
Identifying complex periodic windows in continuous-time dynamical
systems using recurrence-based methods

Yong Zou,1 Reik V. Donner,1,2 Jonathan F. Donges,1,3 Norbert Marwan,1

and Jürgen Kurths1,3,4

1Potsdam Institute for Climate Impact Research, P.O. Box 601203, 14412 Potsdam, Germany
2Max Planck Institute for Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany
and Institute for Transport and Economics, Dresden University of Technology, Würzburger Str. 35,
01187 Dresden, Germany
3Department of Physics, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
4Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen AB 24 UE,
United Kingdom

�Received 3 September 2010; accepted 11 November 2010; published online 8 December 2010�

The identification of complex periodic windows in the two-dimensional parameter space of certain
dynamical systems has recently attracted considerable interest. While for discrete systems, a dis-
crimination between periodic and chaotic windows can be easily made based on the maximum
Lyapunov exponent of the system, this remains a challenging task for continuous systems, espe-
cially if only short time series are available �e.g., in case of experimental data�. In this work, we
demonstrate that nonlinear measures based on recurrence plots obtained from such trajectories
provide a practicable alternative for numerically detecting shrimps. Traditional diagonal line-based
measures of recurrence quantification analysis as well as measures from complex network theory
are shown to allow an excellent classification of periodic and chaotic behavior in parameter space.
Using the well-studied Rössler system as a benchmark example, we find that the average path
length and the clustering coefficient of the resulting recurrence networks are particularly powerful
discriminatory statistics for the identification of complex periodic windows. © 2010 American
Institute of Physics. �doi:10.1063/1.3523304�

The investigation of the qualitative behavior in the full
parameter space of a complex system is a very important
but often challenging task. Detailed knowledge about the
different possible types of dynamics helps in understand-
ing under which conditions the particular states of a sys-
tem lose stability or undergo significant qualitative
changes. In particular, in experimental settings, the avail-
ability of information about the underlying patterns in
phase space allows tuning the critical parameters in such
a way that one may obtain the desired working condi-
tions. Mathematically, the corresponding problem is tra-
ditionally investigated by means of bifurcation theory,
which allows studying the properties of dynamical tran-
sitions in some detail.1,2 However, the applicability of
available methods for identifying bifurcation scenarios
and determining the parameters at which they take place
does often depend on the considered system itself. This is
especially the case when dealing with larger sets of pa-
rameters, i.e., operating in a two- or even higher-
dimensional parameter space, in particular for the case of
experimental data. In this work, we propose some meth-
ods based on recurrence properties in phase space that
allow quantifying dynamically relevant properties from
available time series, which we harness to disentangle the
labyrinthine parameter space with respect to qualita-
tively and quantitatively different dynamics.

I. INTRODUCTION

The parameter space of nonlinear dynamical systems of-
ten exhibits a rich variety of qualitatively different types of
behavior, such as periodic and chaotic regimes. Especially if
more than one parameter is responsible for the resulting
complex bifurcation scenario, settings leading to the same
types of dynamics are often mutually entangled in a rather
complicated way. A specific example is so-called shrimps, a
specific kind of periodic windows embedded in chaotic re-
gimes in the two-dimensional parameter space of a large
class of systems, which are characterized by a distinct struc-
ture consisting of a main body and four thin legs.3,4 The
exact properties of such structures, however, depend on the
specific system under study. In general, shrimps often display
self-similarity and are regularly organized along some distin-
guished directions.5 The particular orientation depends on
the respective stability conditions. When crossing the borders
of shrimps in different directions, the system typically shows
different bifurcation scenarios from periodic dynamics to
chaos, e.g., via period doubling or via intermittency.4,6 A
detailed stability analysis of the periodic solutions contained
within shrimps, therefore, presents a promising approach for
understanding the dynamical backbone of these structures.
Consequently, the study of this particular type of structure
has recently attracted considerable interest.

The emergence of shrimps has first been described in
great detail for chaotic maps,3,4,7–9 although corresponding
structures have already been reported in earlier studies for
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both maps and time-continuous systems.10–13 In the past
years, additional efforts have been spent on numerically
identifying such structures in systems of ordinary differential
equations �ODEs� as well.14 Examples include the Rössler
system,12,15–17 integrate-and-fire models of neurophysiologi-
cal oscillations,18 two coupled parametrically excited
oscillators,6 models of laser dynamics,5,16,19–21 the damped-
driven Duffing system,22 different nonlinear electronic
circuits,16,23–26 chemical oscillators,16,17,27 the Lorenz-84
low-order atmospheric circulation model,16 or a vibro-impact
system.28 Recently, shrimp structures have been experimen-
tally found in the chaotic Chua29,30 and Nishio–Inaba
circuits,31 which underlines the increasing importance of
proper numerical algorithms for automatically identifying
such periodic windows in both theoretical and experimental
studies, possibly even in the presence of noise.

Typically, at the boundaries of a shrimp, small inaccura-
cies of the parameters induce dramatic changes in the result-
ing dynamics. Therefore, these structures can hardly be un-
covered by existing analytical methods based on linear
stability analysis, impossible in particular at the boundaries.
In most recent works for continuous systems, the maximum
Lyapunov exponent �1 has been estimated numerically,
which allows distinguishing periodic and chaotic dynamics
since �1=0 for periodic orbits and �1�0 for chaotic ones.
Recently, an alternative method has been proposed for un-
covering shrimps in systems described by ODEs �Ref. 15�
based on the concept of correlation entropy K2, which can be
considered as a lower bound for the sum of all positive
Lyapunov exponents of the system.32 It has been demon-
strated that considering K2 indeed yields results of compa-
rable accuracy as the maximum Lyapunov exponent method6

and is more efficient, because less data points are needed.
A convenient way for numerically estimating K2 is using

recurrence plots �RPs�, an efficient technique of nonlinear
time series analysis. Given a trajectory of a dynamical sys-
tem consisting of different values xi, where i indicates the
time of observation, the corresponding RP is defined as33,34

Ri,j��� = ��� − �xi − x j�� , �1�

where �� · � is the Heaviside function, �xi−x j��di,j is the
distance between two observations xi and x j in phase space
�which will be measured in terms of the maximum norm in
the following�, and � a predefined threshold for the proxim-
ity of two states in phase space, i.e., for distinguishing
whether or not two observations are neighbors in phase
space. Hence, the basic mathematical structure describing a
RP is the binary recurrence matrix Ri,j. Visualizing this ma-
trix by black �Ri,j =1� and white �Ri,j =0� dots, different types
of dynamics can be identified in terms of different features of
line structures �including discrete points, blocks, and ex-
tended diagonal or vertical lines�, which can be quantita-
tively assessed in terms of recurrence quantification analysis
�RQA� �see Sec. II A�.

