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Transitions between inverse anticipatory, inverse complete, and inverse lag synchronizations are
shown to occur as a function of the coupling delay in unidirectionally coupled time-delay systems
with inhibitory coupling. We have also shown that the same general asymptotic stability condition
obtained using the Krasovskii—Lyapunov functional theory can be valid for the cases where (i) both
the coefficients of the A(r) (error variable) and A, ,=A(¢z—7) (error variable with delay) terms in the
error equation corresponding to the synchronization manifold are time independent and (ii) the
coefficient of the A term is time independent, while that of the A term is time dependent. The
existence of different kinds of synchronization is corroborated using similarity function, probability
of synchronization, and also from changes in the spectrum of Lyapunov exponents of the coupled
time-delay systems. © 2009 American Institute of Physics. [DOI: 10.1063/1.3125721]

Synchronization of chaotic oscillations is one of the most
fundamental phenomena exhibited by coupled chaotic os-
cillators. Since the identification of chaotic synchroniza-
tion in identical systems, different kinds of synchroniza-
tions, such as generalized, phase, lag, anticipatory and
intermittent synchronizations, and their variants, have
been reported in literature. Recent studies on synchroni-
zation have also been focused on the existence of inverse
synchronization. In this connection, we have identified
different kinds of inverse synchronization and transitions
among them as a function of a single parameter in
coupled time-delay systems with inhibitory coupling. It is
now recognized that inhibitory couplings are important
and widespread in nature, specifically in biological sys-
tems, neurophysiology, and in many natural networks.
We have also obtained a suitable stability condition for
asymptotic stability of the synchronized state using
Krasovskii-Lyapunov functional theory. The results are
corroborated using similarity function, probability of
synchronization, and from the changes in the spectrum of
Lyapunov exponents of specific coupled time-delay
systems.

I. INTRODUCTION

Synchronization is an interesting dynamical phenom-
enon exhibited by interacting oscillators in diverse areas of
. 1,2 .
science and technology. '~ It has become an area of active
research since the identification of synchronization in chaotic
oscillators.® In recent years, different types of synchroniza-
tion and generalizations have been reported both experimen-
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tally and theoretically.l_29 Among them, inverse or

antisynchronizationzo_29 constitutes an important class of
synchronization, which is a typical feature of dynamical sys-
tems interacting through inhibitory coupling.

By definition, inverse synchronization is the
phenomenonzo*29 where the state vectors, say the drive x(r)
and the response y(7), of the synchronized systems have the
same absolute values but of opposite signs, that is,
x(t)==y(z). While this is inverse complete synchronization
(ICS), one may also identify inverse anticipatory synchroni-
zation (IAS) where the response anticipates the drive, that is,
y(t)=—x(r+7), where 7>0 is a constant. Similarly, when the
response system lags the drive, one has inverse lag synchro-
nization (ILS), that is, y(1)=—x(t—7), 7>>0. Just as in the
case of regular synchronization, especially in nonlinear dy-
namical systems with inhibitory coupling, one may encoun-
ter all the above types of inverse synchronization for appro-
priate ranges of the parameters.

The importance of inhibitory or repulsive coupling is
well acknowledged in biological systems. It is a well estab-
lished fact that couplings between neurons are both excita-
tory and inhibitory.30 Ecological webs typically have both
positive and negative connections between their
components.31 Coupled lasers with negative couplings have
also been widely studied.®® The well-known Swift—
Hohenberg and Kuramoto—Sivashinsky equations include
such a term.” Currently, it has also been realized that a large
class of natural networks also have inhibitory interactions
among the nodes.***

The first experimental observation of inverse synchroni-
zation was demonstrated in coupled semiconductor laser
diodes,”” in which it was established that inverse synchroni-
zation was caused by nonresonant coupling between the
drive and the response lasers. It was also shown that switch-
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ing between synchronization and inverse synchronization
was possible by slightly changing the pump current of the
drive laser.”! Experimental observations and numerical simu-
lations of synchronization and inverse synchronization of
low frequency power dropouts and jump-ups of chaotic
semiconductor lasers were carried out in Ref. 23. Inverse
synchronization was also observed both experimentally and
numerically in unidirectionally coupled laser systems with
optical feedback,”**’ as well as in a class of chaotic delayed
neural networks®® and in coupled Ikeda systems with multi-
feedback and multiple time delays.25 Inverse anticipating
synchronization was demonstrated in coupled Ikeda
systems.22 Further inverse retarted/lag synchronization and
the role of parameter mismatch were discussed in Ref. 26.
However it may be noted that in none of the above studies
the role of inhibitory coupling was investigated.

