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Abstract

Sensory information entering the nervous system follow independent paths of processing such that

specific features are individually detected. However, sensory perception, awareness and cognition

emerge from the combination of information. Here we have analyzed the cortico-cortical network

of the cat, looking for the anatomical substrate which permits the simultaneous segregation and

integration of information in the brain. We find that cortical communications are mainly gov-

erned by three topological factors of the underlying network: 1) a large density of connections,

2) segregation of cortical areas into clusters and 3) the presence of highly connected hubs aiding

the multisensory processing and integration. Statistical analysis of the structure of shortest paths

reveals that, while information is highly accessible to all cortical areas, the complexity of cortical

information processing may arise from the rich and intricate alternative paths in which areas can

influence each other.

∗Electronic address: gorka@agnld.uni-potsdam.de
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Traditionally, complex dynamical systems are characterized by a large

number of nonlinearly interacting elements. The recent discovery of an intricate

and nontrivial interaction topology among the elements in natural systems

introduces a new ingredient to the spectrum of complexity. A network represen-

tation provides the system with a form (topology) which can be mathematically

tractable towards uncovering its functional organization and the underlying

design principles. The term complex is coined because most real systems have

neither a regular nor a completely random topology, but survive in some inter-

mediate state, probably governed by rules of self-organization. For example,

the axonal pathways (white matter) transmitting electrical information between

regions of the cerebral cortex (grey matter) form a complex network with very

particular properties. Information of different modality (visual, auditory, etc.)

entering the nervous system follows particular paths of processing, typically

separated from the processing paths of other modalities. This segregation

permits specialized information processing. However, achieving a coherent and

comprehensive perception of the real world requires that information of all

modalities are combined. Cortico-cortical networks of the macaque monkey and

cat have been found to be organized into clusters, facilitating the segregation

of areas specialized in one sensory modality. Where and how the integration

happens, is still unknown. In this paper, we present a statistical analysis of

the cortico-cortical communication paths. We find that cortical processing is

governed by very short paths, allowing for fast behavioral responses. Moreover,

cortical areas may influence each other via different alternative paths, suggest-

ing rich and complex information processing capabilities. Of particular interest,

we find that communication between areas of different modality is mediated by

few, highly connected areas, emphasizing the central role of these hubs for the

multisensory information processing and integration.
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I. INTRODUCTION

The mammalian nervous system is a complex system par excellence. Composed of over

1010 neurons, it is responsible for collecting and processing information, and providing

adaptive responses which permit the organism to survive in a constantly changing environ-

ment [1, 2]. In order to characterize the connectional organization of the nervous system and

to understand its functional implications, the complex network approach has been applied

in recent years, particularly at the level of the cerebral cortex. The long-range fibers linking

the cortical areas form a complex network which is neither regular nor completely random.

Cortico-cortical networks of the macaque and cat have been found to possess small-world

properties [3, 4], i.e. short average pathlength l and large clustering coefficient C, meaning

that cortical areas are at a very short topological distance from each other and are cohesively

linked. A stochastic optimization method detected a small number of distinctive clusters in

cortical networks of cat and macaque [3, 5]. Clusters are formed by areas which are more

frequently linked with each other than with areas in other clusters. Moreover, the detected

clusters closely coincide with functional subdivisions of different modalities [6, 7], e.g. they

contain predominantly visual or auditory areas (see Figure 1).

The capacity of the nervous system to simultaneously process different kinds of informa-

tion relies, to a large extent, on the circuitry where the stimulus is received and processed.

It has been widely argued that, to achieve its function, the cortical connectivity should be

organized into a balance between segregation (specialization) and integration (binding) [8].

Processing of detailed sensory information, e.g. detection of object orientation in visual

stimuli or detection of frequency in auditory stimuli, is processed performed in differenti-

ated cortical regions. But at the same time, the emergence of a coherent perception, and the

comprehensive understanding of the environment as a whole, requires that specialized infor-

mation of different modalities and features can be integrated. The clustered organization of

the cortical networks reveals the anatomical substrate for segregation. How and where does

the integration of information happen, is still unclear [9].