The recurrence plot based estimation of K2 involves two
main steps: �i� computing the cumulative probability distri-
butions of the lengths of diagonal lines and �ii� properly
selecting a scaling region in dependence on the diagonal line
length l and evaluating its characteristic parameters.35 Since

the second step assumes the existence of sufficient conver-
gence in a reasonable regime, in practical applications vari-
ous values of � need to be considered for properly detecting
the corresponding scaling region. Hence, this approach is
partially subjective and depends on the specific choice of the
scaling region.

In this work, we suggest and thoroughly study the alter-
native approaches to analyze quantitatively the correspond-
ing properties of the recurrence matrix. More specifically, we
apply measures from complex network theory to the recur-
rence structures and compare their performance with that of
more traditional RQA measures. The corresponding frame-
work of recurrence networks �RNs�, i.e., the idea of inter-
preting the recurrence matrix Ri,j of Eq. �1� as the adjacency
matrix Ai,j of an undirected, unweighted complex network by
setting

Ai,j = Ri,j − �i,j , �2�

where �i,j is the Kronecker delta, has been recently proposed
for identifying dynamical transitions in model systems such
as the logistic map,36 as well as detecting subtle changes in a
marine dust flow record. It should be noted that similar ap-
proaches of understanding the properties of time series from
complex network perspectives have been suggested in paral-
lel by various authors37,38 �see Refs. 39 and 40 for further
references�.

While most classical RQA measures are based on line
structures in the RP, complex network measures reveal
higher-order properties of the phase space density of states of
the considered dynamical system39 �see Sec. II B�. However,
the question whether the complex network approach is more
suitable than conventional RQA for distinguishing different
types of dynamics has not yet been systematically addressed.
In this work, we provide a corresponding comparative analy-
sis using some particularly well-suited measures of both
types. Specifically, we demonstrate clear advantages of com-
plex network measures in identifying shrimp structures or,
even more, arbitrary complex periodic windows in the two-
dimensional parameter space of certain dynamical systems
by taking the well-studied Rössler system as an illustrative
benchmark example. The performance of different measures
is compared by means of several statistical tests based on the
resulting patterns in the parameter space.

The remainder of this paper is organized as follows. In
Sec. II, we briefly review some RQA as well as complex
network measures and outline important technical issues
arising when using these measures, in particular, the depen-
dence on the choice of the recurrence threshold � and other
parameters. A specific part of the two-dimensional parameter
space of the Rössler system that is known to contain shrimps
is examined in Sec. III by means of the maximum Lyapunov
exponent �1, which serves as a reference for our results ob-
tained using recurrence-based methods in Sec. IV. The main
conclusions of our work are summarized in Sec. V.

II. METHODS

A. RQA

RQA has been introduced for quantifying the presence of
specific structures in RPs.41–44 During the past years, numer-
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ous methodological developments and applications in vari-
ous fields of science have been reported �for a corresponding
review, see Ref. 34�. Most traditional RQA measures are
based on the length distributions of diagonal or vertical lines.
In this work, we will particularly make use of the following
three quantities:

• The recurrence rate

RR =
2

N�N − 1��i�j

Ri,j �3�

measures the fraction of recurrence points in a RP and,
hence, gives the mean probability of recurrences in the
system.

• The determinism DET is defined as the percentage of re-
currence points belonging to diagonal lines of at least
length lmin �see Sec. III C for details�,

DET =
�l=lmin

N lP�l�

�l=1
N lP�l�

, �4�

where P�l� denotes the probability of finding a diagonal
line of length l in the RP. This measure quantifies the pre-
dictability of a system.

• The average diagonal line length Lmean, defined as

Lmean =
�l=lmin

N lP�l�

�l=lmin

N P�l�
, �5�

characterizes the average time that two segments of a tra-
jectory stay in the vicinity of each other, and is related to
the mean predictability time.

In addition to �diagonal as well as vertical� line-based
RQA measures, in some cases, parameters characterizing re-
currence times �i.e., vertical distances between two recur-
rence points� based on the RPs have been suggested to be
suitable for quantifying basic properties of the recorded
dynamics.45–47

Let us now consider in what sense RQA measures be-
have differently in the presence of periodic and chaotic dy-
namics. In a RP, a periodic orbit is reflected by long nonin-
terrupted diagonal lines that are separated by a constant
offset, which corresponds to the period of the oscillation
�Fig. 1�a��. In contrast, for a chaotic trajectory, the distances
between diagonal lines are not constant due to multiple time
scales present in the system �Fig. 1�b��. Furthermore, the

existing diagonals are interrupted because of the exponential
divergence of nearby trajectories. Therefore, we expect that
both DET and Lmean typically have larger values for a peri-
odic trajectory than for a chaotic one.

B. Quantitative analysis of recurrence networks

RNs are spatial networks representing local neighbor-
hood relationships in the phase space of a dynamical system.
In a RN, every sampled point is represented by a vertex v,
whereas edges indicate pairs of observations whose mutual
distance in phase space is smaller than the predefined thresh-
old �. The resulting edge density �, i.e., the relative fraction
of edges that are actually present in comparison to a fully
connected network, is then given by RR �see Eq. �3��. Hence,
characterizing topological properties of RPs by sophisticated
network-theoretic quantifiers allows retrieving additional in-
formation about higher-order phase space properties of the
system.39 It has been shown that these measures are able to
capture dynamical transitions in complex systems, such as in
the logistic map with changing control parameter or a real-
world paleoclimatic time series, demonstrating that network-
theoretic features provide additional and complementary in-
formation when compared to traditional RQA measures.36

In this work, we particularly consider the global cluster-
ing coefficient C and the average path length L of a RN. The
application of other measures �e.g., betweenness centrality�
is straightforward, but we argue that the description of net-
work topology by a scalar parameter instead of a distribution
of vertex- or edge-based statistics might be more suitable for
detecting and quantifying qualitative changes in the dynam-
ics of a system. Moreover, one has to note that state-of-the-
art numerical algorithms for computing other complex net-
work measures often require considerably larger
computational efforts than estimating traditional RQA mea-
sures.

