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Over the last decade, we have witnessed the birth of a new movement of interest

and research in the study of complex networks. These networks often have

irregular structural properties, but also encompass rich dynamics. The interplay

between the network topological structure and the associated dynamics attracts

a lot of interest. In this research line, we propose a network approach to dealing

with complex dynamics, in particular with synchronization dynamics. From the

methodological perspective, this approach requires novel ideas from nonlinear

sciences, statistical physics and mathematical statistics. Furthermore, we show

applications in different disciplines, from earth sciences to brain dynamics.

The complex network’s approach is an interdisciplinary topic and could be

promising for the understanding of complexity from a systems level.

Introduction

The analysis of complex systems in terms of networks has become an important
interdisciplinary topic in the recent years. Examples include genetic regulation in
biology, epidemic spreading in social and ecological systems, neural networks
and internet in communication systems.1 Another example is the Earth system
which might be one of the most important complex systems around us. As shown
in Figure 1, climate system can be viewed as concerning the status of the entire
Earth system, including the atmosphere, land, oceans, snow, ice and living
things, for example. Each component has its dynamical process with many
interactions with many other components, including various positive feedbacks.



Likewise, the global climatologically patterns are strongly influenced by the local
variations of the components. While many factors continue to influence climate,
scientists have determined that human activities have become a dominant force,
and are responsible for most of the warming observed over the past 50 years.2 As
climate changes, the probabilities of certain extreme weather events are affected,
which might cause impacts on social and economic developments. In this regard,
the climate system is intimately in interaction with human systems as well.2

Complex networks often have irregular topological structures, with structural
issues being the most important. One can characterize the topology of a complex
wiring architecture and reveal the unifying principles and statistical properties
common to most of the real networks. Therefore, structural analysis initiates a
revival of network modelling, developing new models to mimic its genuine
properties.

On the other hand, a very important issue in the study of complex systems is
the interplay between structure and dynamics. Much attention has been devoted
to studying the emergence of collective dynamics in complex networks from the
viewpoint of relating the propensity for dynamics in a network to topology and
local properties. In particular, one aspect of this interplay is synchronization.
Synchronization of oscillators acting on the nodes is one of the widely studied
dynamical behaviours on complex networks. It has been shown that dynamical

Figure 1. Schematic view of the components of the global climate system, their
processes and interactions
Source: IPCC report 20072
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processes, such as network synchronization, are strongly influenced by the
structure of the topology of the underlying network. Furthermore, as the dis-
tribution of connection weights in real networks is often highly heterogeneous,3

it is worth investigating the role played by weights in the synchronization
dynamics in complex networks.

Generally speaking, the dynamics of a weighted network of N coupled iden-
tical oscillators is described by

ẋi ¼FðxiÞ þ s
XN
j¼1

WijAij HðxjÞ �HðxiÞ
� �

¼FðxiÞ � s
XN
j¼1

GijHðxjÞ; i ¼ 1; . . . ;N

ð1Þ

where F5F(x) governs the dynamics of each individual oscillator, H5H(x) is
the output function, and s is the overall coupling strength. Here G5 (Gij) is the
coupling matrix combining both topology (adjacency matrix A5 (Aij)) and
weights (weight matrix W5 (Wij), WijZ 0): Gij 5 dijSi 2WijAij, where Si ¼PN

j¼1WijAij denotes the intensity of node i. It has been shown that the syn-
chronizability of random networks with a large minimum degree is determined
by two leading parameters: the mean degree and the heterogeneity of the dis-
tribution of node’s intensity, Si, which is defined as the total strength of input
connections of the associated node.3 By definition, intensity Si is a natural choice
incorporating the topology and weights.