In this paper, we perform a large-scale statistical analysis of the communication paths

within the cortico-cortical connectivity of the cat. The aim is to study how the topological

organization is related to the potential information processing capabilities of the cortex. As

a working approximation, we consider that information in cortical networks flows only along
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FIG. 1: Weighted adjacency matrix W of the corico-cortical connectivity of the cat comprising of

826 directed connections between 53 cortical areas [6, 7]. The connections are classified as weak

(open circles), intermediate (blue stars) and dense (red filled circles) according to the axonal densi-

ties in the projections between two areas. For visualisation purposes, the non-existing connections

(0) have been replaced by dots. The network has clustered organization, reflecting four functional

subdivisions: visual, auditory, somatosensory-motor and frontolimbic.

shortest paths. In Section II the global classification of cortical networks is critically revised

by comparison to different ensembles of surrogate networks and network models. We find

that while cortical networks share characteristics of small-world networks, they contain a

broad degree distribution, with some hubs connecting up to 60% of all the areas. The com-

parison includes a novel manner to detect the optimal rewiriing probability of small-world

networks. In Section III the pairwise distance and communication paths between corti-

cal areas is analysed. We find that cortico-cortical communications are governed by direct

connections and paths of length two, assuring fast information processing and behavioral

responses. However, deeper analysis of the shortest paths reveals the capacity of the cortex

to process information in parallel and to simultaneously generate complex responses. In

particular, the fundamental role of the hubs is highlighted, by supporting and centralizing

the multisensory communications.

Cortico-Cortical Connectivity of the Cat

In this paper we analyse the cortical connectivity of the cat because it is, up to date, the

most complete data set of its kind. It was created by Jack W. Scannell after a collation of

an extensive literature reporting anatomical tract-tracing experiments [6, 7]. It consists of

a parcellation into 53 cortical areas and 826 fibers of axons between them as summarized in

Figure 1. The connections are weighted according to the axonal density of the projections

between areas. The connections originally reported as weak or sparse were classified with 1

and, the connections originally reported as strong or dense with 3. The connections reported

as intermediate strength, as well as those connections for which no strength information was

available, were weighted with 2.

After application of data mining methods [5, 6], the network was found to be organized
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into distinguishable clusters. Even if the analysis made use uniquely of the topological prop-

erties of the network, cortical areas known to have similar function were naturally clustered

together giving rise to the four functional subdivisions (visual, auditory, somatosensory-

motor and frontolimbic) displayed in Figure 1. From the 826 connections, 470 are internal,

i.e. they connect two areas in the same cluster, and 356 are external, i.e. connect two

areas in distinct clusters. The cortical data of the macaque monkey, although very rele-

vant for comparison to the abundant behavioral experiments, is still rather sparse for an

statistical analysis of the characteristic here presented. Nevertheless, based on the current

literature, we expect that the general conclusions obtained are suitable for understanding

cortical organization in a large family of mammals.

II. CLASSIFICATION OF CORTICAL NETWORKS

The cortico-cortical networks of cat and macaque have been classified as small-world

networks due to their large clustering coefficient C and their small average pathlength l. On

the other hand, robustness analysis has revealed similarity to scale-free (SF) networks [10].

In this section we perform a critical and detailed revision of this classification scheme by

comparing the cortical network of the cat to network models and surrogate networks of same

size, N = 53 nodes, and similar density of links ρcat = L
N(N−1)

≈ 0.3:

1. Small-world networks after the model of Watts and Strogatz (W-S) [11]. Starting

from a regular ring-lattice in which vertices are connected to their z = 8 closest

neighbors, links are rewired with a given probability prew. The resulting networks

contain L = 424 undirected links and have, hence, almost the same density as the

studied cortical network of the cat. The use of undirected links is justified because,

of the 826 links in the cortical network of the cat, 73% of them are reciprocal. On

the contrary, random directed graphs have reciprocity equal to ρ which, in this case,

is much smaller than the observed fraction of reciprocal links.