The local clustering coefficient Cv characterizes the
phase space geometry of an attractor in the �-neighborhood
of a vertex v. Specifically, Cv gives the probability that two
randomly chosen neighbors of v are also neighbors,48 i.e.,

Cv =
2

kv�kv − 1�
Nv

	, �6�

where kv is the degree centrality �i.e., the number of neigh-
bors of v, which coincides with the local recurrence rate
RRv� and Nv

	 is the total number of closed triangular sub-
graphs including v, which is normalized by the maximum
possible value kv�kv−1� /2. For vertices of degree kv=0 or 1
�i.e., isolated or tree-like vertices, respectively�, Cv=0 by
definition since such vertices cannot participate in triangles.
Instead of studying Cv individually for all vertices of a RN,
we consider its average value taken over all vertices of a
network, the global clustering coefficient

C =
1

N
�
v=1

N

Cv, �7�

as a global characteristic parameter of network topology.
The local clustering coefficient Cv is related to the effec-

tive dimensionality of the set of observations in the

FIG. 1. Recurrence plots for a �a� periodic and a �b� chaotic trajectory of the
Rössler system �9� �see Sec. III B for details�.
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�-neighborhood of a vertex v.39 In particular, we find specific
dependencies for both continuous and discrete dynamical
systems:

�i� For discrete systems, periodic orbits consist only of a
finite set of points. This implies that for �
	 with
	�maxi,j di,j being the attractor diameter, the RN is
decomposed into disjoint components with multiple
vertices being located at the same point in phase
space. As a consequence, the individual components
are fully connected for all ��0, which leads to C=1.
In contrast, for chaotic trajectories, sufficiently small
�
	 results in C�1.39

�ii� For a continuous system, it is a well-established fact
that if a chaotic trajectory enters the neighborhood of
an unstable periodic orbit �UPO�, it stays within this
neighborhood for a certain time.49 As a consequence,
states accumulate along this UPO instead of homoge-
neously filling the phase space in the corresponding
neighborhood �in particular if we consider UPOs of
lower period�. Since from the theory of spatial ran-
dom graphs50 it is known that the average clustering
coefficient increases with decreasing spatial dimen-
sion of the space in which a network is embedded, it
follows that parts of a chaotic attractor that are close
to �low-periodic� UPOs are characterized by higher
values of Cv in the resulting RNs.39 Following a re-
lated argument, we expect that states on a periodic
orbit of a continuous system are also characterized by
high values of Cv, which implies high C. In general,
however, for chaotic trajectories the filling of the
phase space with observed states is more homoge-
neous than for periodic ones, which leads to a ten-
dency toward lower values of Cv and, hence, C.

A second global measure of network topology is the av-
erage path length. Since we consider RNs as undirected and
unweighted, we define all edges to be of unit length in terms
of graph �geodesic� distance. The graph distance between
any two vertices of the network is defined as the length of
the shortest path between them. Hence, the shortest path
length li,j in the RN gives the minimum number of edges that
have to be passed on a graph between two vertices i and j.
Accordingly, li,j is related to the phase space distance of the
associated states, but not to the temporal evolution of the
system �Fig. 2�.

The average path length L is defined as the mean value
of the shortest path lengths li,j taken over all pairs of vertices
�i , j�,

L = 	li,j
 =
2

N�N − 1��i�j

li,j . �8�

For disconnected pairs of vertices, the shortest path length is
set to zero by definition. Note that in most practical applica-
tions, this has no major impact on the corresponding statis-
tics. The average path length is related to the average sepa-
ration of states in phase space, which measures the size of
the attractor in units of �. Note that since metric distances in
the phase space are conserved, this implies an approximately
reciprocal relationship L��−1,39 with the exception of peri-
odic orbits of discrete maps �see the arguments given above�.

For the behavior of the average path length L, one has to
carefully distinguish between continuous and discrete sys-
tems again:

�i� For discrete systems, the structure of a periodic orbit
in phase space implies L=1 by definition for �
	.36

In turn, for chaotic trajectories, there is a continuum
of possible values, so that L�1 for �
	. Hence, the
average path length of a periodic orbit is smaller than
that of a chaotic one.

�ii� For continuous systems, however, a periodic trajec-
tory has a completely different structure in phase
space, which means that L is approximately deter-
mined by the curve length of the orbit in the phase
space �Fig. 2�a��. In contrast, for chaotic trajectories,
there are “shortcuts” that allow reaching one position
in phase space from another with a lower number of
steps than by following the trajectory39 �Fig. 2�b��.
Consequently, for a comparable attractor diameter 	
and the same recurrence threshold �, L can be ex-
pected to have lower values for chaotic orbits. Alter-
natively, it is desirable to fix RR instead of � to obtain
RNs with approximately the same numbers of edges.
A detailed discussion on the advantages of this ap-
proach is presented in Sec. III D. In this case, we note
that the different geometric structure of the attractor
in both the periodic and chaotic regimes even en-
hances the effect of shortcuts, so that under general
conditions, periodic orbits of continuous systems are
characterized by larger L than chaotic ones.

Concerning the behavior of the average path length, as
shown in Fig. 2, we have to point out that differences be-
tween periodic and chaotic dynamics require that transient
behavior �e.g., during some initial phase of the dynamics
before the attractor has been reached by the considered tra-
jectory� has been sufficiently removed, since such transients
could also result in artificial shortcuts in phase space for
periodic systems. While this problem can be easily solved in
numerical studies by simply discarding the transients, it can
contribute additional uncertainties in experimental studies
where only a limited amount of data is available. In a similar
way, using L for discriminating between periodic dynamics
and chaos in noisy experimental time series is expected to

FIG. 2. �Color online� Illustration of the shortest path length for two ex-
ample trajectories of the Rössler system �9� in �a� periodic and �b� chaotic
regimes. The square is a schematic projection of the recurrence neighbor-
hood to the �x ,y� plane. In these two particular examples, li,j

A =24 and
li,j
B =19 for �=7.0 �maximum norm�.
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lead to the same problem. However, in such cases, other
network-theoretic quantities �e.g., C� still provide feasible al-
ternatives, to which the mentioned conceptual problem does
not apply �at least for sufficiently small noise levels that do
not exceed the order of magnitude of the recurrence thresh-
old ��. In addition, there are other recurrence-based tech-
niques such as recurrence time statistics, which allow distin-
guishing regular and chaotic dynamics even in challenging
situations, e.g., quasiperiodicity versus weakly chaotic
behavior.45,51

In summary, C shows a consistent behavior for discrete
and continuous systems, whereas L performs inversely with
respect to periodic and chaotic dynamics. This implies that L
cannot be used alone to classify the dynamics of time series
from real systems, where the nature of the underlying pro-
cess is unknown. Our results presented in this work and
elsewhere36 suggest, however, that L is nevertheless very
well able to distinguish between periodic and chaotic behav-
ior in the parameter space of the same dynamical system.

