
March 20, 2009 17:23 02310

Letters

International Journal of Bifurcation and Chaos, Vol. 19, No. 2 (2009) 737–743
c© World Scientific Publishing Company

SPATIOTEMPORAL COHERENCE RESONANCE
IN A MAP LATTICE

XIAOJUAN SUN∗,† and QISHAO LU‡
School of Science, Beihang University,

100083 Beijing, P. R. China
†sxiaojuan@gmail.com
‡qishaolu@hotmail.com
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We study the effects of parametric noise on a lattice network, which is locally modeled by a two-
dimensional Rulkov map. We conclude that at some intermediate noise intensity, parametric
noise can induce ordered circular patterns, which indicates the appearance of spatiotemporal
coherence resonance in the studied lattice. With the observation of coherence-like manner in
linear spatial cross-correlation, the coherence phenomena can be analyzed quantitatively.
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1. Introduction

It is a well-documented fact that noise can induce
temporal resonance in different kinds of nonlinear
dynamical systems [Gammaitoni et al., 1998]. In
coherence resonance [Pikovsky & Kurths, 1997] or
autonomous stochastic resonance [Longtin, 1997],
pure noise without an external signal can generate
the most coherent motion in systems, as has been
mainly observed in excitable systems [Pikovsky &
Kurths, 1997; Longtin, 1997; Lee et al., 1998; Hu
et al., 1993]. Recently, the standard temporal coher-
ence resonance has been extended and studied in
many coupled dynamical systems [Lindner et al.,
1995; Hu & Zhou, 2000; Zhou et al., 2001; Car-
rillo et al., 2004; Perc, 2005, 2007; Sun et al.,

2008]. Coupled enhancing coherence has been found
in array coupled systems, which is called array
enhanced coherence resonance (AECR) in [Lind-
ner et al., 1995] and [Hu & Zhou, 2000]. Moreover,
it has been further found that the inhomogeneity
in the parameters of the array enhances AECR
[Zhou et al., 2001]. Spatial coherence resonance
has already been discussed in different nonlinear
media (chlorine dioxide-iodine-malonic acid reac-
tion [Carrillo et al., 2004]; Rulkov map [Perc,
2007]; FitzHugh–Nagumo [Perc, 2005]; Hodgkin–
Huxley neuronal model [Sun et al., 2008]). Without
any other external excitations, noise can extract
an intrinsic spatial scale optimally in the media
[Carrillo et al., 2004] and a characteristic spatial
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frequency of the systems in a resonant manner
[Perc, 2005, 2007; Sun et al., 2008].

The ability of noise to enhance spatiotem-
poral patterns and to increase some coherence
or collective dynamical properties may be viewed
as a generalization of stochastic resonance to
spatially extended systems, named as spatiotem-
poral stochastic resonance (STSR) or spatiotem-
poral coherence resonance (STCR) if there is no
other external excitations except for noise. This
spatiotemporal coherence has been reported in
many articles in the past years [Jung & Mayer-
Kress, 1995; Hou et al., 1998; Zhou & Kurths,
2002; Hütt et al., 2002; Busch & Kaiser, 2003].
Jung and Mayer-Kress [1995] numerically observed
STSR in excitable media, while Zhou and Kurths
[2002] demonstrated STCR in chaotic oscillatory
media. Busch and Kaiser [2003] used the spatial
cross-correlation, which is similar to the method
developed for detecting signatures of noise-induced
structures in spatiotemporal data sets [Hütt et al.,
2002] when the noise intensity is not known experi-
mentally, to discuss the STSR phenomena induced
by spatiotemporally correlated colored noise.

In this paper, we study the influence of para-
metric noise on spatiotemporal patterns of a square
lattice localized by the Rulkov map [Rulkov, 2001,
2002] (therefore, the noise is coupled with the sys-
tem in a multiplicative way). With the aid of spatial
cross-correlation [Busch & Kaiser, 2003], we detect
STCR that occurs in the lattice.

The rest of this paper is organized as follows:
in Sec. 2, we give the equations of the square lat-
tice networks. In Sec. 3, we study the effects of
parametric noise on pattern formations and the
noise-induced spatiotemporal coherence resonance.
Finally, we present the conclusion and discussion in
Sec. 4.