2. Scale-free (SF) networks with exponent γ = 1.5 have been generated following the

method in [17], which consists of a modification of the configuration model. Certainly,

with only 53 nodes the obtained networks cannot achieve a SF degree distribution,

nevertheless, they display a broad distribution, see Figure 3(b).

5



3. Random graphs are constructed, for consistency, out of the set of small-world networks

with prew = 1.0.

4. Random rewired digraphs of the same size N = 53, number of directed links L = 826

and degree distribution N(k) as the connectivity of the cat. The set was generated

by application of typical rewiring algorithms which conserve the input and the output

degrees of every vertex [12–15].

A. Optimal prew in W-S model

Before performing a comparative analysis, a proper rewiring parameter for the W-S net-

works needs to be chosen. Therefore, ensembles of 100 graphs have been generated with

probabilities ranging from prew = 0.0 (the initial lattice) to prew = 1.0 (equivalent to ran-

dom graphs). The clustering coefficient C and the average pathlength l of each ensemble

was measured and the results plotted, Figure 2(a), normalized by the values of the initial

lattice C(0) and l(0) as in the original reference [11]. According to Figure 2(a), it seems that

there is no small world regime in our case, because for prew > 0.08 the normalized average

pathlength l(p)/l(0) overcomes the curve for C(p)/C(0). The reason for such a behavior lies

on the large density of connections in the networks here generated, ρ = 2L
N(N−1)

≈ 0.3. As

a result, the initial lattice already possesses a short average pathlength (l = 2.15), which is

only 20% larger than the pathlength in the random graph (prew = 1.0). Nevertheless, the

aim of the W-S model is to generate networks which are complex in the sense that they are

neither regular nor completely random. Therefore, instead of normalizing by C(p)/C(0) and

l(p)/l(0) (which resembles only the deviation from the regular lattice), C(p) and l(p) should

be appropriately rescaled to capture the essence of topological complexity as stated above.

Hence, we rescale C and l such that C ′ = l′ = 1 only if the network is completely regular

(prew = 0) and C ′ = l′ = 0 only if the network is random, by the following transformations:

C ′(p) =
C(p)− C(1)

C(0)− C(1)
(1)

l′(p) =
l(p)− l(1)

l(0)− l(1)
, (2)

where C(1) and l(1) are the values of the random graph (prew = 1.0). It is a well known

theoretical result that the clustering coefficient of a random graph equals its density of
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FIG. 2: Small-world properties of W-S networks of equivalent size and link density as the cortical

network of the cat. (a) As in reference [11], the quantities are displayed normalized by the values of

the initial regular lattice C(0) and l(0). (b) C(p) and l(p) are rescaled to display the complexity of

the networks such that, C ′(p) = l′(p) = 1 only if prew = 0.0 (regular lattice) and C ′(p) = l′(p) = 0

only if prew = 1.0 (random graph). At prew ≈ 0.09 (dashed line) the difference between the rescaled

C ′ and l′ is maximal.

links, hence, C(1) = 2L
N(N−1)

in the case of undirected graphs. Analytical estimates of the

pathlength of random graphs capture the scaling behaviour [16] and are not accurate enough

for the use here intended. Hence, l(1) should be numerically computed as the ensemble

average.

After rescaling C and l, Figure 2(b), the small world regime becomes apparent. As an

optimal rewiring probability, we choose the prew for which the difference between C ′(p) and

l′(p) is maximal, because it captures the networks of maximal complexity. In the following

we consider the set of W-S networks with prew = 0.09 (dashed line in Figure 2(b)) for

comparison to the properties of the cortical network of the cat. Note that the optimal prew

can be different depending on the density of links.

