested as a two cluster distribution
�identical to the global coupling scenario12–14�. The oscilla-
tors populate the two clusters and remain in a steady state,
i.e., producing constant protein levels in the cell. The distri-
bution of the oscillators between these two stable clusters,
however, depends on the number of oscillators composing
the system. In the minimal case presented here, there is only
one possible distribution: one of the oscillators populates the
lower stable cluster, whereas the second one populates the
upper stable cluster, a situation which we denote as 1l �1u
�Fig. 2�b��. The minimal extension of this system �N=3 iden-
tical oscillators, as in Fig. 1�b��, on the other hand, allows
two different distributions 1l �2u and 2l �1u. Both of them are
stable in a given �1 interval range, as shown in Fig. 3. We
note here that we introduced a slight heterogeneity between
the distinct oscillators in the system ��0.1%� in order to
obtain the complete bifurcation chart, as shown in Fig. 3.
Therefore, only the upper bifurcation branch is shown.

In the most general case, for N synthetic oscillators, lo-
cally coupled in a diffusive manner, N−1 different distribu-
tions of the oscillators between the two clusters are possible,
each characterized with a shift in the protein production level
�we have identified and characterized the identical system’s
properties in the case of globally coupled oscillators as
well13�.
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FIG. 2. �Color online� Bifurcation diagram obtained by variation of �1

to illustrate the �a� oscillatory and �b� OD regimes. Parameters:
�=0.01, �2=5 , �3=1 , �4=4 , �=�=�=2, and d=0.001 �a�,
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B. Characterizing enhanced number of dynamical
regimes

1. Formation of steady state clusters
In contrast to the contemporary examples of globally

coupled synthetic oscillators, the local structure imposed on
the intercellular signaling mechanism here enables the pres-
ence of enhanced number of various dynamical regimes for
increased size of the system. In what follows, we discuss in
particular the OD case. The investigation of synthetic net-
works where oscillation death occurs is important, since OD
provides stable heterogeneity in a homogeneous medium.
This could further imply possible mechanisms characterizing
cell differentiation, usually associated with the existence of
distinct attractors in genetic regulatory networks.27,28

In systems characterized with local signaling mecha-
nisms, due to the spatial organization of the cells and the
diffusive properties of the local, phase-repulsive coupling,
OD is manifested via complex dynamical structures. Hence,
in addition to the standard two cluster decomposition, a dif-
ferent cooperative behavior of the oscillators is possible. The
lower �upper� level �or both� is now constituted of several
subclusters, characterized with different protein expression
levels. In the case of N=5 identical oscillators �Fig. 1�c��, the
occurrence of OD in a form of a three-cluster decomposition
is possible, with different distributions of the oscillators be-
tween the stable attractors �Fig. 4� �stable with respect to
small perturbations�.

Thus, we can state that the local topological structures,
compared to the globally coupled scenarios, contribute to an
enhanced number of possible dynamical regimes in the syn-
thetic network. It is important to note here that due to the
design principles of the particular circuits, cells are localized
in space, and thus controllable �in terms of expressed protein
concentrations�. Additionally, it is a well accepted fact that
OD is considered as an extension of Turing’s mechanism29 in
oscillatory media, although the phase space is generally
shared with a limit cycle. Namely, OD as a stable inhomo-
geneous steady state resembles Turing’s dissipative struc-
tures, only without space variables. In a sense, instead of the
spatial Turing’s structure, in OD, a set of clusters is present.
However, both phenomena are intrinsically related to fast

diffusion of the slow variable. Taking in mind that this be-
havior has been correlated and interpreted as a type of dy-
namical differentiation and considered as a background of
morphogenesis, one could speculate that enhanced rhythmic-
ity, which is obtained via intercellular signaling mechanisms
characterized with local properties, plays a crucial role in
these processes. Moreover, the characteristics of OD as
manifested in the locally coupled structures �multiple stable
distinct steady state levels� are main mechanisms for
memory storage and temporal pattern recognition �e.g., reg-
istration, storage, and information processing�. One could
envision a new synthetic design based on the currently in-
vestigated network properties in order to construct small syn-
thetic units to serve as efficient memory devices, offering
enhanced storage capabilities �depending on the number of
subclusters present� in contrast to the contemporary memory
devices.