2. Equations of the Square Lattice
Networks

The model equations of this spatially extended sys-
tem (lattice) is given as follows:



un+1(i, j) =
(α + ξn(i, j))
(1 + u2

n(i, j))
+ vn(i, j)

+ D(un(i + 1, j) + un(i − 1, j)
+ un(i, j − 1) + un(i, j + 1)
− 4un(i, j)),

vn+1(i, j) = vn(i, j) − βun(i, j) − γ,

(1)

where the pair (i, j) indicates that the neuron is at
the ith unit in the horizontal and the jth unit in the
vertical direction, i, j = 1, . . . , N . The subscript n is
the discrete time index, and D is the diffusion coeffi-
cient. un is the membrane potential of the neuron and
vn is the variation of ion concentration. un, vn rep-
resent the fast and slow dynamical variables respec-
tively.α, β, γ are systemparameters andβ, γ areboth
taken as 0.001. For α < 2.0, the uncoupled single
unit in this lattice is governed by a single excitable
steady state (−1,−1 − α/2). Here we take α as 1.99.
For a more detailed analysis of the dynamical behav-
ior of the single Rulkov map, refer to [Rulkov, 2001,
2002]. Each unit is subject to a multiple Gaussian
white noise ξn(i, j), which is uncorrelated both in dis-
crete time and space, namely

〈ξn(i, j)ξm(k, l)〉 = 2σδn,mδi,kδj,l, (2)

where σ is the noise intensity. At each iterated step
for each unit (i, j) random numbers ξn(i, j) are gen-
erated by the Box–Mueller algorithm [Fox et al.,
1988].

In this paper, we take D,σ as control parame-
ters and fix N = 128. We study the effects of the
noise intensity σ on spatiotemporal pattern forma-
tion for various diffusion coefficients D.

3. Spatiotemporal Coherence
Resonance

The influences of the parametric noise on spatiotem-
poral pattern formation of the lattice [Eq. (1)] are
depicted in the contour plots in Fig. 1. For each
particular diffusion coefficient D, there exist inter-
mediate noise intensities for which we can perceive
coherent spatial structures, i.e. circular waves (mid-
dle column of Fig. 1). For smaller and larger σ
at each particular D, the noise-induced patterns
do not show any visible spatial structures. For
smaller noise, the noise intensities are not strong
enough to excite the system to evoke any partic-
ularly outstanding spatial structures, as shown in
the left column of Fig. 1; for larger noise, ordered
circular waves are broken down by strong noisy
perturbations, yielding disordered looking spatial
portraits, as presented in the right column of Fig. 1.
Such spatial patterns formed for the intermediate
noise intensities are typically observed also in pat-
tern formation of deterministic systems ([Arecchi
et al., 1999] and references therein).

In order to quantify the formation of
those structures, we introduce a linear spatial
cross-correlation measure S. We compute the
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Fig. 1. Snapshots of the lattice for various noise intensity σ and diffusive coupling strength D. Shown are the u(i, j) variables
at each grid point. From top to bottom at each row, D is taken as 0.0025, 0.005, 0.01 respectively. For each D, σ increases
from left to right. For D = 0.0025, σ = 1E − 7, 3E − 6, 1E − 3, for D = 0.005, σ = 1E − 6, 4E − 6, 2E − 3, and for D = 0.01,
σ = 4E − 6, 8E − 6, 2E − 3. All the snapshots of the spatial grid are taken at given times n.

cross-correlation S for the variable ui,j as the space
and time averaged nearest-neighbor distance of all
elements, normalized by the total spatial amplitude
variance. S is given by

S =
〈

Cov(n)
Var(n)

〉
T

(3)

where the bracket 〈 〉T denotes averaging over the
total iterated time T . Var(n) is the spatial variance
at the iterated time n given as

Var(n) =
1

N2

∑
ij

(u(i, j) −u)2 (4)

where u = N−2
∑

ij ui,j ; Cov(n) is the purely spa-
tial auto-covariance of nearest neighbors, and is
defined as

Cov(n) =
1

N2

∑
ij

1
|Ni,j|

∑
b∈Nij

(u(i, j) −u)(b −u)

(5)

with b consisting of all |Nij | = 4 elements of a
von Neumann neighborhood Nij at each lattice site
u(i, j). Obviously, the quantity S is efficient in ana-
lyzing nearest-neighbor relationships in space and

time. The larger the value of S is, the more coher-
ent the pattern becomes.