Despite the fact that a vast amount of literature is now
available on the phenomenon of synchronization, inverse
synchronizations have not been studied adequately, in par-
ticular, with inhibitory couplings between interacting dy-
namical systems. In this paper, we report inverse synchroni-
zations (inverse anticipatory, inverse complete, and ILSs) in
unidirectionally coupled time-delay systems with inhibitory
coupling. We also present a sufficient stability condition for
asymptotic stability of the synchronized state following the
Krasovskii—Lyapunov functional approach for the cases
where (i) the coefficients of the A(z) (error variable) and
A,=A(t—17) (error variable with delay) terms of the error
equation corresponding to the synchronization manifold are
constant and (ii) the coefficient of the A term is constant and
that of the A, term is time dependent. We show that there is
a transition from inverse anticipatory to ILS through com-
plete inverse synchronization as a function of the delay time
in the coupling. The tools to get these results are similarity
function, probability of synchronization, and largest
Lyapunov exponents of the coupled time-delay systems.

The plan of the paper is as follows. In Sec. II, we deduce
a sufficient condition for the asymptotic stability of the syn-
chronized state for a system of unidirectionally coupled sca-
lar delay differential equations with inhibitory coupling. We
consider a piecewise linear delay differential equation as an
example for the case where the coefficients of both the A and
A, terms in the error equation are constant and demonstrate
the existence of different types of inverse synchronization as
a function of the coupling delay in Sec. III. Using the para-
digmatic Ikeda system in Sec. IV for the case where the
coefficient of the A term is time dependent while that of the
other is time independent, we show that the same general
stability condition is valid for the asymptotic stability of dif-
ferent types of inverse synchronizations again as a function
of the coupling delay. We also demonstrate these dynamical
transitions through numerical analysis. Finally, in Sec. V, we
summarize our results.

Il. COUPLED SYSTEM AND THE STABILITY
CONDITION

Consider the following unidirectionally coupled drive,
x(#), and response, y(f), systems with inhibitory coupling of
the form
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X(1) = —ax(t) + by f(x(t — 7)), (1a)
¥(0) == ay(t) + bof (y(t = 7)) = baf(x(t = 7)), (1b)

where by, b,, and b5 are positive parameters, a>0, and 7
and 7, are the feedback and the coupling delays, respectively.
The nonlinear function f(x) is chosen to be a piecewise linear
function which has been studied in detail recently,%_38

p:
0, x=-4/3
—15x-2, -4/3<x=-0.8
F(x) =9 X, ~08<x=0.8 (2)
—1.5x+2, 08<x=4/3
L 0, x>4/3,

as the first example, and

f(x) =sin(x,) = sin(x(t - 7)), (3)
which is the well-known Ikeda system,39 as the second ex-
ample.

Now the stability condition for the synchronization of
the coupled time-delay systems [Eq. (1)] with the inhibitory
delay coupling, —b;f(x(t—7,)), can be obtained as follows.
The time evolution of the difference system (error function),
associated with inverse synchronization, with the state vari-
able A(t)=x72_71+y(t), where xTz_Tl=x(t—(7'2—Tl)), can be
written for small values of A, by using the evolution Eq. (1),
as

A=x, _, +¥(0) 4)

==al + (by = by = by)f(x(1 = 7)) + bof ' (x(1 = m))A, . (5)

The above evolution equation (5) corresponding to the error
function of the inverse synchronization manifold is inhomo-
geneous and so it is difficult to analyze the system analyti-
cally. Nevertheless, the evolution equation can be written as
a homogeneous equation

A=—ab+byf (x(t-m)A, (6)
for the specific choice of the parameters
bl = b2 + b3 . (7)

Therefore, we will concentrate on this parametric choice.
The inverse synchronization manifold A:xTz_Tl +y=0 corre-
sponds to the following distinct cases:

(1) TIAS occurs when 7, <7, with y(f)=—x(1—7); #=1,—7
<0, where the state of the response system anticipates
the inverse state of the drive system in a synchronized
manner with the anticipating time 7 [whereas in the case
of direct anticipatory synchronization, the state of the
response system anticipates exactly the state of the drive
system, that is, y(r)=x(t=7)].

