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We use a set of qualitatively different models of coupled oscillators (genetic, membrane, Ca-
metabolism, and chemical oscillators) to study dynamical regimes in the presence of small detun-
ing. In particular, we focus on a distinct oscillation quenching mechanism, the oscillation death
phenomenon. Using bifurcation analysis in general, we demonstrate that under strong coupling via
slow variable detuning can eliminate standard oscillatory solutions from a large region of the
parameter space, establishing the dominance of oscillation death. We argue furthermore that the
oscillation death dominance effect provides a reliable dynamical control mechanism in the general
case of N coupled oscillators. © 2010 American Institute of Physics. [doi:10.1063/1.3456937]

The dynamical behavior of complex systems has been ex-
tensively studied in a vast variety of natural and artificial
systems. Despite various rhythmogenic activity which can
occur as a response from the interactions among the
coupled units, special attention has also been devoted to
suppression of oscillations, and the mechanisms for emer-
gence of this phenomenon. We focus here on one of the
fairly less studied mechanisms, the oscillation death (OD)
phenomenon. Using a set of qualitatively different sys-
tems of coupled oscillators (genetic, membrane, Ca-
metabolism, and chemical oscillators), we demonstrate
that under strong coupling via slow variable detuning can
eliminate standard oscillatory solutions from a large re-
gion of the parameter space, establishing the dominance
of OD. Moreover, we generalize that the effect of OD
dominance is independent of the model structure, as well
as of the model details and the coupling type. Thus, we
propose this effect as an efficient regulator of the system’s
dynamics. Additionally, since the OD can be considered
as an extension of Turing’s mechanism in oscillatory me-
dia, it can be stated that on one hand, the OD dominance
enlarges the robustness of the Turing’s structures, and on
the other hand, it provides a control for the transition
between the steady and oscillating states in developing.

I. INTRODUCTION

Complex system’s responses emerging from interactions
among coupled units have been extensively studied in vari-
ous fields, including coupled solid-state lasers,' chemical and
electrochemical systems,z’3 heart pacemakers,4 etc. The dy-
namical behavior observed in different cases depends both
on the coupling organization and strength as well as on the
characteristics of the individual oscillators composing the
system. Despite various rhythmogenic activities which can
occur in coupled systems (e.g., synchronization, as one of the
most studied phenomena5 ), special attention has also been
paid to the suppression of oscillations, whereby individual
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oscillators cease to oscillate when coupled and go to one or
more equilibrium solutions. In the literature, two main mani-
festations of the oscillation quenching are known: amplitude
and OD phenomena.

Generally, amplitude death (AD) refers to a situation
where oscillations are suppressed when individual oscillators
are coupled, and return to a steady state of the system in-
stead. Thus, AD results in a homogeneous steady state
(HSS). There are three main mechanisms that lead to AD
phenomena: (i) large mismatches between the oscillator’s
frequencies result in oscillation suppression,6’7 (i) the exis-
tence of a time delay in the coupling,*™' and (iii) AD can
also occur in systems of identical oscillators, but only when
they are coupled through dissimilar (or conjugate)
variables.”> AD phenomenon in general has attracted much
attention in the investigations of complex dynamical sys-
tems, since this particular type of oscillation quenching
arises in various examples in physical, biological, and
chemical systems, or social sciences, etc. The investigations
of AD phenomenon, therefore, range from experimental14 to
various theoretical research,ls’16 etc.

The second manifestation of oscillation quenching—the
OD phenomenon, has a significantly different background of
occurrence compared to AD. Namely, OD is a result of
breaking the system’s symmetry through a pitchfork bifurca-
tion (PB) whereby the HSS splits, giving rise to two addi-
tional branches, which further gain stability through Hopf
bifurcations (HBs). This idea, pioneered by Turing in Ref.
17, was mathematically formulated by Prigogine and
Lefever'® for two identical Brusselators coupled in a diffu-
sionlike manner: their interactions can break symmetry,
which leads to a stable inhomogeneous steady state (IHSS).
Furthermore, it has been shown theoretically that OD is
model independent, persisting for large parametric regions in
several models of diffusively coupled chemical" or biologi-
cal oscillators.* Experimental results reported by Dolnik and
Marek®! show the extinction of oscillations in chemical re-
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actors coupled by mutual mass exchange. Later, Crowley and
Epstein2 demonstrated for two coupled, slightly nonidentical
chemical oscillators that the basis for OD is a specific,
vector-type coupling, namely, coupling via a slow recovery
variable. Recently, OD was also found in a model of globally
coupled synthetic genetic relaxators which interact via diffu-
sion of signaling molecules, produced by a protein with slow
kinetics.? It is important to note that OD in the investigated
systems is always accompanied (coexists) in parameter space
with stable synchronous oscillations.>**%*