III. MODEL: CHAOTIC RÖSSLER SYSTEM

A. Two-dimensional parameter space

As an illustrative example for a time-continuous dy-
namical system that shows shrimp structures in its parameter
space, we study the Rössler system

�dx

dt
,
dy

dt
,
dz

dt
� = �− y − z, x + ay, b + z�x − c�� . �9�

In this system, c is often regarded as the standard bifurcation
parameter, whereas a and b mainly change the shape of the
attractor. In this work, however, we vary a=b on the one
hand, and c on the other hand, which yields a two-
dimensional parameter space of �c ,a�. One of the parameter
regions of special interest is �c ,a�� �20,45� �0.2,0.3�,
where the chaotic regime is intermingled with periodic win-
dows in a complex manner.15 Thus, in the following, we pay
special attention to this part of the parameter space. Note that
shrimp structures are not confined to this particular plane in
the three-dimensional parameter space of the Rössler system
and, hence, investigating a differently oriented plane as in
Ref. 16 would not qualitatively alter the results of our study.

For further analysis, the above mentioned part of the
parameter space of �c ,a� is divided into 10001000 grid
points, which results in the step size 0.0001 in
a� �0.2,0.3� and 0.025 in c� �20,45�. We first consider the
maximum Lyapunov exponent of the resulting systems as a
characteristic measure to determine whether the trajectories
resulting from each parameter combination are chaotic or
periodic. For this purpose, all three Lyapunov exponents �i

have been computed based on Eq. �9� by numerically solving
the associated variational equations.52 Numerical integration
is carried out using a fourth-order Runge–Kutta integrator
with a fixed step size of h=0.001 time units and randomly
chosen initial conditions �x0 ,y0 ,z0�� �0,1� �0,1� �0,1�.
In order to provide sufficient data for an accurate estimation
of Lyapunov exponents, the integration is performed for suf-
ficiently long time �until t=10 000, i.e., involving
N=10 000 000 data points with a sampling 	t corresponding

to the considered integration step h�. For computing the dif-
ferent recurrence-based measures in a second step of analy-
sis, the initial transients �cf. Sec. II B� have been discarded
by removing the first 500 000 iterations �i.e., all data until
t=500� from the simulated trajectories. Moreover, for all fur-
ther calculations based on the recurrence matrices, a coarser
sampling of 	t=0.2 �i.e., 200 integration steps� has been
considered. For each trajectory, the sampling has been termi-
nated after N=5000 points �corresponding to about 150–250
oscillations of the system� have been obtained, yielding
much shorter time series than those used for estimating
Lyapunov exponents. Note that the specific choice of sam-
pling time has a certain influence on the results discussed in
the following. Specifically, the sampling corresponding to
the optimum resolution of dynamically relevant features is
expected to vary among different parameter settings. In this
respect, the considered value of 	t represents a reasonable
and practically tractable choice.

The resulting maximum Lyapunov exponent �1 reveals a
rich structure of chaotic and periodic dynamics in the param-
eter space �Fig. 3�. Inside the chaotic regions, several well
pronounced periodic bands are identified. Moreover, in the
center of the plot, a special periodic window of interest is
found, with structures resembling a head and four main thin
legs. These particular swallow-like structures can be identi-
fied as shrimps.15 Additional zooms into the parameter space
uncover numerous fine structures, which correspond to sec-
ondary shrimps.

B. Prototypical trajectories

We first illustrate the potentials of recurrence-based ap-
proaches for discriminating between periodic and chaotic dy-
namics by studying trajectories obtained from two distinct
parameter combinations. Based on the parameter
space shown in Fig. 3, the dynamics is periodic for
�a ,b ,c�= �0.245,0.245,35�, while chaotic for �a ,b ,c�
= �0.29,0.29,35�. The Lyapunov exponents are �0, �0.223,
�32.683� for the periodic trajectory and �0.151, 0, �32.517�
for the chaotic one. The typical phase space distances of
states on the two trajectories are of the same order of mag-
nitude �Table I�, which is illustrated by the probability dis-

FIG. 3. �Color online� Maximum Lyapunov exponent �1 in the �c ,a� pa-
rameter plane of the Rössler system �9�. Regions with �1=0 indicate peri-
odic dynamics, those with large �1 correspond to a strongly chaotic behav-
ior. Asterisks indicate the parameter combinations used as examples in Secs.
II and III.
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tribution of the mutual distances di,j in Fig. 4�a�. However,
the detailed relationship of RR��� is clearly different: for a
low �but fixed� RR, we have to consider much higher � for
chaotic trajectories than for periodic ones, while for larger
RR���, the opposite behavior is found �Fig. 4�b��. RR corre-
sponds to the correlation sum, the slope of which in a double
logarithmic plot gives the correlation dimension D2. There-
fore, RR��� having a larger slope for the chaotic trajectory
than for the periodic one �Fig. 4�b�� indicates that the corre-
lation dimension of the former is higher than that of the
latter.

Both RQA and complex network measures highlight dif-
ferences in the topological structure between the periodic
and chaotic regimes �Table I�. We observe that for the con-
sidered recurrence rate �RR=0.02�, DET, Lmean, C, and L
have lower values for chaotic trajectories than for periodic
ones �which distinctively differs from the behavior of the
maximum Lyapunov exponent �1�, while the difference is
significant for the latter three measures. However, before be-
ing able to generalize these findings, the robustness of the
aforementioned features has to be critically examined. Our
corresponding results are summarized in the following two
subsections �Sec. III C and III D�.