(2) ICS results when 7,=7; with y(t)=—x(r); 7=7,—7,=0,
where the state of the response system evolves in a syn-
chronized manner with the inverse state of the drive sys-
tem [whereas in the case of complete synchronization,
the state of the response system evolves exactly identical
to the state of the drive system, that is, y()=x(7)].

Downloaded 07 May 2009 to 193.174.17.92. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



023107-3 Inverse synchronizations

(3) ILS occurs when 7,> 7 with y(£)=—x(1—7); 7=7—m7
>0, where the state of the response system lags the
inverse state of the drive system in a synchronized man-
ner with the lag time 7 [whereas in the case of direct lag
synchronization, the state of the response system lags
exactly the state of the drive system, that is,

y(0)=x(t-7)].

The synchronization manifold corresponding to Eq. (6)
is locally attracting if the origin of the above error equation
is stable. Following the Krasovskii—Lyapunov functional
approach,37’40 we define a positive definite Lyapunov func-
tional of the form

0
V() = %AZ +u f A%(t+ 6)d6, (8)

where u is an arbitrary positive parameter, pu>>0.

It is to be noted that for the above error equation (6), the
coefficient of the A term is always constant, while that of the
A, term can be time dependent. Hence one can obtain two
cases depending on the choice of the nonlinear functional
form f(x). If the derivative of the function turns out to be a
constant as in the case of the piecewise linear function [Eq.
(2)], one obtains a constant coefficient for the A, term. On
the other hand, if the derivative still depends on time as in
the case of the Ikeda system [Eq. (3)], then the A, term
always has a time dependent coefficient. In the following, we
will show that the same general stability condition derived
from the Krasovskii—Lyapunov approach can be valid for
both the cases for the asymptotic stability of the different
types of inverse synchronizations. However, there also arises
an even more general situation where the coefficients of both
the A and A, terms are time dependent. In this case the
arbitrary positive parameter w in the Lyapunov functional is
no longer a positive constant. We have also designed a suit-
able coupling form for this rather general situation, for which
we can show that the same general stability condition arrived
from the Krasovskii—Lyapunov approach is still valid for the
asymptotic stability of the synchronized state; these results
will be published elsewhere.

Note that from Eq. (8), V(¢) approaches zero as A—0.
Hence, the required solution A=0 to the error equation [Eq.
(6)] is stable only when the derivative of the Lyapunov func-
tional V(¢) along the trajectory of Eq. (6) is negative. This
requirement results in the condition for stability as

T(w) =4ula - p) > bf' (x,(1 = 7)), )

Again I'(u) as a function of u for a given f'(x) has an
absolute minimum at u=a/2 with I',;,=a*. Since I'=T;,
=a?, from inequality (9), it turns out that a sufficient condi-
tion for asymptotic stability is

a > |byf (x(t - 1)) (10)

This general stability condition indeed corresponds to the
stability condition for inverse anticipatory, complete inverse,
and ILSs for suitable values of the coupling delay 7, corre-
sponding to a fixed value of the feedback delay 7; for both
the piecewise linear and Ikeda time-delay systems corre-
sponding to the cases where the coefficient of the A, term in

Chaos 19, 023107 (2009)

the error equation is time independent and time dependent,
respectively.

Further, it is interesting to note that if one substitutes
y—y=-y in Eq. (1b), then the coupling becomes excitatory
for the choice of functional forms we have chosen. This is
exactly the case we have studied in Ref. 37 where direct
anticipatory, complete, and lag synchronizations exist as a
function of the coupling delay. However, one cannot obtain
inverse (anticipatory, complete, and lag) synchronization
with excitatory coupling or direct (anticipatory, complete,
and lag) synchronization with inhibitory coupling for the
chosen form of the unidirectional nonlinear coupling because
of the nature of the parametric relation between b, b,, and
b5 and the stability condition (10).