However, OD (in contrast to AD) has been poorly inves-
tigated in populations of globally coupled oscillators. On the
other hand, the OD phenomenon provides a very important
research topic because it produces heterogeneity in a homo-
geneous oscillating medium. Moreover, this kind of behavior
has been correlated and interpreted as a type of dynamical
differentiation in biological systems. This view was already
initiated by Turing17 in his investigations of IHSSs in
reaction-diffusion systems, and has been further extended by
Kaneko,” who proposed clustering in coupled map dynam-
ics as a physical background of biological differentiation.
Furthermore, in the limits of this approach, it was recently
shown?® that cell differentiation is a result of bifurcation of
cell states via intercellular interactions, while the population
regulation could be seen through a self-consistent determina-
tion of the bifurcation parameter through cell-cell interac-
tions.

In our previous work®’ we have investigated the behav-
ior of globally coupled genetic relaxation oscillators in the
presence of small detuning and have shown that under strong
coupling via the slow variable, the detuning can eliminate
standard oscillatory solutions in a large region of the param-
eter space, providing the dominance of OD. This result is
substantially different from previous findings on oscillation
quenching, where for homogeneous populations, the coexist-
ence of OD and limit cycle oscillations is always present. We
have also pointed out the fact that this phenomenon is intrin-
sically related to fast diffusion of the slow variable, a model
structure typical for relaxation oscillators. We have therefore
hypothesized that the phenomenon of oscillation death domi-
nance (ODD) is rather general and model independent, e.g.,
ODD could be observed for different models of coupled syn-
thetic genetic networks, chemical and biochemical systems,
or other models where a global intensive inhibitor diffusion
takes place.

To support this statement, we perform here an extensive
analysis of various systems (biological, chemical, synthetic,
etc.), which differ in their phase portrait structure as well as
coupling mechanisms. By means of bifurcation analysis (us-
ing the XPPAUT packagezg), carried out initially on minimal
systems of two coupled units, we show that ODD is charac-
teristic for systems with significantly different dynamics and
does not depend on the coupling characteristics as long as
the general criterion, fast diffusion of the slow variable, is
met. Moreover, we investigate and characterize the manifes-
tation of ODD in populations (results being valid for the case
of N coupled oscillators, in general), where more complex
dynamical structures exist due to clustering of the oscillators.
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FIG. 1. (Color online) Model overview: (a) characteristic N-shaped
nullcline (synthetic genetic oscillator model); (b) nullcline representation
(dashed lines) in a triangle limit cycle (Brusselator model); (c) specific
structure of the Oregonator model (dashed lines represent the nullclines).
The axes notation corresponds to the systems’ nomenclature in this
manuscript.

Il. ODD EFFECT IS INDEPENDENT OF THE SYSTEM’S
STRUCTURE: MODEL OVERVIEW

The background of OD, as already mentioned, is fast
diffusion of the inhibitor in reaction diffusion systems. There
exist various models in the literature for which this type of
diffusion is quite natural and for which, in the presence of
small detuning, the effect of ODD holds true. Thus, in order
to demonstrate the generality of the effect of ODD, we in-
vestigate here its manifestation in several models which dif-
fer in their dynamics and coupling mechanisms: on the one
hand, we investigate several representations of systems char-
acterized with an N-shaped nullcline [see Fig. 1(a)] (e.g.,
synthetic genetic, membrane or calcium oscillators), and on
the other hand, we show the existence of ODD for oscillators
with significantly different phase space realizations. The
phase portraits of these systems are either triangle [Fig. 1(b)]
as in the widely investigated model of the Brusselators, or
have a specific structure, as in the model of coupled
Belousov—Zhabotinskii (BZ) oscillators, the coupled Orego-
nators [Fig. 1(c)]. In Secs. IT A and II B we discuss in details
the dynamics and structure of each model type separately.

A. Representation of oscillators with N-shaped
nuliclines

The positioning of the nullclines in each system deter-
mines its dynamical behavior. In general, in dynamical sys-
tem with one N-shaped nullcline and a second nullcline rep-
resented as a line intersecting the first one [Fig. 1(a)], an
occurrence of alternatively slow and fast “relaxation” oscil-
lations is generated over a wide range of parameter intervals.
Thus, a general characteristic of these oscillators is the pres-
ence of multiple time scales in the system. Although exten-
sively used in electrical engineering and physics, they have
become also a modeling tool for many biological and chemi-
cal processes. Here, we use a synthetic genetic oscillator,” a
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membrane oscillator,”” and a model characterizing calcium
(Ca*) oscillations in the pancreatic ,8—cells20 as representa-
tive examples. We investigate further the presence of ODD
in the minimal model of two coupled units, and characterize
its dependence on the coupling type and the detuning present
in the systems.