2. Complex dynamical structures
The modes of organized collective behavior in structures

of locally coupled synthetic units �oscillators� are multiplied
for increased system sizes. The complexity of the corre-
sponding dynamical regimes is manifested with the forma-
tion of multiple �sub�clusters, which could be observed even
for a slight increase of the size of the system. In particular,
we investigate a dynamical scenario where two rings of
phase-repulsively coupled synthetic oscillators �each ring
containing N=8 identical oscillators� are additionally
coupled through the corresponding ring elements �e.g., the
first oscillator of the outer ring is coupled to the correspond-
ing oscillator in the inner ring, etc., as shown in Fig. 1�d��.
The numerical analysis we have performed shows a signifi-
cant enhancement of the possible dynamical regimes, char-
acterized with distinct different properties. We investigated
two different scenarios: �i� both rings are identical, and the
coupling strength between the rings �dc� is equal to the cou-
pling strength inside the distinct rings �dring-I=dring-II=dc�,
�ii� oscillators are identical within a single ring, but
characterized with different �1 values in separate rings
��1

ring-I=�1
ring-II�. Moreover, the coupling strengths in this case

differ as well, such that dring-I�dring-II�dc.
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FIG. 5. �Color online� Complex dynamical structures for N=16 oscillators �coupling mechanism as shown in Fig. 1�. �a� �1
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The number of complex dynamical structures is signifi-
cantly increased, as the number of oscillators, and the pos-
sible coupling scenarios increase. Therefore, a complete
characterization of the dynamical behavior is impossible to
perform for larger systems. We can however generalize that
under small and intermediate coupling, different complex os-
cillatory solutions could be observed �an example is given in
Fig. 5�a��. These structures are characterized with multiple
cluster distributions, described with phase and/or amplitude
changes. Despite these, the dynamical picture of the system
is enhanced with mixed complex solutions, where some of
the oscillators are located in the stable OD regimes, whereas
others perform oscillatory behavior with various amplitude
values �Fig. 5�b��. If the coupling intensity is slightly in-
creased, various manifestations of the OD regime are pos-
sible �4:6 subcluster distributions, as shown in Fig. 5�c�, or
an OD manifestation where both the upper and the lower
levels are defined via 8 subclusters, Fig. 5�d��.

The enhanced presence of complex modes of organized
collective behavior in the case of locally coupled structures
in contrast to their globally coupled counterexamples can be
further determined by the gradual changes in the correspond-
ing power spectra, as shown in Fig. 6.

IV. DISCUSSION

The presence of multistability and multirhythmicity in
synthetic biological circuits is an important phenomenon
from an engineering perspective, since both offer an intrigu-
ing potential for numerous biotechnological applications. We
have shown in this paper that specific topological structures,
characterized with AI-mediated inhibitory coupling with lo-
cal properties, inevitably lead to an enhanced presence of
various dynamical regimes in synthetic genetic networks.
Thus, the results presented here are significantly different
from the corresponding characteristics of globally coupled
synthetic systems. We underline in particular the nonstandard
manifestation of OD, where separate stable clusters are ad-
ditionally characterized with the formation of subclusters.
Moreover, we have identified a possibility for different oscil-
lator distributions between separate �sub�clusters, which in

turn leads to multiple stable attractors and complex dynami-
cal structures in systems of identical oscillators, locally
coupled on a ring.

Recent advances in the so-called rolled-up nanotechnol-
ogy have led to the realization of the idea to use bioanalytic
microsystems for spatial and temporal control of single
cells.30 In particular, biological components could be inte-
grated into single rolled-up tubes, which are processed in
parallel with high throughput and excellent reproducibility.
This new type of highly integrative lab-on-a-tube technology
thus provides the possibility to confine precise number of
single cells equipped with the corresponding synthetic cir-
cuits in distinct nanotubes. Such spatial configuration of the
cells will then allow the AI molecules to diffuse only be-
tween neighboring cells, in which manner, the local coupling
characteristics will be fulfilled.

Therefore, one could envision and assume that the abil-
ity of genetic circuits to display a rich multistable behavior
opens the possibility for the construction of new-era compu-
tational and memory storage devices, based on genetic and
DNA-computing. Additionally, it is important to mention
that the results reported here represent only partially the rich-
ness of the dynamical structures obtained in a synthetic net-
work, if local coupling mechanisms characterize its design.
One could further speculate that the genetic networks profit
from the elaborated enhanced rhythmicity: increasing the
multistability and multirhythmicity in a given network en-
hances the fitness of the cellular population under environ-
mental changes and optimizes network’s functionality. How-
ever, the complexity of the dynamical features observed in
these cases requires additional investigations, opening simul-
taneously numerous questions, e.g., the characterization of
dynamical scenarios where multiple, globally coupled cellu-
lar populations communicate with each other in a “local
manner.”
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