C. Dependence on lmin

For the computation of most line-based RQA measures
�with some exceptions, such as RR or the maximum diagonal
line length�, one has to choose a proper minimal line length
lmin to avoid a bias due to oversampling.34 The particular
values of these measures do significantly depend on lmin �Fig.
5�, although the discrepancy between the values of DET and
Lmean obtained for periodic and chaotic trajectories remains
qualitatively unchanged �in general, the values of DET and
Lmean are larger for a periodic trajectory than for a chaotic
one�. Note that DET and Lmean are more robust against noise
than other measures like the maximum diagonal line
length.34

D. Dependence on the recurrence threshold

Since all considered measures are based on the recur-
rence matrix, their values necessarily depend on the choice
of the recurrence threshold �. So far, there is no universal
threshold selection criterion for the RP computation. On the
one hand, if � is chosen too small, there are almost no recur-
rence points and, hence, no feasible information on the re-
currence structure of the system. On the other hand, if � is
too large, almost every point is a neighbor of every other
point, which leads to numerous artifacts. Hence, we have to
seek a compromise for choosing a reasonable value of �. One
rule of thumb is choosing � in such a way that it lies in the
scaling regime of the double logarithmic plot of the correla-
tion integral versus �. This rule coincides with the classical
strategy for estimating the correlation dimension D2 using
the Grassberger–Procaccia algorithm.54 Following indepen-
dent arguments, Schinkel et al.55 suggested choosing � cor-
responding to at most 5% of the maximum attractor diameter
in phase space. In a similar way, RR�0.05 has been found a
reasonable choice in the analysis of RNs.36,39,53

The dependence of RQA and RN measures on � is
shown in Fig. 6. One observes that all previously discussed
measures are clearly able to distinguish between periodic and
chaotic dynamics, i.e., they show significant differences in a
broad interval of � �corresponding to mean recurrence rates
of about 1%–5%�.

Instead of fixing the recurrence threshold �, it may be
desirable to compare different situations by using RPs with a
fixed value of RR. First, the resulting RNs have approxi-
mately the same number of edges, which allows comparing
the resulting topological properties of different networks

TABLE I. Maximum Lyapunov exponents �1 �N=10 000 000, 	t=0.001�,
mean and maximum separation of points in phase space �N=5000, 	t
=0.2� and resulting recurrence threshold � �maximum norm� for RR=0.02,
and RQA �lmin=2� and network measures for two parameter combinations
�see text�, representing periodic and chaotic regimes of the Rössler system.
The error bars correspond to the standard deviation obtained from 100 real-
izations with different initial conditions. Note that the large variance of the
metric quantities � and dij for the chaotic trajectory is a common result when
working with short time series and different initial conditions �Ref. 53�.

Periodic Chaotic

�1 0.0�0.0003 0.15�0.0002
	di,j
 58.95�0.14 57.42�3.03
maxi,j di,j 476.69�0.15 575.12�23.99
��RR=0.02� 4.79�0.14 6.50�0.53
DET 0.99�0.01 0.97�0.01
Lmean 18.51�0.18 10.60�0.34
C 0.77�0.001 0.62�0.004
L 45.30�1.83 9.19�0.37
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FIG. 4. �a� Probability distributions p�di,j� of mutual distances di,j �maxi-
mum norm� between states on one realization �N=5000� of periodic �solid�
and chaotic �dashed� trajectories, respectively �see text�. �b� Dependence of
the recurrence rate RR on the recurrence threshold � for a periodic and a
chaotic regime. The error bars correspond to the standard deviation obtained
from 100 realizations with different initial conditions.
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FIG. 5. Dependence of the RQA measures �a� DET and �b� Lmean on lmin for
periodic �solid� and chaotic �dashed� trajectories. The error bars indicate the
standard deviation obtained from 100 realizations of the Rössler system �9�
with N=5000, 	t=0.2, RR=0.02, and different initial conditions.
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more objectively. Second, it has been shown in Fig. 4�b� that
there is a crossover between the RR of periodic and chaotic
trajectories obtained with the same �, which is related to the
fact that RR��� �which corresponds to the correlation sum�
increases exponentially for a chaotic trajectory.54 Finally, we
have to note that the amplitudes of the �chaotic or periodic�
oscillations of the Rössler system change with the specifi-
cally chosen control parameters of the system. In order to
automatize the numerical algorithms for estimating all RP-
based measures, fixing � would lead to values of RR and
other RQA measures that cannot be compared in a meaning-
ful way. A related approach using the dependence on RR has
already been applied for an automatized detection of the
scaling region in the recurrence-based estimation of K2 for
the study of a large scale system.56

According to the above arguments, we will use a fixed
value of RR in all the following calculations. Because of
this, in a first step of analysis, we study the dependence of
the different measures on RR in some detail similar to the
dependence on � discussed above. Figure 7 reveals that the
difference between periodic and chaotic orbits remains quali-
tatively unchanged and does not depend on the specific
choice of RR. Specifically, in all four cases, periodic trajec-
tories are characterized by larger values of the different mea-
sures.

IV. RESULTS

In the following, we study the performance of the differ-
ent recurrence-based measures for identifying shrimp struc-
tures in the Rössler system. For this purpose, we take �1 as a
reference, since this measure per definition discriminates be-
tween periodic ��1=0� and chaotic ��1�0� dynamics. Note
that in order to reach reliable estimates of �1, typically a
large amount of data is required. In contrast, recent results on
RQA and RN measures36 suggest that these methods allow
identifying dynamical transitions in complex systems using
much shorter time series.

In order to systematically test the applicability of
recurrence-based methods for identifying shrimps, we use
the same grid with 10001000 pairs of points in the
�c ,a�-parameter plane as in Fig. 3. For each set of param-
eters, we consider time series of N=5000 data points
sampled with a fixed time step of 	t=0.2 for estimating all
RQA and RN measures. Initial transients have been removed
from the data, as described in Sec. III A. We stress that mea-
sures originated from both RQA and network theory are
computed from the same recurrence matrices Ri,j �which
have been constructed from the original three-dimensional
coordinates of the system without embedding�, so that the
resulting structures in the parameter space are well compa-
rable. In the following, we will consistently use lmin=2 and
RR=0.02.

A. Behavior of individual measures

The values of the four chosen measures in dependence
on the parameters a and c are shown in Fig. 8. We find that
all four measures are indeed able to identify periodic win-
dows, in particular, those associated with shrimp structures.
However, the discriminatory power of the individual param-
eters for distinguishing between periodic and chaotic regions
is notably different. Specifically, for the chosen values of lmin

and RR, the contrast in the values of DET obtained for both
regimes is relatively weak �see Figs. 5 and 7 and Table I�,
whereas the other three measures show a much larger range
of values.