1. Model of synthetic genetic relaxation oscillators

In the past several years, collective rhythms of regula-
tory genetic networks have been a subject of considerable
interest, especially because of the fact that the advancement
of molecular biology techniques has enabled observations of
the dynamics of regulatory networks via engineered syn-
thetic genetic circuits in laboratories. Therefore, several
theoretical”***? and experimental models™** of distinct
synthetic oscillators or populations have been proposed and
realized. The main means of coupling in the constructed sys-
tems has been realized via a transmembrane diffusion of a
signaling molecule, called autoinducer (Al), into the extra-
cellular medium. It has been also shown that a particular
realization of an Al mediated coupling in these systems can
lead to the appearance of oD, 243! only if the Al is gener-
ated by the slow variable, in contrast to the relaxation
model,** where the production of Al is regulated via the fast
variable, and thus, OD does not occur in the system. Gener-
ally, the oscillators engaged in OD in synthetic genetic net-
works are distributed between two clusters, while each being
in a stable steady state. This corresponds to two different but
constant protein concentration levels.”>**! The presence of
OD in synthetic circuits is important on the one hand, since it
can be interpreted as a promising tool for cell function regu-
lation: it provides a stable variability of protein concentra-
tion. On the other hand, OD can be viewed as an additional
mechanism for genetic switching based on interacting limit
cycles, a mechanism substantially different from a standard
genetic toggle switch.*®

The model considered here consists of hysteresis-based
relaxation genetic oscillators coupled by a quorum-sensing
mechanism proposed in Ref. 22. Namely, the oscillator is
constructed by combining two engineered gene network
components, a toggle switch,”® and an intercell communica-
tion system, which have been previously implemented ex-
perimentally in Escherichia coli® and Vibrio j‘ischeri.3 ® The
synthesis of both repressor proteins, constituting the toggle
switch, is regulated in such a way that the expression of the
two genes is mutually exclusive, providing for bistability.
The second network component is based on the dynamics of
the AI, which, on the one hand, drives the toggle switch
through the hysteresis loop, and on the other hand provides
intercellular communication via diffusion through the cell
membrane.

The time evolution of the elements in the system is gov-
erned by the dimensionless equations (see Ref. 22 for de-
tails),
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where N is the total number of cells (oscillators), u; and v;
represent the proteins of which the toggle switch is made in
the ith cell, w; and w, are the intra- and extracellular Al
concentrations, respectively. The dimensionless parameters
a(li) and a, regulate the operation of the repressor in the
toggle switch, az—the activation due to the Al, and a,—the
repressing of the Al. The coupling coefficients in the system
are given by d and d, (intracellular and extracellular) and
depend mainly on the diffusion properties of the membrane,
as well as on the ratio between the volume of the cells and
the extracellular volume. The presence of multiple time
scales in the model (established for £ < 1) allows the system
to produce relaxation oscillations which emerge via a HB.

In our previous work?’ we have assumed that the detun-
ing between different cells is achieved with variability in the
) parameter values, thus defining d;;= a(l’)/ aY) as a detuning
measure between the cells. The suggestion for introducing
the variability in «; is realistic from an experimental point of
view, because this parameter is affected by the plasmid copy
number, which, in turn, is changing during the cell prolifera-
tion. We have observed that under strong coupling via the
slow variable, the detuning can eliminate standard oscillatory
solutions for a system of N=2 coupled synthetic units in a
large region of the parameter space, providing ODD [Fig.
2(b)], in contrast to the case of identical elements [Fig. 2(a)],
where a clear coexistence of OD and a full amplitude oscil-
latory regime is observed. Note that even for slightly detuned
parameter values, the HSS corresponding to cells being iden-
tical “splits” in slightly IHSSs with different concentration
values. Thus, in Fig. 2(b), and later throughout the manu-
script, the analysis is preformed following the dynamical
changes of the system through the upper level branch of the
slightly THSS. This result was characterized in detail for dif-
ferent coupling and detuning values in Ref. 27.

However, almost all biological processes, especially
those that occur on a genetic level, are noisy in general.
Thus, many regulatory parameters differ when comparing
separate cells. Moreover, even in a well-controlled experi-
mental setup, it is often very difficult to pinpoint in which
parameter specifically variations occur. Therefore, it will be
of general interest to investigate additionally the cumulative
effect of many parameter mismatches on ODD. In particular,
this could be achieved by introducing heterogeneity in sev-
eral parameters which influence the dynamics of single
genes, the coupling values, and the index of time scale sepa-
ration. Allowing such situations to occur (e.g., variability
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FIG. 2. (Color online) Manifestation of OD and ODD in a system of
coupled synthetic oscillators [Eq. (1)]. (a) Coexistence of OD and limit
cycle oscillations for identical elements—d;;=1, d=0.006; (b) ODD for
d;;=0.97 and d=0.008; (c) ODD under a cumulative effect of parameter