Synchronization, as an emerging phenomenon of a population of dynamically
interacting units, has fascinated humans from ancestral times.4,5 The study of syn-
chronization has become one of the main fields of nonlinear sciences. Synchroni-
zation processes can be encountered in physics, chemistry, life sciences, biology,
and also in engineering. In the beginning, synchronization was mainly illustrated
by periodic oscillations, as originally found, by C. Huygens in 1665, for weakly
coupled pendulum clocks. After the discovery of deterministic chaos, the search for
synchronization has moved to chaotic systems. Within this framework, there are
mainly three types of synchronization in chaotic systems: (a) complete (or full)
synchronization, (b) generalized synchronization, and (c) phase synchronization.4

Chaotic phase synchronization is somewhat similar to the synchronization of peri-
odic oscillations and is manifested in the appearance of certain relations between the
phases of interacting non-identical systems and results in the establishment of a
coincidence of characteristic time scales of the coupled systems. Remarkably, the
amplitudes of oscillations often remain chaotic. We will illustrate these arguments by
investigating the dynamic relationships between El Niño/Southern Oscillation
(ENSO) and the Indian Monsoon (referred to below as Monsoon), which are the
predominant climate phenomena in the Asian/Pacific region.
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Synchronization is possible if at least two elements are coupled, but it much
more often happens in ensembles that include hundreds, thousands, or even more
subsystems. In cases where a large number of interacting units are involved, in
particular in the presence of a complex network structure configuration, the
investigation of synchronization is still emerging. Therefore, in the second part of
this paper, we present a model that consists of network of networks in order to
disclose the functional networks of brains. The cerebral cortex of mammalian
brains is an excellent example of realistic complex systems. Cortical connectivity
is organized into a hierarchy, from the microscopic cellular level via the meso-
scopic level of local neural circuits and columns to the macroscopic level of
nerve fibre projections between brain areas.6 We find that in a biologically
plausible regime the dynamics exhibit a hierarchical modular organization, in
particular, revealing functional clusters coinciding with the anatomical commu-
nities. Our results provide insights into the relationship between network
topology and the functional organization of complex brain networks.

Synchronization in coupled systems and applications to
earth sciences

Historically, the analysis of synchronization was performed between self-oscil-
latory systems, that depend on the presence of external (periodic) forcing. After
the establishment of chaos theory, the study of synchronization has been
extended to chaotic systems. In addition, a great deal of attention has been paid to
applying these nonlinear methods to real time series analysis, which makes it
possible to reveal interrelations that linear methods cannot. We show these ideas
by investigating the relationship between two oscillating systems, namely ENSO
and Monsoon, on inter-annual time scales.7

ENSO exhibits self-sustained oscillations of the tropical Pacific ocean–atmo-
sphere coupled system. It is associated with increased rainfall across the Pacific
regions, but also contributes to large-scale temperature departures throughout the
world, with most of the affected regions experiencing abnormally warm conditions
across south-eastern Asia, south-eastern Africa, along the west coast of South
America, etc. Figure 2 shows the effects of El Niño around the world via tele-
connections. A Monsoon is a seasonal prevailing wind that lasts for several
months; for instance, the Indian summer Monsoon affects a huge number of
people, with social and economical impacts. ENSO and the Monsoon have been
known to be somewhat correlated on inter-annual time scales. Weak Monsoons
follow low values of the Southern Oscillation index, i.e. Monsoon failure coincides
with El Niño, while strong Monsoons coincide with La Niñas.

The previous results are mainly based on linear correlation and wavelet ana-
lysis. Here we present a method used in nonlinear time series analysis, which
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decomposes oscillatory dynamics into time-dependent amplitude and phase,
making it possible to study the relationship between only the phases of ENSO
and Monsoon, irrespective of their amplitudes. This approach allows us to cor-
roborate earlier results with a far better time resolution and to infer so far
unknown subtle relations invisible to correlation analysis.