Unlike DET and Lmean, C and L resolve all periodic re-
gimes including band structures and even secondary shrimps.
The main remaining difference to the structures obtained by
using the maximum Lyapunov exponent �Fig. 3� is found in
the broad periodic band in the upper right corner of the pa-
rameter plane. In this region of parameter space, the system
shows a complex bifurcation scenario, including different
routes from periodic behavior to chaos similar to those asso-
ciated with shrimp structures in other continuous dynamical
systems.6 These differences are partially related to numerical
inaccuracies in the presence of time series with a finite length
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�solid� and chaotic �dashed� trajectories �see text�. The error bars indicate
the standard deviation obtained from 100 realizations of the Rössler system
�9� with N=5000, 	t=0.2, lmin=2, and different initial conditions.
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and become less pronounced if longer simulations are used.
Since no analytical solutions of the system are available for
this specific region, additional application of complementary
numerical methods �e.g., Lyapunov exponents, return maps,
Poincaré sections, etc.� would be necessary for completely
identifying the associated bifurcation scenario, which is
however out of the scope of this paper.

B. Correlations between recurrence-based measures
and �1

We now perform a more detailed quantitative analysis of
the power of the individual measures as discriminatory sta-
tistics between periodic and chaotic dynamics. For this pur-
pose, the differences between the structures obtained using
the discussed measures and those revealed by �1 can be in-
terpreted as a lack of performance. Since the different mea-
sures are characterized by strongly differing probability dis-
tribution functions �PDFs�, we seek a statistics that allows
properly quantifying deviations between the respective struc-
tures in the parameter space. The first insight into this ques-
tion is provided by the correlation coefficients between �1

and the other measures, which are in all cases clearly signifi-
cant, but with a negative sign �Table II�. This result supports
the findings in Sec. III for the two example trajectories.

In order to study how strongly the patterns of the differ-
ent measures in the �c ,a�-plane resemble those found for the

maximum Lyapunov exponent, we investigate the point-wise
difference of the corresponding cumulative distribution func-
tions �CDFs�, i.e.,

	P��1,x� = P��1� − P�x� , �10�

where P�x� is �for a given �c ,a�-combination� the empirical
value of the CDF of the measure x obtained from all
1 000 000 parameter combinations. In order to simplify the
notation, the arguments �c ,a� of 	P��1 ,x� will be sup-
pressed. Note that the maximum absolute value of 	P, com-
monly denoted D, corresponds to the Kolmogorov–Smirnov
statistics frequently used for testing the homogeneity of the
probability distributions of two samples.57 Since all four
recurrence-based measures are negatively correlated with �1,

FIG. 8. �Color online� RQA measures �a� DET and �b� Lmean and network measures �c� C and �d� L in the �c ,a� parameter plane of the Rössler system �9�.

TABLE II. Overall performance indicators obtained from a point-wise com-
parison of the values of the maximum Lyapunov exponent �1 and the dif-
ferent RQA and network measures: Spearman’s � and the standard deviation
�2 of the CDF differences 	P��1 ,x�. For simplicity, the arguments of the
different characteristics have been omitted.

� �	P
2

DET �0.75 0.21
Lmean �0.81 0.18
C �0.70 0.23
L �0.66 0.24
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we will identify x with 1−DET, 1−Lmean, 1−C, and 1−L,
respectively.

Due to the significant correlations between the different
measures �Table II�, we expect that the CDF difference
	P��1 ,x� is close to zero in large parts of the parameter
space. The patterns of the CDF differences are shown in Fig.
9. In all cases, values close to zero can often be observed in
periodic windows �although differences appear especially in
the secondary shrimps�, whereas the shortness of the consid-
ered time series leads to significant deviations from zero in
the chaotic regions. The standard deviations �	P

2 of the CDF
field provide a rough impression of the amount of incorrectly
identified regimes �partially due to the finite length of time
series�, which will be quantitatively characterized in the next
section �Sec. IV C�.

C. Probability of classification errors

The general treatment in Sec. IV B does not yet allow
sophisticated conclusions on which particular measure is
most appropriate for detecting shrimps in continuous sys-
tems. In order to assess the discriminatory power of all four
measures in more detail, we subject the resulting patterns in
parameter space �Fig. 8� to further statistical analysis. For
this purpose, we explicitly make use of the fact that the
�c ,a�- parameter plane of the Rössler system is composed of

two sets of parameter combinations belonging to trajectories
with periodic and chaotic dynamics, respectively. However,
the corresponding group structure is not exactly known,
since there are numerous �c ,a�-combinations which lead to
small values of �1 �Fig. 10�. Hence, these corresponding val-
ues could be related to either weakly chaotic behavior or
periodic dynamics that cannot be exactly detected due to the
numerical precision. Note that no fixed points ��1�0� are
found in our parameter space. In order to obtain a robust
approximation of the two distinct groups of parameter com-

FIG. 9. �Color online� CDF differences 	P��1 , ·� between the maximum Lyapunov exponent �1 and the RQA measures �a� DET and �b� Lmean and network
measures �c� C and �d� L in the �c ,a� parameter plane of the Rössler system �9�.
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FIG. 10. Probability distribution function of the maximum Lyapunov expo-
nent �1 obtained from all 1 000 000 parameter combinations in the consid-
ered �c ,a� plane of the Rössler system �9�.
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binations leading to �1=0 and �1�0, respectively, we refer
to a �variable� critical value �� �Fig. 10� for defining two
disjoint sets,

S1���� ª �c,a���1�c,a� � ��� ,

S2���� ª �c,a���1�c,a� � ��� ,

with group sizes n1 and n2=n−n1 �n=1 000 000 in our case�.