mismatches in a(li), g, and d. Other parameters: a,=5.0, a3=1.0, ay=4.0,

£=0.01, d,=1, and N=2. Here and in the following charts, solid lines denote
stable steady and oscillatory solutions, whereas dotted and dashed lines refer
to unstable steady/oscillatory solutions. Thick solid black lines denote stable
OD (THSS), and thin solid black lines denote stable HSS. The limit cycles
represent in-phase solutions (blue lines online) in (a) and Figs. 3-5 and 6(a),
quasi-in-phase solutions [blue lines online in Figs. 5(b), 5(c), and 6(b)],
asymmetric regimes [red lines online in Figs. 2(b), 2(c), 3, 4(b), 6(b), and 7],
and inhomogeneous limit cycles (red lines online) in Figs. 5(a)-5(c) and
8(b). LP represents limit point, PD a period doubling, and PB a pitchfork
bifurcation. A detailed description of all dynamical solutions of the system
of coupled synthetic oscillators is given in Ref. 27.

present also in d and &) lowers the initial detuning threshold
(in ;) necessary for the realization of ODD; an example of
a cumulative detuning effect on ODD is shown in Fig. 2(c).
Thus, the mismatches present in various parameters in the
system most probably increase the possibility for ODD and
enlarge the parameter interval where this effect could be ob-
served. This situation in a certain way accounts for the ro-
bustness of ODD, allowing for a wide window of possibili-
ties and experimental manipulations where this particular
type of oscillation quenching could be observed and investi-
gated. Additionally, ODD is also observed when d, is varied,
preserving its existence even when the diffusion of the Al in
the extracellular medium is not very fast (results not shown
here).

2. The membrane model

In this section we consider the interactions of another
strong relaxation oscillator generating a limit cycle due to the
N-shaped nullclines. In particular, we investigate a model
used to describe the kinetics of lipid peroxidation in a cell
membrane, which in the 1970s was also interpreted as a
model for the cell cycle of mammalian cells.””*? The phase
portrait of this model is in general very similar to the struc-
ture of the synthetic genetic oscillator discussed previously.
However, due to the biological relevance, a different cou-
pling type, namely, local coupling via the slow variable,
seems more appropriate here.

The reduced dimensionless form for two coupled oscil-
lators may be then written as
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FIG. 3. (Color online) (a) Coexistence of OD and in-phase oscillations for
two identical membrane oscillators [Eq. (2)], d;=1.0, d=0.5; (b) ODD for
d,j=0.7, d=0.5. Other parameters: y=0.5, §=0.15, and £=0.05. Due to the
proximity to the bifurcation point, the bifurcation branch is not completely
closed.
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The parameter € controls the stiffness of the oscillators and
could vary between 0.1 and 0.01, and d denotes the coupling
strength. These equations are derived from a realistic set of
chemical equations, but for our purpose here, we will omit
all physicochemical details and consider this system as a
paradigmatic model for an oscillator of relaxation type. For
identical oscillators and any value of the coupling coefficient
for which OD is present in the system, there is a clear coex-
istence of the OD regime with the full amplitude oscillatory
regimes [Fig. 3(a)]. However, a slight divergence introduced
in the # parameter (d;;= 7/ 7)) values assures for a com-
plete removal of the oscillatory solutions from the middle of
the parameter interval [Fig. 3(b)].

The occurrence of ODD is linked to the interdependency
of the coupling strength and the detuning present in the sys-
tem. This characteristic is general and valid for all systems
where ODD is observed. As discussed in Ref. 27, ODD
emerges even for small detuning between the oscillators, al-
though a complete elimination of the oscillatory solutions
from the middle of the parameter plane is established only
for critical values of d;; and coupling strength d. In general,
if a smaller variability between the cells is present, then a
larger coupling coefficient is necessary in order to observe
ODD, and vice versa, if the cells differ significantly between
each other, then even small coupling values will produce
ODD in the system.

As we have shown so far, the occurrence and the stabil-
ity of ODD do not depend directly on the coupling charac-
teristics of the system. As long as diffusive coupling via the
slow variable is assured, ODD can be observed indepen-
dently of the organization of the coupling—ODD exists in
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various systems for which different coupling mechanisms
(local or global) are “natural” in the distinct cases.