We used the monthly mean sea surface temperature data in the eastern tropical
Pacific, i.e. the NINO3 index derived from the Kaplan data8 as a measure for
ENSO variability. The Monsoon was represented by the monthly anomalies of
the All India Rainfall (AIR) index defined by Ref. 9. We analyse the data in the
period from 1 January 1871 to 31 December 2003. Since our work focuses on the
inference of phase relations of inter-annual oscillations, we low-pass filtered the

Figure 2. The effects of El Niño around the world described via tele-
connections (upper graph: winter time; lower graph: summer time)
Source: NOAA Climate Prediction Center
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data in the spectral domain, i.e. high frequency variability with frequencies
higher than 0.7 cycles per year is damped. Figure 3 shows a section of the time
series of the ENSO and Monsoon data, clearly emphasizing the inter-annual
oscillations of ENSO and the biennial oscillation of the monsoon.

Phase synchronization is a weak form of synchronization in the sense that the
phases Fi describing the oscillations get locked, which amplitude might be
uncorrelated, namely, we have

F1ðtÞ � F2ðtÞ
�� ��, � ð2Þ

To investigate for coherent phase relations, one has to derive the oscillation
phases of the involved systems. If one observes only a one dimensional time
series x(t) of one of the systems, initially one has to find a suitable two-dimen-
sional embedding. A common approach is constructing an analytical signal by
the use of the Hilbert transformation

yðtÞ ¼ HðxðtÞÞ ¼
1

p
P:V :

Z 1
�1

xðtÞ
t� t

dt ð3Þ

where P.V. denotes the Cauchy principal value. The phase can then be defined as
f(t)5 arctan(y/x). This approach is meaningful only if the embedded signal

Figure 3. Section of the NINO3 (upper graph) and AIR anomalies (lower
graph) time series. The dotted lines depict the raw data, the solid lines show the
low-pass filtered data used for the further analysis
Source: Reference 7
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rotates around a fixed centre. For geophysical signals exhibiting variations on a
wide range of frequencies, one could obtain well-defined phases by considering
the curvature of phase space trajectories:10

F ¼ arctan
_y

_x
ð4Þ

To study the occurrence of phase coherence in more detail, we calculate the
difference of the phases as shown in Figure 4. Distinct epochs become visible:
the plateaus from 1886 to 1908 and from 1964 to 1980 indicate phase coherence
during these intervals. In the years 1908–1921, 1935–1943 and 1981–1991, the
Monsoon oscillates faster than ENSO, failing when ENSO peaks on inter-annual
scales, as during the phase coherent intervals, but with an additional peak in
between (2:1 phase coherence; plotting the difference of the Monsoon phase and
two times the ENSO phase would yield plateaus). During these epochs, the

Figure 4. Phase difference of ENSO and Monsoon (black). Grey shading
marks intervals of jointly well defined phases. 1886–1908 and 1964–1980 (I):
plateaus indicate phase coherence. 1908–1921, 1935–1943 and 1981–1991 (II):
Monsoon oscillates with twice the phase velocity of ENSO. During these
intervals, both systems exhibit distinct oscillations (NINO3 time series, upper
graph). 1921–1935 and 1943–1963: phases are badly defined, both processes
exhibit irregular oscillations of low variance (upper graph). Lower graph shows
volcanic radiative forcing index (VRF)
Source: Reference 7

Dynamics in Complex Systems 363



phases of ENSO and Monsoon are predominantly well defined (grey shading) and
both systems exhibit distinct oscillations. During other times, especially 1921–1935
and 1943–1963, the phases are rather badly defined and both processes exhibit
irregular oscillations of low variance. We have developed a significance test to verify
that the phase coherent intervals have a significant level of 99% at least.

The high time resolution allows us to precisely determine the onset of phase
coherent intervals and thus to suggest a mechanism that might cause the cou-
pling. The lower graph in Figure 4 displays the volcanic radiative forcing
index.11 Interestingly both intervals of phase coherence coincide with periods of
strong volcanic radiative forcing and start with two major eruptions, of Krakatau
and Mount Agung. The possible reason could be: volcanic forcing might not
cause single ENSO events, but rather either increase the coupling between ENSO
and Monsoon, causing more regular oscillations of the total system, or cause
more regular oscillations of one of the systems (probably ENSO), thus increasing
the coupling between them. The cooling effect could reduce the land/sea tem-
perature gradient and thus make the Monsoon more sensitive to ENSO influence.