1. F and U tests
One possibility for assessing the discriminatory power of

the different recurrence-based measures is taking the respec-
tive groups S1 and S2 �for different values of �� in a reason-
able range, i.e., ��� �0,0.05�, see Fig. 10� and statistically
quantifying whether or not the main statistical characteristics
of the distributions p�x �Si� of the different measures x ob-
tained for both groups S1 and S2 differ significantly. For one
specific choice of ��, these distributions are shown in Fig.
11. Formally, this question corresponds to a one-way analy-
sis of variance problem,58 with the factor being determined
by two classes of values of �1. In order to evaluate whether
the group means do significantly differ �in comparison with
the respective group variances�, the F-test is used with the
test statistics,59

F = n1n2
��1 − �2�2

n1s1
2 + n2s2

2 � t2, �11�

where t is the test statistics of a corresponding t-test.60 Since
we are aware that the values of F �or, alternatively, t� may be
misleading if the underlying sample PDFs are strongly non-
Gaussian �see Fig. 11�, our results are complemented by
those of a corresponding distribution-free test. Specifically,
we compute the value of the test statistics U of the Mann–
Whitney U-test61,62 against the equality of the medians of
two distributions, which can be considered as the equivalent
of an F-test performed on the sets of rank numbers.

For both tests, we find that for almost all choices of ��,
L and C show the highest values of the respective test statis-
tics, indicating that the discriminatory power for distinguish-
ing between both sets is the largest for these measures �Figs.

12�a� and 12�b��. Note that in all cases, the probability values
for rejecting the respective null hypotheses �i.e., equality of
group means and medians, respectively� are close to 100%
due to the large sample size. The results obtained using both
test statistics are supported by a numerical approximation of
the associated overlap integral

� = �
min�x�

max�x�

dxp�x�S1�p�x�S2� �12�

of the PDFs of the recurrence-based measures x for both
groups �Fig. 11�, the values of which are shown in Fig. 12�c�.

The advantages of RN measures �at least for this particu-
lar case� become particularly apparent when visually inspect-
ing Fig. 11. The overlap of the PDFs p�x �Si� can be seen to
be substantially smaller for the network quantifiers C and L
�Figs. 11�c� and 11�d�� than for the RQA measures DET and
Lmean �Figs. 11�a� and 11�b��.

2. Group overlap for fixed probability quantiles
In order to further study the differences in the perfor-

mance of the considered measures, we apply another com-
plimentary statistical test. Specifically, we take the
�-quantile Q���1� of the distribution of �1 that corresponds
to a given value �� �i.e., ��n1 /n� and consider a related
decomposition of the �c ,a� parameter plane based on the
same quantile for the recurrence-based measures, i.e.,

S1��Q��x�� ª �c,a��x�c,a� � Q��x�� ,

S2��Q��x�� ª �c,a��x�c,a� � Q��x�� ,

with x� 1−DET,1−Lmean,1−C ,1−L�. Since the quantile �
has been kept fixed here, S1� and S2� contain the same numbers
of elements �n1 and n2, respectively� as S1 and S2. Hence, we
are able to quantitatively assess the coincidence between the
grouping based on �1 and x by considering the relative fre-
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quency pf of �c ,a� pairs that do not belong to the same group
based on the two different measures. Figure 12�d� demon-
strates that with respect to this criterion, the average path
length L again shows �on average� the lowest frequency of
“grouping errors” in comparison to �1, followed by C, DET,
and Lmean.

3. Receiver operating characteristics analysis
An even more detailed characterization of classification

errors is obtained in terms of the receiver operating charac-
teristics �ROCs�.63 In the ROC analysis, we compare the dis-
crimination �S1 ,S2� of the set of parameters �c ,a� based on a
fixed value of �� with another grouping �S1�, S2�� based on a
variable threshold x� of the observable x, which now replaces
the quantile Q��x�. The probabilities of correct as well as
false detections of periodic behavior, pc

�p� and pf
�p�, respec-

tively, are given as

pc
�p����,x�� = �S1� � S1�/�S1� ,

pf
�p����,x�� = �S1� � S2�/�S2� ,

where �S� represents the cardinality �i.e., the number of ele-
ments� of the set S. Varying x� over the full range of possible
values with �� simultaneously being kept fixed, we obtain a
continuous curve in the �pf

�p� , pc
�p��-plane, the ROC curve,

which illustrates the trade-off between a high probability of
correct detections and a low probability of false detections of
periodic behavior �Fig. 13�a��. The area under this curve
�AUC� can be �among other statistics� used for quantitatively
characterizing the classification performance of different
measures63 �Fig. 13�b��. Specifically, high values of AUC
correspond to a low probability of false classifications �i.e.,
high specificity� and, simultaneously, a high probability of
correct classifications �i.e., high sensitivity�. In contrast to all
other kinds of statistical tests, the ROC analysis suggests that
in the specific setting studied in this work, among the four
considered measures, C is the most suitable statistics for dis-
criminating between periodic and chaotic behavior of the
Rössler system, followed by L, DET, and Lmean.

One has to note that the overall classification error

pf = pf
�p����,Q��x�� + pf

�c����,Q��x��

= pf
�p����,Q��x�� + �1 − pc

�p����,Q��x��� �13�

�with pf
�c���� ,Q��x��= �S2��S1� / �S1� being the relative fre-

quency of false detections of chaotic dynamics� still reaches

values of around 10% even for the best performing measures
�Fig. 12�d��. The main reason for this performance failure is
the different sensitivity of �1 and the recurrence-based mea-
sures close to the bifurcation lines �see Fig. 14�. Apart from
this, all four measures allow recovering the overall structures
in parameter space comparably well as �1. The obvious dif-
ferences in the transition regions could be related to the use
of short time series in regions with a complex bifurcation
scenario, which are probably affected by problematic fea-
tures such as longer transients before the attractor is reached
�see Sec. II B�, different bifurcation scenarios characterizing
the transition between periodic and chaotic dynamics across
different boundaries of the same shrimp, intermittency, or
different stiffness properties of the considered trajectories.3,6