3. Ca-metabolism in insulin-secreting pancreatic
B-cells

An important control center in glucose homeostasis is
the insulin-secreting pancreatic [-cell, localized in the islets
of Langerhans. Insulin secretion is a complex multicellular
process, which relies on the interaction between p-cells
within an islet as well as on the interactions between islets in
the pancreas. Under normal conditions, glucose stimulation
evokes well-synchronized oscillations of the cytosolic Ca®*
concentration ([Ca®*];) in the B-cells in an islet, which in
turn triggers pulses of insulin secretion.***! It has been sug-
gested that a disturbance in the Ca®* oscillations could con-
tribute to the irregularity of insulin oscillations in diabetes
patients. Therefore, it is of outmost interest to investigate and
characterize the mechanism underlying the coordination and
the metabolic coupling in pancreatic S-cells. However, the
extent of the metabolic coupling and its influence on islet
cell coordination is unclear.*? In Ref. 20, for e.g., the effect
of intracellular Ca diffusion has been analyzed using a
Morris—Lecar-like -cell model.*® It was shown that surpris-
ingly, the diffusion of calcium through gap junctions, if too
strong, can have a desynchronizing effect by promoting OD,
from which it was concluded that Ca gap-junctional diffusion
does not make an important contribution to the normal func-
tion of pancreatic islets of Langerhans. Since the Ca oscilla-
tion model can be classified as another representative of re-
laxation oscillators with an N-shaped nullcline, we extend
our investigations here to the possibility for ODD in this case
as well, and examine the necessary conditions under which
the production of constant Ca concentrations dominates in
the system.

The particular model is explained in detail in Ref. 20.
For the purpose of our investigations we introduce, however,
a reduced form of the model, which is sufficient to charac-
terize the occurrence of ODD with the following representa-
tion:

av, 1
= (L~ 1; ~ 1

dt _Cm app ~ lig Ii)s

Tk(aTP) Iica - IiK(Ca) e
3)

c; ;
d_lt = fey(=al; (V) - kgK/ICACi +8ec(cj—ci)),

where V represents the membrane potential, and ¢ accounts
for the cytosolic calcium concentration, [Ca**];. The param-
eter kggac  denotes the plasma membrane Ci* ATPase pump
rate, and in the case of two coupled cells, for which we are
performing the bifurcation analysis here, we define the diver-
gence as d,-jzkgl)vlc Al kgl\)/lc - Other variables have the same
notation and values as in Ref. 20. Although similar investi-
gations of coupled nonidentical cells were performed in Ref.
20, the authors there have used a strong heterogeneity (di-
vergence of order 0.2) and very high coupling coefficients
(gcyca~0.5), which resulted in a large parameter interval
where OD is stable. Moreover, for such coupling values,
there is a coexistence of OD, the HSS of the system, and
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FIG. 4. (Color online) Manifestation of (a) coexistence of OD and limit
cycle oscillations for a system of N=2 coupled identical Morris—Lecar-like
B-cells [Eq. (3)], where d;=1.0 and 8c.c,=0.035; (b) ODD for divergence
d;j=1.3 and gCVC“=O.O35. Other parameters as in Ref. 20.

stable oscillations. In contrast to this, we investigate here the
dynamical behavior of coupled S-cells in the region of mod-
erate coupling (gc,ca ~0.035), and a parameter mismatch not
greater than 4% in their kpycs values, which fulfills the con-
dition that the symmetry of the system is being broken and
OD has been observed. Under these relations, a clear coex-
istence of OD and in-phase oscillations is present in the case
of identical elements [Fig. 4(a)], whereas for the current
choice of parameters (4% divergence between individual
cells), a partial ODD can be established [Fig. 4(b)], removing
the stable oscillatory solutions from the middle of the param-
eter interval.

B. Representation of oscillators with model-specific
phase portraits

In this section we investigate conditions necessary for
the emergence of ODD in systems which differ in their dy-
namical structure from the previously investigated oscillators
with N-shaped nullclines. In particular, we consider two
chemical models, the well-known Brusselator model and a
model describing BZ reaction using a simplified Oregonator
model. Although no general subclassification of these models
exists, both systems are characterized with specific phase
portraits. In general, the Brusselator has a particular triangle
phase portrait [Fig. 1(b)] with three distinct times (or rates)
on the cycle: T,y (T4p) being the time of a phase point mo-
tion on the slow (left) part of the x-nullcline, the time of
jump to the y-nullcline is denoted as Ty, (Tpc,Tpa), and
Toderate! Tep) characterizes the time of motion of the phase
point on the y-nullcline. The relaxation of the oscillators is
defined as Tyow/ (Teast+ Trnoderate)- ON the other hand, the Or-
egonator model has a more specific structure of the phase
portrait, marked by the coexistence of the HSS and IHSS. In
contrast to the models describing the oscillators with an
N-shaped nullcline which contain the parameter € in an ex-
plicit form, the stiffness in these two models is controlled by
the kinetic parameters. In what follows, we analyze in detail
the conditions necessary for the appearance of OD and ODD
separately in both systems.
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1. Model of two diffusively coupled Brusselators