Now from the form of the function f(x) in Eq. (2) for the
piecewise linear time-delay system, one can obtain a less
stringent stability condition as”’

a>b2, (11)
while
a>1.5b, (12)

is the most general condition specified by Eq. (10) for
asymptotic stability of the synchronized state A=0.

Correspondingly, one can obtain the stability condition
for the coupled Ikeda systems as

a > |b, cos(x(t— 1)) (13)

lll. INVERSE SYNCHRONIZATIONS IN THE COUPLED
PIECEWISE LINEAR TIME-DELAY SYSTEMS
[EQS. (1) AND (2)]

Here, we will show the existence of inverse anticipatory,
inverse complete, and ILSs as a function of the coupling
delay in the coupled piecewise linear time-delay systems
[Egs. (1) and (2)] with inhibitory coupling as an illustration
for the case where the coefficients of both the A and A . terms
in the error equation (6) are constant.

A. IAS

In this section, we present the existence of IAS for the
values of the coupling delay 7, <7, and for fixed values of
the other system parameters. In particular, we have fixed the
parameters as a=1.0, b;=1.2, 7,=8.0, 7,=6.0, and the other
two parameters b, and bj are fixed according to the paramet-
ric condition (7). The first ten maximal Lyapunov exponents
Amax Of the uncoupled piecewise linear time-delay system in
the range of delay time 7 (2,29) for the above choice of
parameters are shown in Fig. 1(a). It is clear from Fig. 1(a)
that for 7>0.5, at least two of the Lyapunov exponents are
positive and that the system is hyperchaotic. As an illustra-
tion, the hyperchaotic attractor with two positive Lyapunov
exponents for the value of the delay time 7;=7=38.0 is plot-
ted in Fig. 1(b). The time trajectories of the variables x(),
y(t), and —y(r) of the coupled piecewise linear time-delay
systems [Egs. (1) and (2)] are plotted in Fig. 2, depicting the
existence of IAS for b,=0.6, for which the more general
stability condition, a>1.5b,, is satisfied. It is evident from
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FIG. 1. (a) The first ten maximal Lyapunov exponents N, of the piecewise
linear time-delay systems [Egs. (la) and (2)] for the parameter values a
=1.0, b=1.2, and 7€ (2,29). (b) Hyperchaotic attractor for the delay time
7=8.0 with two positive Lyapunov exponents for the above values of the
other parameters. Here 7=7.

the figure that the state of the response system y(f) antici-
pates the inverse state of the drive system x(z). This is made
visually clear by plotting the inverse state of the response,
that is, —y(z). From Fig. 2, it is clear that the inverse state of
the response (—y(z)) anticipates the state of the drive x(z),
thereby illustrating the existence of IAS between the drive
and the response systems.

The existence of IAS for the above choice of parameters
is further confirmed using the notion of similarity function
S(b,), probability of synchronization ®(b,), and also from
the spectrum of Lyapunov exponents of the coupled time-
delay systems. Now we use the notion of similarity function,
introduced in Ref. 11 for characterizing the lag synchroniza-
tion, to characterize the existence of IAS. The similarity
function, S,(b,), is defined as a time averaged difference
between the variables x(¢) and —y(¢) (with mean values being
subtracted) taken with the time shift 7,

(-7 +x01)
[P O)y* )]

where (x) means time average over the variable x. If the
signals x(r) and —y(¢) are independent, the difference be-
tween them is of the same order as the signals themselves. If
x(#)=y(7), as in the case of complete synchronization, the
similarity function reaches a minimum, S,(b,)=0, for 7=0.
On the other hand, if S,(b,) =0 for the case 7# 0, there exists
a time shift 7 between the two signals x(7) and —y(z) such
that y(r— 7)=-x(r), demonstrating IAS. The similarity func-
tion, S,(b,), as a function of the parameter b, is shown in
Fig. 3(a), which clearly indicates that the value of S,(b,)
oscillates with finite amplitude (S,(b,) >0) above the value
of the control parameter b,~0.97, indicating the desynchro-
nized evolution between the response, y(z), and the drive,

S2(b,) = (14)

1

0.5 x(1)

0

x(1), y(1), -y(7)