Figure 2(a) shows S as a function of the noise
intensity σ for various diffusion coefficients D. We
observe that for each D, S increases with increas-
ing σ at the beginning, then it reaches a maxi-
mum value, and after that it begins to decrease if
σ increases again. This resonance-type behavior in
σ for each D indicates the signature of spatiotem-
poral coherence resonance. Furthermore, we can see
that after the patterns fire, i.e. some neurons in the
lattices are firing, the larger D corresponds to the
larger S [see Fig. 2(b)]. It means that the spatial
structures at larger diffusion coefficients are more
coherent than those at smaller ones. Since a larger
D can make local excitations propagate farther and
the units of the whole lattice are more connected
to each other, the coherence of the whole lattice
increases with the increase of D. From Fig. 2(a), we
find that the spatial cross-correlation S takes up
the same values for smaller and larger noise inten-
sities, i.e. the patterns at smaller and larger σ have
the same coherence. But we know that the spa-
tiotemporal patterns have quite different behaviors
for these two cases (one is caused by firing but the
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Fig. 2. Spatial cross-correlation S (a) S versus noise intensity σ in log scale at various diffusion coefficients D; (b) S versus
diffussion coefficient D for various noise intensities σ. The line is just a guide to the eye.

other is not; see Fig. 1). So we should introduce a
new quantity to distinguish these two cases and to
analyze the mechanism of the numerically observed
STSR that occurred in the lattice [Eq. (1)].

The quantity we introduce is the averaged
firing-rate function 〈Π(n)〉T , where the bracket 〈 〉T
denotes the average of total iterated time T . The
equation of the firing-rate function Π(n) is given as

Π(n) =
m(n)
N2

. (6)

When the membrane potential of a single Rulkov
map reaches the threshold value uth = −0.2 from

below at a given time, we say that this map
is firing. m(n) indicates that m neurons are fir-
ing simultaneously at a given iterated time n. If
m(n) > 0, some neurons are firing at the given
time n; otherwise, all neurons will fluctuate around
its stable excited state. Figure 3 shows 〈Π(n)〉T
as a function of the noise intensity (in a log
scale) for various D respectively corresponding to
Fig. 2(a). It can be clearly seen that for smaller
noise intensities, 〈Π(n)〉T = 0, i.e. the neurons are
not firing at all. While for larger noise intensities,
〈Π(n)〉T > 0, i.e. some of the neurons in the lat-
tice are firing due to parametric noise. Thus, with
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Fig. 3. Averaged firing rate function 〈Π(n)〉T versus diffusion coefficient D corresponding to Fig. 2(a).
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Fig. 4. Noise-induced oscillations in a single unit of the lattice. (a) σ = 1E − 7, (b) σ = 7E − 6 and (c) σ = 1E − 2.
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the introduction of the averaged firing rate function
〈Π(n)〉T , we can successfully distinguish these two
cases.

In the following, we intend to analyze the mech-
anism of STCR that occurred in the lattice [Eq. (1)].
We plot the waveforms of a single unit in this lat-
tice for three different σ (Fig. 4). For smaller σ,
it just fluctuates around its excitable steady state
[Fig. 4(a)], i.e. all units in the lattice cannot be fir-
ing, namely 〈Π(n)〉T = 0 as shown in Fig. 3. Thus,
there is no nucleus and the lattice cannot gener-
ate any pattern formation (left column of Fig. 1).
Hence, the coherence is small. When σ increases a
bit to 7 × 10−6, the system generates sparse spikes
[Fig. 4(b)]. For a larger noise intensity, a particular
unit in the lattice can first fire at some iterated time
n. Then it becomes a circular front initiator and
the waves can spread to fire the other units. After
some iterated times, the waves can spread through
the whole lattice and the patterns exhibit circular
spatial profiles (middle column of Fig. 1), and the
coherence of the profiles becomes larger. When the
noise intensity σ continues to increase to larger val-
ues, the system is able to generate dense spikes from
the beginning of iteration as shown in Fig. 4(c). It
follows that all units in the lattice can be firing due
to parametric noise at the beginning. These firing
units all have the desire to spread. It will lead to a
competition amongst them, which makes the waves
of the units unable to spread further. Moreover, it
makes the amount of the firing unit decrease (see
Fig. 3). Therefore, the coherence of the patterns
(as shown in the right column of Fig. 1) decreases
at larger σ. With the above analysis, we understand
how the STCR is created in the lattice.

4. Summary and Conclusions

In this paper, we study the influences of paramet-
ric noise on spatiotemporal patterns of a spatially
extended system, which is locally modeled by the
Rulkov map. From our numerical results, we can see
that parametric noise is able to induce spatiotem-
poral coherence resonance, which is indicated by a
maximum value of S and ordered circular pattern
structures.

We know that the two-dimensional Rulkov
map replicates the dynamics of spiking and spiking-
bursting activity of real biological neurons. So the
results we obtained in this paper may have some
potential implications for understanding signal or
information transition in real neuronal systems.

In nature, the units in a network are not identical.
In [Glatt et al., 2007] and [Gassel et al., 2007], it
is found that parameter variability in local systems
can induce coherent patterns in a lattice. But the
localized system used in these two papers is a con-
tinuous system. So we will next extend our study to
lattices localized by nonidentical Rulkov maps. We
expect that STCR could also be observed in such a
lattice.
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