The Brusselator is an autocatalytic model involving two
intermediates. It illustrates how the fundamental laws of
thermodynamics and chemical kinetics as applied to open
systems far from equilibrium can give rise to self-organizing
behavior and dissipative structures in the form of temporal
oscillations and spatial pattern formation. In the simplest
form, the Brusselator model includes two coupled variables
representing the concentrations of the intermediate products.
Thus, the classical model for two identical Brusselators with
vector coupling (via y) through a semipermeable membrane
is described by

dx; .
" (B + 1)x; +x7y;
4)
dy;
Eszi_xizyi'*'d(yj_yi)'

The coupling as given here is not the most customary
one, since we disregard coupling through activatory vari-
ables, but it is the limiting case of the general asymmetrical
coupling. Although this representation of the model does not
exactly correspond to a specific chemical reaction, it is useful
for investigations because it is paradigmatic and it has per-
mitted to obtain a lot of analytical results which could be
further generalized. Moreover, steady states and oscillatory
regimes for coupled Brusselators were investigated in
details,lg’B’M*47 but for identical elements. It has also been
observed that coupling the Brusselators via the inhibitory
y-variables contributes to an easier detection of OD for cou-
pling greater than a predefined value, d;>0.309, even for
soft oscillators. Moreover, the region of OD is more pro-
nounced in the (B,D) parameter plane for A=1. We will
therefore continue to use this parameter plane for OD de-
scription, but investigate its dependence on the divergence
introduced in the A values of separate -elements
(d,»j=A(i>/AU)). However, we note that the results obtained
below are not sensitive to this choice of A values.

Using a linear stability analysis in the case of identical
elements, d,-j=1, it can be easily estimated that the HSS
looses its stability through a HB for B>A%+1 (i.e., B.;=2,
for A=1, which will be used in this work), where a limit
cycle is created. Thus, a clear coexistence of OD and in-
phase oscillations [emerging from HB, in Fig. 5(a)] is ob-
served. Moreover, the oscillators easily demonstrate a spa-
tially inhomogeneous limit cycle (IHLC) [emerging from
HB,, in Fig. 5(a)], born via a HB of the THSS and provides
high frequency oscillations with amplitudes very sensitive to
coupling values.

In contrast to the case of identical Brusselators [Fig.
5(a)], the bifurcation structure is qualitatively different when
a slight diversity is introduced in the system. A specific prop-
erty of the bifurcation diagram in this case is the absence of
a gap between OD and the stable HSS (the HSS and the
THSS here are not separated with an unstable steady state).
Therefore, we mark the “left” OD limit B>A%/2D+1 (a
detailed analysis of the system is given in Ref. 23) with
additional arrows in the bifurcation continuation, whereas
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FIG. 5. (Color online) (a) OD realization for two identical Brusselators [Eq.
(4)] (d;;=1 and d=0.45), (b) ODD for two nonidentical Brusselators with
d;=0.97 and d=0.45, and (c) ODD manifestation for d;;=0.97 and d=1.4.

the “right” boundary of OD is characterized with a HB [Fig.
5(b)]. Apart from this, the parameter B has no upper limit
and the amplitude of oscillations is increased for larger B
values, making the oscillators very stiff. Although a non-
standard situation, OD “pushes” the oscillatory solutions
[THLC (emerging from HB,, in Fig. 5) and quasi-in-phase
regime (emerging from LP, in Fig. 5(b))] to the side, thus
establishing dominance over a given parameter interval in
this case as well.

Due to the condition B>A?/2D+1, for larger coupling
values, the left OD limit is pushed further to smaller B values
[see Fig. 5(c), where B~ 1.36 for d=1.45]. Again, the HSS
and the THSS are not separated with an unstable steady state.
Thus, the oscillatory solutions could be created only through
a HB marking the right stability end of the OD solution. This
means that the oscillatory regimes are shifted to higher B
values, and the detuning [d;;=0.97 in Fig. 5(c)] abolishes
completely the oscillatory solutions in a large part of the
parameter plane, replacing them with OD, and establishing a
clear dominance of the OD regime (ODD).

2. Belousov-Zhabotinskii oscillators—system
of coupled Oregonators

Coupled chemical oscillators are key components of
many naturally occurring but also constructed systems, and
have been therefore in the center of scientific research for a
long time. One of the most frequently used models to inves-
tigate the dynamics of chemical systems is the model con-
structed from two, nearly identical BZ oscillators, physically
coupled by mass transfer. One manifestation of such a sys-
tem is given through a three-variable Oregonator model used
in Ref. 2 to elucidate how the chemistry of the system gen-
erates the various behavior (such as OD, in-phase and an-
tiphase oscillations) observed in experiments. We are inter-
ested whether this experimentally realized system manifests
ODD, taking in mind the selective roles of the activatory and
inhibitory variable exchanges which are difficult to separate
in experiments.