-0.5

-1
2500 2520 2540 2560 2580 2600
t

FIG. 2. (Color online) The time trajectory of the variables x(7), y(7), and
—y(t) for a=1.0, b;=1.2, b,=0.6, b3=0.6, 7,=8.0, and 7,=6.0 of the
coupled piecewise linear time-delay systems, indicating IAS.
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FIG. 3. (a) Similarity function, S,(b,), (b) probability of synchronization,
®(b,), and (c) first eight maximal Lyapunov exponents, \,,,y, of the coupled
piecewise linear time-delay systems as a function of the control parameter
b,, indicating the existence of IAS for b, <<0.97.

x(t), systems. For the value of the control parameter b,
<0.97, the similarity function become zero (S,(b,)=0), in-
dicating that the response system anticipates the inverse state
of the drive system confirming the existence of IAS.

It is to be noted that one can observe exact IAS in the
present study even for the choice of the parameter b, for
which only the less stringent stability condition (11) is satis-
fied in contrast to our earlier studies,3 7 where one can ob-
serve only approximate direct anticipatory synchronization
under this condition, while exact synchronizations are ob-
served for the values of the parameters satisfying the general
stability condition for the coupled piecewise linear time-
delay systems. This is due to the fact that in the present
study, we have chosen the value of the delay time in the
drive system, x(z), as 7=8, for which the system has only two
positive Lyapunov exponents (as may be observed from the
Fig. 1). This implies that the number of transversely unstable
manifolds is less and hence they are all stabilized even for
the least values of the parameters satisfying even the less
stringent stability condition, and so one can observe exact
inverse synchronization. This is in contrast to our earlier
studies on direct anticipatory synchronization,37 where we
have chosen 7=25, for which the drive system exhibits more
than seven positive Lyapunov exponents. Correspondingly,
there exist a large number of transversely unstable mani-
folds, and hence, the general stability condition is required to
be satisfied in order to stabilize all the transversely unstable
manifolds to obtain exact synchronization.

As IAS is a special case of generalized synchronization,
the existence of IAS can also be further confirmed using the
auxiliary system approach by augmenting the coupled piece-
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FIG. 4. (Color online) The time trajectory of the variables x(¢), y(¢), and
—y(t) of the coupled piecewise linear time-delay systems, indicating ICS for
the coupling delay 7,=7,=8.0, while the other parameter values are the
same as in Fig. 2.

wise linear time-delay systems [Egs. (1) and (2)] with an
additional auxiliary system for the variable z(¢) identical to
the response system, satisfying the equation

(1) = = az(t) + byf(z(t = 1)) = baf(x(t - 1)). (15)

Now, the existence of IAS can be characterized by using the
probability of synchronization,37 ®(b,), calculated between
the response, y(f), and the auxiliary systems, z(z), which can
be defined as the fraction of time during which |y()—z()|
<€ occurs, where € is a small but arbitrary threshold. The
probability of synchronization, ®(b,), remains zero for the
value of the control parameter b,=0.97, as shown in Fig.
3(b), where there is no synchronization between the re-
sponse, y(¢), and the auxiliary systems, z(z). On the other
hand, for b, <<0.97, the probability of synchronization attains
the value of unity for the chosen threshold value for e,
clearly indicating the existence of complete synchronization
between the response, y(f), and the auxiliary, z(z) systems
(we have fixed the threshold value at e=107'° throughout the
manuscript). Correspondingly, there exists IAS between the
coupled drive, x(¢), and the response, y(r), systems with in-
hibitory coupling.

Further, the existence of IAS can also be characterized
by the changes in the spectrum of the Lyapunov exponents of
the coupled systems [Egs. (1) and (2)]. The first eight largest
Lyapunov exponents of the coupled piecewise linear time-
delay system is shown in Fig. 3(c). The two largest
Lyapunov exponents of the drive system, x(z), remain posi-
tive, while the ones corresponding to the response system,
y(r), decrease in their value as a function of the parameter b,.
The least positive Lyapunov exponent of the response system
becomes negative at b,=1.06, while the largest positive
Lyapunov exponent of the response system becomes nega-
tive at the value of 5,=0.97, confirming the onset of IAS at
b,=0.97.