B. Comparison to random graph models

Once an optimal rewiring probability for the W-S random graphs has been adequately

selected, we can now compare the properties of different random graph models to the cortical

network of the cat. With respect to the small-world characteristics, Table I, the W-S

networks (prew = 0.09) have clustering and pathlength similar to those of the cortical network

of the cat. For a more consistent comparison, in Figure 3(a) the rescaled values C ′ and l′

of the networks are displayed. The blue line corresponds to ensembles of W-S networks

for different rewiring parameters. From C ′ = l′ = 1 corresponding to the initial ring-

lattice (prew = 0.0), the W-S model moves towards the origin with increasing prew. The

green triangle in the origin corresponds to the rescaled characteristics of random graphs

(prew = 1). The optimal W-S networks (prew = 0.09) lie closer to the cortical network than

the rewired, SF and random networks. Notice that W-S networks with prew between 0.1 and

0.2 would lie closer to the cat than the optimal ones.

7



Cat cortex Random Rewired Watts-Strogatz Scale-free

C 0.50 0.31± 0.01 0.400± 0.005 0.57± 0.01 0.37± 0.01

l 1.83 1.702± 0.002 1.737± 0.004 1.82± 0.01 1.686± 0.004

TABLE I: Average clustering and shortest pathlength of the cat cortical network and equivalent

random network models of the same size N = 53 and link density ρ ≈ 0.3. ‘Rewired’ additionally

conserves the same input and output degree sequence. Values are the average over 100 realizations.

FIG. 3: Classification of the cat cortical network and comparison to ensembles of random null-

models and generic models. (a) Small-World diagram displaying the re-scaled clustering C ′ and

pathlength l′ of the different networks: cat cortex (•), random graphs (N), rewired (¨), scale-free

(H) and Watts–Strogatz networks (¥). (b) Cumulative degree distribution pc(k) of the cat cortical

network and of the random models. Error bars are very small in both figures, and hence, not

shown.

Despite the similarity in the small-world characteristics, the Watts and Strogatz model

cannot be considered as a plausible model to explain the cortical organization because: 1) W-

S networks do not display clustered organization, and more striking 2) the W-S networks have

homogeneous degree distribution. On the contrary, the network of the cat cortex possesses

a broad (inhomogeneous) degree distribution, e.g. some hubs connect up to 60% of all other

areas. As shown in Figure 3(b), the difference in the cumulative degree distributions, Pc(k),

of the cat and the W-S networks is prominent [? ]. On the other hand, the cumulative

degree distribution of SF graphs with N = 53, L = 423 and exponent γ = 1.5 (solid line

of Figure 3(b)) closely follows the real distribution of the cat cortex [? ], what explains the

similar attack tolerance behavior [10]. This resemblance in the degree distribution is also

observed in the fact that in the complexity space, Figure 3(a), the rewired networks (green

cross) lie very close to the SF networks (purple H).

Nevertheless, SF networks have a very small clustering coefficient (Table I) and thus,

random SF graphs cannot be considered as a suitable model for cortical networks. In the

end, the W-S and SF random models are minimal models intended to capture only certain

global properties observed in real systems, but cortical networks have a very rich internal

organization. For practical purposes, it is simply relevant to learn that cortical networks

have few important organization properties: 1) a large density of links causing a very short
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FIG. 4: (a) Distance matrix Dij of the cortico-cortical network of the cat. Cortical areas separated

by distance d = 1 (dark blue), d = 2 (light blue), d = 3 (yellow) or d = 4 (red). (b) Path

multiplicity matrix Mij representing the number of distinct shortest paths (of length Dij) from

area i to area j. On average, there exist 5.2 alternative paths between every pair of areas.

pathlength, 2) a large clustering coefficient arising from the clustered organization, and 3) a

broad degree distribution with few areas playing the role of highly connected hubs. Because

of the small size of the network, whether the degree distribution follows a power-law or not

is a rather irrelevant matter.

III. CORTICAL COMMUNICATION PATHS

As stressed in the previous section, the cortico-cortical connectivity of the cat is charac-

terized by a very short average pathlength of only l = 1.83. This implies that, within the

cortex, information is highly accessible to all cortical areas regardless of the sensory origin

of the information. The ensembles of surrogate networks, random and rewired networks,

displayed yet a shorter l, Table I. To understand this difference, we consider the distance

matrix D (Figure 4(a)). Its elements Dij represent the number of links crossed to travel

from node i to node j and take integer values Dij = 1, 2, 3, . . . The distribution of distances

n(d) is obtained by counting the number of pairs of nodes at distance Dij = d. We find that

in the cortical network 87.4% of all pairs communicate either through direct connections

(Dij = 1) or paths of length d = 2; n(1) = 826 and n(2) = 1584 respectively (Figure 5(a)).