For the purpose of our investigations, we use the Orego-
nator model in the most simplified, two-dimensional form,
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FIG. 6. (Color online) Characterization of (a) OD for N=2 coupled identical
Oregonators (d;;=1.0, d=1.0) and (b) effect of ODD for nonidentical Or-
egonators [Eq. (5)] (d;;=1.2, d=1.0). Other parameters: £=0.05, ¢=0.005.

dx; _1 i) M)
dt - 8<x1(1 xl) f< <j q+x; s
) )
Zi

E:xi—zﬁd(zj—zi).

Here, € and ¢ are kinetic parameters related to the reagent
reaction rates, as well as f, through which we define the
divergence in the system as d;;= F97A9. x and z are propor-
tional to the concentration of HB,O, and metal ions.”

In the case of identical elements, the bifurcation diagram
is a nonstandard one compared to the systems with an
N-shaped nullcline. Here, in a large part of the parameter
interval, there is a coexistence of OD with a HSS of the
system, and an additional coexistence with the in-phase os-
cillations [see Fig. 6(a)]. However, for a slight divergence in
the f values, dominance of OD is established, although a
partial coexistence of the IHSS with the full amplitude oscil-
latory solutions still exists [see Fig. 6(b)]. For increased di-
versity between the coupled Oregonators in the system, the
ODD will be complete (charts not shown here).

lll. EMERGENCE OF OSCILLATION DEATH
DOMINANCE IS INDEPENDENT ON THE SIZE
OF THE SYSTEM

Diffusive local or global coupling in systems consisted
of many oscillators can have an important effect on both,
local dynamics and pattern formation (the second being re-
cently related to clustering26). Dynamical differentiation, or
clustering, on the other hand, has been observed in chemical
systems, e.g., in globally coupled chaotic and periodic metal
electrodissolutions.*>* Additionally, in our recent work, we
have investigated the effect of OD and its contribution to
cooperative differentiation in multicellular populations,so
where we have shown that populations display richer dy-
namical behavior, and the effect of clustering has to be con-
sidered when analyzing OD. Therefore, in this section we
study the effects that the size of the system has on the emer-
gence of ODD, separately for a system characterized with an
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FIG. 7. (Color online) Different stable cluster distributions for N=5 coupled
oscillators (the bifurcation branch for one oscillator is plotted). From left to
right: one oscillator located in the “(u)pper” OD cluster, four in the
“(l)ower” one—1u|4l distribution, 2u|3/, 3u|2l, and 4u|1l distributions.
The oscillatory solutions—asymmetric oscillations are pushed between the
stable distributions establishing ODD. ¢=0.008 and d,;=0.97. Other param-
eters as in Fig. 2.

N-shaped nullcline (the model of synthetic relaxation oscil-
lators), and a system with different dynamical characteriza-
tion, the Brusselator.

A. Coupled synthetic genetic relaxation oscillators

In the generalized case of N coupled oscillators (N>2),
the dynamics of the system becomes more complex due to
the possibility for cluster formation. As we have previously
reported,24 in the deterministic case of N coupled oscillators,
there exist N—1 different distributions of the oscillators be-
tween two stable clusters through which OD is manifested.
Each of the separate cluster distributions here is character-
ized with slightly different protein concentration levels, dis-
tinguishing the N—1 clusters from each other. Furthermore,
in the case of nonidentical elements, grouping of the oscilla-
tors between the “upper” and “lower” clusters in OD is still
present, although due to the detuning present in the system,
the concentrations of the proteins produced by different os-
cillators are slightly inhomogeneous (note that for N cells,
we define d;; by fixing the a(ll) value, and further varying the
remaining N—1 values of ¢, in the range [a(ll)i 10%], as
discussed in Ref. 27). Again, N—1 different distributions of
oscillators between the two “cluster groupings” are possible
with different stable cluster distributions in distinct param-
eter intervals (e.g., for N=5 given in Fig. 7). ODD is estab-
lished in the given parameter regions, “pushing” the oscilla-
tory solutions between the stable OD distribution branches.
Although the number of cluster distributions increases with
N, the qualitative behavior of the system does not change.
Thus, the effect of ODD can be generalized to large popula-
tions, as shown for a system of five coupled oscillators here.
Moreover, the accuracy of ODD in a system with N>2
coupled nonidentical oscillators was reconfirmed by exten-
sive numerical simulations (results not reported here). The
same generalization of ODD holds true for all previously
investigated systems characterized with an N-shaped
nullcline as well.
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FIG. 8. (Color online) (a) OD cluster groupings in the case of N=5 coupled
Brusselators. (b) Dominance of the OD solution over the oscillatory regimes
(stable regions are plotted with solid and unstable with dotted lines). Param-
eters: d=0.6 and d;;=0.99.