Complex network of networks for understanding of
brain dynamics

Synchronization dynamics (phase coherence) presented in the previous section
takes place in a simple coupling configuration in the sense that only two pro-
cesses are involved. As mentioned in the Introduction, complex networks are
ubiquitous around us. The investigation of synchronization with complex
topology is a big challenge for modern sciences. In this case, there are a large
number of dynamical processes involved. Here we propose a new approach, a
network of networks, to model brain dynamics.

Let us start by distinguishing three main classes of complex networks,1 one of
which will be used for our modelling:

(1) Random networks. In this network, a pair of nodes i and j are
connected with a probability p (Figure 5(a)). Hence, the connection
is fully random, and the shortest path (path length) between any pair
of nodes is very small even for very large networks.

(2) Small-world networks. One starts with a regular ring of nodes, each
connected to its k nearest neighbors; then, with a probability p, each
link is rewired, namely, it is cut and reconnected to another node
randomly. When p is small, the resulting network is dominated by
the local coupling, while there are a very few long-range random
shortcuts (Figure 5(b)). The average distance of the shortest path
between any pair of the nodes has been significantly reduced due to
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this small number of shortcuts. When p is approaching 1.0, a fully
random network is retrieved.

(3) Scale-free networks. In many large-scale real-world complex
systems, the degrees of nodes are very heterogeneous; for example,
with the existence of hubs (Figure 5(c)). The probability P(k) to find
a node with degree k in the network follows a power-law distribution

PðkÞ � k�g ð5Þ

These findings of complex networks have stimulated a great deal of research in
the structure analysis of real-world complex systems to disclose the underlying
network topology. However, another very important issue in the study of com-
plex systems is the interplay between structure and dynamics. We present a mode
using the complex networks approach to aid in understanding brain dynamics.12

The cortical connectivity of the cerebral cortex of mammalian brains has a
hierarchical organization, from the microscopic cellular level to the macroscopic
level of the nerve fibre projections between brain areas. Here, we focus on the
highest structural level, i.e. the systems level of corticocortical connections. We
employ the known cortical network of the cat and simulate the dynamics of
each node (cortical area) by a subnetwork of interacting excitable neurons. The
cortex of the cat can be parcelled into 53 areas which are linked by about 830
fibre connections of different densities. It forms a weighted complex network,
Figure 6, and has typical small world properties. There exist a small number of
clusters that broadly agree with the four functional cortical subdivisions, i.e.
visual cortex (V), auditory (A), somato-motor (SM), and fronto-limbic (FL).

The subnetwork representing each cortical area is arranged as a small world
topology, i.e. a regular array of Na(5200) neurons with a mean degree ka(512)
that is rewired with a probability p(50.3). Such a topology incorporates basic
biological features and is found to enhance synchronization of neural networks.
Furthermore, our model also includes other realistic, experimentally observed
features, e.g. 25% of the Na neurons are inhibitory, and only a small number of

Figure 5. The three basic classes of complex networks: (a) random networks;
(b) small-world networks; (c) scale-free networks
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neurons (about 5%) in one area receive excitatory synapses from connected
areas. We assume that cortical areas communicate with each other via their mean
field activity. Individual neurons are described by the FitzHugh-Nagumo model
with non-identical excitability. Specifically, our model of the neural network of
the cat cortex is composed of a large ensemble of neurons connected in a network
of networks. The dynamics of the neuron i at area I are:

�_xI ;i ¼ f ðxI ; iÞ þ
g

ka

XNa

j

ML
I ði; jÞðxI ; j � xI ;iÞ þ

g

ow4

XN
J

MAðI ; J ÞLI ; J ðiÞð�xJ � xI ; iÞ ð6Þ

_yI ;i ¼ xI ;i þ aI ;i þ DxI ;iðtÞ ð7Þ

where

f ðxI ;iÞ ¼ xI ;i �
x3I ;i
3
� yI ;i ð8Þ

Figure 6. Connection matrix MA of the cortical network of the cat brain. The
different symbols represent different connection weights: 1 (> sparse), 2 (3
intermediate) and 3 (* dense). The organization of the system into four topological
communities (functional sub-systems, V, A, SM, FL) is indicated by the solid lines
Source: Reference 12
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Here, the matrix MA represents the corticocortical connections in the cat network
as in Figure 6 (MA(I, J) : I, J5 1,y,N5 53). MI

L denotes the local small world
connectivity of the I th area (MI

L(i, j) : i, j5 1,y,Na). Additionally, independent
Gaussian white noise is added to each neuron in order to simulate perturbations,
e.g. from subcortical areas. Our focus is to study the synchronization dynamics at
the systems level, i.e. the correlation between the mean activity of the subnet-
works and its relationship to the underlying cortical topology (Figure 6). The
results we obtained at the systems level do not depend critically on the neuron
model, the subnetwork parameters, and detailed coupling between neurons. The
average coupling strength between any pair of neurons g is the control parameter
in our simulations. Note that we assume g to be equal for couplings within
and between subnetworks. We also normalize it by the mean degree ka of the

Figure 7. Four major dynamical clusters (3) in the weak synchronization
regime, compared with the underlying anatomical connections (.)
Source: Reference 14
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small world within the area and by the average weight ,w. of inter-area
connections.

In a series of studies,13,14 we have reported that the model possesses two
distinguished regimes, weak and strong synchronization. In the weak synchro-
nization regime, the model displays biologically plausible dynamical clusters.
The functional connectivity, obtained by passing the correlation matrix through
various thresholds, exhibits various levels of organization.12 The dynamics form
four major clusters (Figure 7), in an excellent agreement with the four functional
subsystems. The specialized clusters are integrated into larger clusters through
brain areas having many inter-community connections. Furthermore, brain areas
that bridge different dynamical clusters are found to be the areas involved in
multisensory associations. It is important to note that such a hierarchical tran-
sition to synchronization via clustering is a typical property of complex net-
works.15 The approach of a network of networks has been also applied to
understanding the spread of diseases.16

Conclusions

We present a short overview on synchronization dynamics in complex systems,
with applications to rather different subjects, in particular from ENSO/Monsoon
in the climate system to modelling in brain dynamics. It is these different
applications that suggest the complex networks could be a promising and a far-
reaching interdisciplinary topic. One of the important advantages of this
approach is that it orientates itself on a systems level, not only disclosing the
underlying properties and mechanisms but also constructing a more realistic
model. Very often, a complex system is made up of many components whose
interactions are not effectively computable. In such cases, it is more helpful to
study the macroscopic behavior than to dissect individual events. In this regard,
complex networks could shed light on the structural integrity and its associated
dynamics, which deserves continuous attentions in future.

Last but not least, we emphasize that the investigation of synchronization is
still emerging. So far, most of the work has considered the impact of network
architectures on the synchronization dynamics. However, in many realistic sys-
tems, the feedback of dynamics can reshape the network structures. In this sense,
one needs to consider evolving networks under the external influences, for
instance the effects of a noisy environment on system dynamics or climate
change impact on social-economic networks. Such an evolving network is
formed by a time varying ensemble of elements and interrelations. Under the
effects of external influences new elements may emerge to join the network or
old ones may disappear, while the strength of each individual interaction may
also fluctuate or even vanish. Evolving networks are marked by the emergence of
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information, rich dynamics and structure formation, e.g. collective behaviour
between some of the elements. They can switch between stability and instability,
leading to new qualitative behaviour like robustness or vulnerability. The study of
evolving complex networks is the main challenge in this field in order to achieve a
complete comprehension of structure–dynamics relations in complex systems.
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