The most distant cortical areas are separated by 4 steps. However, only five pairs, all with

paths starting from auditory area VP, are separated by Dij = 4. We consider these few

cases as an exception, probably originated from the limitations of the data.

The distance matrices D of surrogate networks have been computed and their distance

distributions n(d) extracted. We emphasize the following observations: 1) Despite the

fact that random and rewired networks have very different degree distributions p(k), they

have an almost identical distribution of distances n(d), Figure 5(a). 2) Surrogate networks

contain almost no pairs of nodes at distance d = 3 while the cortical network of the cat

possesses n(3) = 341 pairs (12% of all pairs), most of them corresponding to external

communication paths between areas in different clusters, Figure 5(c). Besides, none of the
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FIG. 5: Number of pairs of cortical areas n(d) at distance Dij = d. a) All cortical areas considered,

b) only distance between areas in the same community, c) only distance between areas in different

communities.

generated surrogate networks contained pairs of nodes at distance Dij = 4. 3) The internal

connectivity in the cortical network, i.e. communication between two areas in the same

anatomical cluster, is significantly governed by direct links, Figure 5(b).

The explanation of these observations lies in the clustered organization of the cortical

network, which surrogate networks lack. Clusters are composed by subsets of nodes densely

connected among them, but sparsely connected to the nodes of other clusters. This inho-

mogeneous distribution of link density causes the internal communications inside a cluster

to happen most often through direct links. On the contrary, communication paths between

cortical areas in different communities tend to be longer.

Multiple and alternative communication paths

The picture described above raises the question of how complex cortical information

processing could be with respect to the macroscopic scale here analyzed. Certainly, at

the microscopic level each cortical area is composed of millions of neurons with different

functions and connectivity. But if cortico-cortical communications are governed by direct

links and paths of length 2, it might be argued that there is little room for complex and

flexible information processing as it is expected to happen in the brain. However, while

serial information processing might be reduced to a few steps, the computational power of

the network should not be underestimated. In general there is more than one shortest path

between two nodes, what might foster rich and flexible computation capabilities. We define

the path multiplicity matrix M, Figure 4(b), whose elements Mij are the number of shortest

paths (of length Dij) running from area i to area j. Additionally, the number of shortest

paths of a fixed length, m(d) =
∑

ij Mij for which Dij = d, have been counted and displayed

in Figure 6(a).

We find a total of m(2) = 6648 paths of length d = 2, meaning that on average, pairs of

nodes at distance d = 2 are connected by 〈m(d)〉 = m(d)
n(d)

= 4.1 different shortest paths. All

paths of length 2 from a node i to another node j are necessarily ‘parallel’ to each other,
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FIG. 6: Analysis of the path multiplicity. (a) Total number of shortest paths m(d) between cortical

areas at distance Dij = d. (b) Average number of shortest paths 〈m(d)〉 between areas at distance

Dij = d. (c) and (d) Probability pd(Mij) that a pair of nodes at distance d is connected by Mij

shortest paths.

say, they go from i to j following non-crossing routes. For example, the visual information

entering the cortex through the primary visual cortex, area ‘17’, has three independent

manners (paths) of influencing the processing performed by visual area ALLS:

1: 17 → 19 → ALLS

2: 17 → PLLS → ALLS

3: 17 → AMLS → ALLS

For paths of longer size this is rarely the case. In general, two paths can run ‘parallel’ to

each other, but a third path could be parallel to only one of them. For illustration, let us

consider some of the shortest paths from visual area ‘19’ to primary auditory area AI:

1: 19(V) → PMLS(V) → 35(FL) → AI(A)

2: 19(V) → 21b(V) → EPp(A) → AI(A)