B. Manifestation of ODD for N coupled Brusselators

As we have already discussed, the dynamical structure
of the Brusselator model differs in general from systems
characterized by an N-shaped nullcline, and a characteristic,
nonstandard manifestation of ODD is observed [Fig. 5(b)].
For these reasons, we investigate the influence of the system
size on the emergence of ODD in a system of five coupled
Brusselators, generalizing it further for N coupled oscillators.
Similar to the previous case of the synthetic system, there
exist N—1 different distributions of the oscillators between
the two “cluster groupings” through which OD is manifested
in the case of diffusively coupled Brusselators as well. These
distributions correspond to a separation of the oscillators in
the lower and the upper level of OD [e.g., 1/|4u, 21|3u, etc.,
as shown in Fig. 8(a)]. The bifurcation analysis here is per-
formed only on the upper branch of the IHSS. Thus, we
present here only that part of the diagrams necessary for the
current discussion. These N—1 cluster distributions are stable
in distinct parameter intervals. However, due to their specific
structure, namely, the coexistence of separate stable
branches, the oscillatory solutions are not strictly “pushed”
between the stable OD branches (Fig. 8(b) shows a zoomed
region for B € [1,12]), where the partial coexistence of OD
and limit cycle solutions, as well as between different OD
distributions, is clearly shown. Thus, complete ODD is not
established in this system, since there are small parameter
regions where the oscillatory and the OD solutions coexist.
In the major region of the parameter interval where stable
OD branches are created, however, the oscillatory solutions
are unstable, thus leaving the ODD as the unique solution in
these parameter intervals [Fig. 8(b)].

Since the effect of ODD is sustained when the number of
oscillators in the system increases, we can generalize it and
show that ODD is preserved over the oscillatory solutions in
a wide parameter interval ranges and holds true for the case
of N coupled oscillators.

IV. DISCUSSION

In this work we have devoted special attention to the
emergence of OD phenomena, particularly analyzing the
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conditions under which a dominance of this OD can be es-
tablished. As already shown in Ref. 27 in the limits of a
specific genetic model, coupling in the presence of detuning
provides ODD, eliminating the periodic regimes from the
same parameter interval in the phase diagram. In that con-
text, we have demonstrated first of all that the observation of
ODD requires significantly smaller parameter mismatches in
the genetic oscillators if several parameters are detuned.
Next, we have generalized here the conditions under which
ODD occurs in various systems which differ in their dynami-
cal characteristics.

On one hand, ODD is manifested for systems with a
relaxation type of oscillations, a specific property of systems
characterized with an N-shaped nullcline, such as genetic,
calcium, and membrane oscillators, whereas on the other
hand, ODD can also be observed for oscillators with a
model-specific phase portrait, e.g., a triangle phase portrait
(the Brusselators), or have a specific structure of coexistence
of HSS and IHSS (the Oregonator model). Moreover, we
have investigated the dependence of ODD on the coupling
characteristics and showed that in systems where a fast dif-
fusion of the inhibitor in reaction diffusion systems has been
met, as those which are analyzed here, in the presence of
detuning, the emergence of ODD is generic for local as well
as for global coupling. Thus, we can generalize, at least for
these two large groups of models, that ODD is independent
of the model structure, as well as of the model details and the
coupling type: the OD regime does not compete any longer
with the full amplitude periodic regimes in the phase space,
establishing its clear dominance in the phase plane. Addition-
ally, the size of the system does not influence the emergence
of ODD. In the case of N coupled oscillators (N>2), al-
though the dynamics of the system becomes more compli-
cated due to the clustering that occurs, the OD regime pushes
the oscillatory solutions to the side, establishing again a clear
dominance over the remaining dynamical regimes.

OD is the manifestation of an inhomogeneous stable
steady state in homogeneous media. Since the initial work by
Turing in this field, a lot of attention has been paid to the
mechanisms which lead to the occurrence of IHSSs, but for a
stationary medium in which the point element is in a steady
state. Thus, OD may be considered as an extension of Tur-
ing’s mechanism in oscillatory media, although the phase
space is shared with a limit cycle. Additionally, ODD, which
we discuss here and which is observed for reasonable and
natural values of parameter detuning, enlarges the robustness
of the Turing structures in oscillatory media. Taking in mind
that such structures are considered as a background of mor-
phogenesis and differentiation, we can speculate that ODD
not only extends the applicability of Turing’s idea, but also
provides an additional parameter, the value of detuning,
which can control the transitions between steady and oscil-
lating states in developing, in particular, biological systems.
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