V. CONCLUSIONS

We have proposed to use nonlinear recurrence-based
characteristics of time series for exploring the parameter
space of complex systems. This is of special importance
when dealing with experimental data. Specifically, for distin-
guishing periodic and chaotic dynamics, in the recent litera-
ture estimates of the maximum Lyapunov exponent �1 from
the corresponding ODEs have most often been used, which
allow resolving the borders of shrimps in a satisfactory way
�see Fig. 3�. This specific approach works well if the associ-
ated variational equations are provided explicitly. However,
if these equations are not available �as in the case of experi-
mental data�, the numerical estimation of �1 is typically
much more challenging, especially when dealing with short
time series.32 The recurrence-based measures used in this
work have the advantage that they can be properly estimated
from rather short time series, so that they could prove advan-
tageous also in situations where the available amount of data
is not sufficient for obtaining reliable estimates of Lyapunov
exponents. Using recurrence-based methods instead of
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FIG. 13. �a� ROC curves for ��=0.01 and �b� area under the ROC curve
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FIG. 14. Discrimination errors �black dots� for the quantile-based groupings
S1, S2, S1�, and S2� for ��=0.01 �see Sec. IV C 2� for �a� DET �pf =0.0923�,
�b� Lmean �0.1106�, �c� C �0.0954�, and �d� L �0.0899�.
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Lyapunov exponents therefore has great potentials for the
automatized discrimination between different types of dy-
namics in many applications. Specifically, the alternative dis-
criminatory statistics introduced in this work could become
very helpful not only in evaluating, but also already in de-
signing both experimental and numerical studies, since the
requirements concerning the necessary amount of data can be
matched more easily. As a perspective, we therefore expect
that systematic application of the proposed methods will
open new fields of applications, as it has already been the
case with the introduction of RQA.34 However, there are still
situations where the consideration of Lyapunov exponents is
clearly superior for detecting periodic windows in compari-
son to the recurrence-based approach, in particular when the
governing equations are explicitly known or the available
observations of the considered systems are very long. It will
remain a subject of future studies to investigate in more de-
tail which of the two approaches is favorable under which
specific conditions.

Another traditional idea to distinguish periodic behavior
from chaotic dynamics is to use a properly defined surface in
phase space for a Poincaré section, since a periodic trajectory
has only a finite number of intersection points with this sur-
face, while a chaotic one renders an infinite number of cross-
ings. Note, however, that constructing a proper Poincaré sec-
tion for a given set of ODEs �Ref. 64� is much easier than it
is the case when working with time series, where one most
often relies on some interpolation techniques to find cross-
ings on the section, which obviously introduces noise-like
effects.32 Furthermore, there are no universal criteria for
choosing Poincaré sections when scanning a large parameter
space �e.g., Fig. 3� since the shape and the orientation of the
attractors typically vary for different parameter values.

In this work, we have been particularly interested in the
problem of detecting specific periodic windows in parameter
space, so-called shrimps, which are characterized by a rich
bifurcation scenario and self-similarity. Specifically, we have
addressed the problem of numerically detecting shrimps in
systems of ODEs, while the related question of the associ-
ated bifurcation scenarios remains a subject for future inves-
tigations. We expect the recurrence-based methods proposed
in this work to be particularly useful for this problem, espe-
cially concerning the properties of secondary shrimps and
the quantitative analysis of possible transient behavior.

For properly identifying shrimps in parameter space
based on recurrence plots, both measures from RQA and
complex network theory have been applied. For the �c ,a�
parameter plane of the Rössler system, especially the re-
cently proposed application of network measures to the re-
currence matrix of complex systems36,39 yields results coin-
ciding well with those obtained using �1. The used RQA
measures in this paper need two parameters recurrence rate
RR and minimum line length lmin, RN measures depend ex-
clusively on RR. We have to emphasize that this conceptual
advantage comes at the cost of higher computational de-
mands, especially when considering the average path length
L of the RNs. However, the clustering coefficient C, which
has been found to perform best in our example when consid-
ering the most sophisticated statistical evaluation �ROC

analysis�, can be calculated at significantly lower costs. Gen-
erally, C seems to be very well suited for distinguishing pe-
riodic from chaotic dynamics, even for time series sampled
at a very high rate, such as the examples presented in this
work. However, for high sampling rates, DET and Lmean can
have a reduced discriminatory performance since the typical
line structures become too similar.65 We additionally note
that both network measures have shown a slightly better dis-
criminatory power for secondary shrimps than the two RQA
measures DET and Lmean, at least for the specific setting used
in this study. As we have not explicitly shown here, even
larger performance errors can be observed for other line-
based RQA measures. A more detailed investigation of pos-
sible impacts of other choices of lmin and RR has not yet been
systematically performed, but will be the subject of future
studies. As a preliminary result, repeating all presented cal-
culations with a different value of RR=0.01 supports all the
results discussed in detail for RR=0.02 in this paper.

The two specific network-theoretic quantities considered
here have already been shown to be able to detect the dy-
namical transitions in both model systems and real-world
time series.36 We note, however, that since both measures are
invariant under permutations of the time coordinate,39 they
exclusively capture the geometry of states associated to a
specific trajectory in phase space. This is a distinctive differ-
ence to most existing methods of time series analysis, which
are related to the study of temporal correlations. We hypoth-
esize that the good performance of network measures in de-
tecting shrimps could be related to this fact, since network
measures take only information about spatial correlations
�i.e., neighborhood relationships in phase space� into ac-
count.

While a rigorous theory interrelating the phase space
properties captured by RN measures to traditional dynamical
invariants is still missing, the algorithm for estimating the
correlation entropy K2 from RPs �which has also been suc-
cessfully applied for detecting shrimps in continuous
systems15� has been justified theoretically.35 Since the esti-
mation of K2, however, involves several steps15 with some
subjective issues �in particular, the choice of the scaling re-
gion for convergence�, its computational demands are sig-
nificantly higher than those of the complex network as well
as RQA measures applied in this work. Particularly, a large
range of values of RR �1%–99%� is often considered to yield
a well defined plateau of K2�RR�, while the method proposed
in this paper works with just one chosen value of RR, dra-
matically reducing computational costs. Systematically cal-
culating RN statistics as well as RQA measures can be easily
automatized using a fixed recurrence rate RR, ideally with
RR�0.05.53,55 Hence, we conclude that our approach allows
a systematic numerical discrimination between periodic and
chaotic dynamics of a continuous system, which is more
practicable than other possible techniques especially when
systematically studying higher-dimensional parameter
spaces.

In relation with the problem of discriminating between
two qualitatively different types of dynamics in a binary way,
which has been discussed in this work, Lyapunov exponents
have also found wide use in quantitatively characterizing the
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“chaoticity” of complex dynamics. Following the results
from Table II, we emphasize that the recurrence-based char-
acteristics considered in this work may be used for similar
purposes. In contrast to the discriminatory power, our corre-
sponding initial results suggest that the applied RQA mea-
sures may be somewhat better suited for this purpose than
the network-based concepts. However, further detailed statis-
tical analysis is necessary in order to provide further evi-
dence that this result holds in general. A detailed treatment of
this question therefore remains a subject of future studies.
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