3: 19(V) → 7(V) → EPp(A) → AI(A)

4: 19(V) → 20a(V) → P(V) → AI(A)

5: 19(V) → 5Am(SM) → 35(FL) → AI(A)

Paths 2, 3 and 4 are all parallel to path number 1, but paths 2 and 3 are not parallel to

each other because both run through the auditory hub EPp. Moreover, in the example

above we also observe that the paths between visual ‘19’ and auditory AI may include

areas in different sensory systems. From these observations, we conclude that the mixture

of parallel and intricate alternative paths of communication between cortical areas might

give rise to complex information processing properties, including multisensory modulation

and integration. The parallel and alternative paths may also provide robustness to the

communications. The short paths between every cortical region assures fast processing and

behavioral responses.

Due to its combinatorial nature, the average number of shortest paths 〈m(d)〉 rapidly

increases with d. In Figure 6(b), 〈m(d)〉 of the cortical network of the cat and of the

surrogate networks is plotted for shortest paths of length d = 1, 2 and 3. Interestingly, while
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the distribution n(d) of both surrogate network models is almost identical, Figure 5(a),

〈m(d)〉 of the cortical network and of the rewired networks are very similar. On the contrary,

random graphs contain twice the number of shortest paths between each pair nodes at

distance d = 3 than the rewired and the cortical networks. To stress this observation, in

Figures 6(c) and (d) the distribution pd(Mij) of the values Mij for pairs of nodes at distance

d = 2 and d = 3 are plotted. The distribution pd(Mij) represents the probability that a

pair of nodes at distance Dij = d is connected by Mij shortest paths. For both d = 2 and

d = 3, pd(Mij) of the cortical network and of the rewired networks follow very close to each

other, with maximal probabilities peaking around Mij ≈ 3, and Mij ≈ 15. On the contrary,

the p3(Mij) distribution of random networks peaks for values Mij ≈ 40. These observations

strongly indicate that the presence of hubs in the cortical and the rewired networks limits

the random dispersion of paths acting as mediators between low degree nodes. In terms of

the cortical network, hubs help communicate the areas segregated in different communities.

IV. CONCLUSIONS AND DISCUSSION

Sensory neurons transduce environmental information into electrical signals which follow

a bottom-up processing along the nervous system. The capacity of the nervous system

to simultaneously process different kinds of information relies, to a large extent, on the

circuitry where the stimulus is received and processed. But in order to achieve a coherent

and unified perception of the reality, sensory information needs to be integrated together

at some point [18] and at some time [19–21], and for that the paths of information need

to converge. In this paper, we have reviewed the large-scale organization of cortico-cortical

networks and have performed a statistical analysis of its communication paths in an effort to

understand how the anatomical substrate of connections (the network topology) may support

the simultaneous functional necessities for specialization and integration. We find there are

three major features governing the organization of cortical connectivity: a large density

of connections, the clustered organization into functional communities and the presence of

highly connected hubs.

As a consequence of the large density of links, cortico-cortical communications are gov-

erned by either direct connections or paths of length 2. This assures fast processing and

behavioral responses. This observation is in agreement with recent results [22–24], where
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it has been shown that neural organization might favor short information processing rather

than short axonal paths. Instead, a prominent hypothesis in the field is that the nervous

system tends to minimize the wiring length because of the energetic benefits of propagating

electrical impulses through shorter axons. Another consequence is that, within the cortex,

information is highly accessible to all cortical areas regardless of its sensory origin. In other

words, the processing of information of an area can be widely affected by the outcome of

other areas.

The organization into clusters, giving rise to a large clustering coefficient, permits that

sensory information of different modalities is segregated and processed “independently”. Ar-

eas within the same cluster are mainly connected by direct connections, while communication

between areas in different communities, tends to follow longer paths.

The cortical network of the cat also contains highly connected hubs, some of them link

to nearly 60% of the network. Our statistical analysis has revealed that the presence of

hubs drastically reduces the random dispersion of paths, by acting as mediators in the

communication between cortical areas in different clusters. This property highlights the

central role that these hubs may play for the integration of multisensory information [25–

30].

Summarizing, the results here presented, after statistical analysis the long-range con-

nectivity of the cat, uncover the rich and complex information processing capabilities of

the cerebral cortex. On the one hand, the predominance of short processing paths ensures

fast responses, on the other hand, the large number of alternative and intricate paths in

which two areas may influence on each other opens the door to a large variety and flexible

information processing.

V. ACKNOWLEDGEMENTS

We thank the constructive comments of two anonymous referees. G. Z.-L. and J. K.

are supported by the Deutsche Forschungsgemeinschaft (grants EN471/2-1, KL955/6-1,

13



andKL955/14-1). C.S. Z. is supported by the Hong Kong Baptist University.

[1] M. F. Bear, B. W. Connors, M. A. Paradiso, B. Connors and M. Paradiso, Neuroscience:

Exploring the brain, Lippincott Williams and Wilkins, (2006).

[2] E. R. Kandel, J. H. Schwartz and T. M. Jessell, Principles of Neural Science, McGraw-Hill

(2000).

[3] C.-C. Hilgetag, G. A. P. C. Burns, M. A. O’neill, J. W. Scannell and M. P. Young, Phil. Trans.

R. Soc. Lond. B 355, 91–110, (2000).

[4] O. Sporns and J. D. Zwi, Neuroinf. 2, 145–162, (2004).

[5] C.-C. Hilgetag and M. Kaiser, Neuroinf. 2, 353–360 (2004).

[6] J. W. Scannell and M. P. Young, Curr. Biol. 3(4), 191–200 (1993).

[7] J. W. Scannell, C. Blakemore and M. P. Young, J. Neurosci. 15(2), 1463–1483 (1995).

[8] O. Sporns and G. M. Tononi, Complexity 7(1), 28–38 (2001).

[9] J. M. Fuster, Cortex and mind: unifying cognition. Oxford University Press, N.Y. (2003).

[10] M. Kaiser, R. Martin, P. Andras and M. P. Young, Eur. J. Neurosc. 25, 3185–3192 (2007).

[11] D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).

[12] R. Kannan, P. Tetali and S. Vempala, Random Structures and Algorithms 14, 293–308 (1999).

[13] P W. Holland and S. Leinhardt, The statistical analysis of local structure in social networks.

In D. R. Heise (ed.) Sociological Methodology, Jossey-Bass, San Francisco (1975).

[14] A. R. Rao and S. Bandyopadhyay, Sankhya A 58, 225–242 (1996).

[15] J. M. Roberts, Social Networks 22, 273–283 (2000).

[16] R. Cohen and S. Havlin, Phys. Rev. Lett. 90 058701 (2003).

[17] K.-I. Goh, B. Kahng and D. Kim, Phys. Rev. Lett. 87, 27 (2001).

[18] L. C. Robertson, Nature Reviews 4, 93 (2003).

[19] A. K. Engel and W. Singer, Trends Cogn. Sci. 5(1), 16 (2001).

[20] M. Fahle. Proc. R. Soc. Lond. B 254, 199 (1993).

[21] W. Singer and C. M. Gray. Ann. Rev. Neurosci., 18 555 (1995).

[22] C.-C. Hilgetag and M. Kaiser, Organization and function of complex cortical networks. In P.

beim Graben, C. S. Zhou, M. Thiel and J. Kurths (eds.), Springer Berlin (2008).

[23] M. Kaiser and C.-C. Hilgetag, Neurocomp. 58–60, 297–302 (2004).

14



[24] M. Kaiser and C.-C. Hilgetag, PLoS Comp. Biol. 2(7), e95 (2006).
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[27] C. S. Zhou, L. Zemanová, G. Zamora-López, C.-C. Hilgetag and J. Kurths, New J. Phys. 9,

178 (2007).

[28] O. Sporns, C. J. Honey and R. Kötter, PLoS ONE 10, e1049 (2007).

[29] P. Hagmann, L. Cammoun, X. Gigandet, et al., PLoS Biol. 6(7), e159 (2008).
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