B. ICS

The synchronization manifold, A=x72_71+y, becomes an
ICS manifold for 7;=7,=8.0. The time trajectory of the vari-
ables x(7), y(z), and —y(z) are plotted in Fig. 4, depicting the
existence of ICS for the same values of the other parameters
as in Fig. 2. It is clear from Fig. 4 that the state of the
response system, y(z), evolves in synchrony with the inverse
state of the drive system x(¢). For the ease of clear visualiza-
tion of this phenomenon, the inverse of the response —y(¢) is
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FIG. 5. (a) Similarity function, S.(b,), (b) probability of synchronization,
®(b,), and (c) first eight maximal Lyapunov exponents, \,,,y, of the coupled
piecewise linear time-delay systems as a function of the control parameter
b,, indicating the existence of ICS for b,<<0.97 and for the coupling delay
7=7;=8.0.

shown as filled circles in Fig. 2 and hence the inverse state of
the response —y() clearly evolves in synchrony with the state
of the drive x(7), thereby illustrating the existence of ICS
between the drive, y(r), and the response, x(z), systems.

We have also calculated the similarity function for the
ICS defined as

@ + x0T
[P )]"

as a function of the parameter b, in Fig. 5(a). The similarity
function, S.(b,), oscillates with a finite value above zero for
the value of the control parameter b, =0.97 as shown in Fig.
5(a), where there does not exist any correlation between the
interacting systems. However, it is evident from Fig. 5(a)
that the similarity function becomes zero for the values of
b,<<0.97 indicating the existence of exact ICS in the coupled
piecewise linear time-delay system even for the value of the
parameter satisfying the less stringent stability condition as
discussed in Sec. III A. We have also characterized the exis-
tence of ICS using the probability of synchronization
(®(b,)), as shown in Fig. 5(b), which clearly shows that the
probability of synchronization becomes unity for b,<<0.97,
depicting the existence of ICS between the coupled drive,
x(t), and the response, y(z), systems with inhibitory coupling.
However, for b,=0.97, the value of the probability of syn-
chronization becomes zero, ®(b,)=0, indicating that there
exists no correlation between the coupled systems for this
range of parameters. The eight largest Lyapunov exponents
of the coupled time-delay systems is shown in Fig. 5(c). It
shows that the two largest Lyapunov exponents of the drive

S2(by) = (16)
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FIG. 6. (Color online) The time trajectory of the variables x(¢), y(¢), and
—y(t) of the coupled piecewise linear time-delay systems, indicating ILS for
the value of the coupling delay 7,=10.0, while the other parameter values
are the same as in Fig. 2.

system remain positive, while the largest positive Lyapunov
exponent of the response system attains a negative value at
b,=0.97, confirming the existence of ICS for b, <<0.97.

C.ILS

Now, we will demonstrate the existence of ILS in the
coupled piecewise linear time-delay systems [Egs. (1) and
(2)] for the value of coupling delay 7, > 7, and for the same
values of the other parameters as in Sec. IIT A. The time
series of the variables x(z), y(¢), and —y(z) of the coupled
systems are shown in Fig. 6 for b,=0.6 and 7,=10.0, depict-
ing the existence of ILS in the coupled systems. It is evident
from the figure that the state of the response system y(r) lags
the inverse state of the drive system x(z). In order to made
this clear visually, the inverse state of the response —y(z) is
plotted in Fig. 6 and hence the inverse state of the response
—y(1) lags the state of the drive x(7), thereby illustrating the
existence of ILS between the drive and the response systems.

The similarity function for ILS defined as

e+ +x(0OF)
[y (0)]"?

is plotted in Fig. 7(a) as a function of b,. The similarity
function oscillates with a finite amplitude for »,=0.97 as in
the other cases, as there is no synchronous evolution among
the coupled systems. However, the similarity function,
S,(b,), reaches zero for b, <<0.97, confirming the existence of
ILS in the coupled time-delay systems. Similarly, the value
of the probability of synchronization, ®(b,), calculated be-
tween the response, y(z), and the auxiliary, z(¢), systems at-
tains unity for b,<<0.97, confirming the existence of com-
plete synchronization between them as shown in Fig. 7(b).
Correspondingly, there exists ILS between the drive, x(),
and the response, y(z), systems. The two largest Lyapunov
exponents of the drive system remain positive, as shown in
Fig. 7(c), while the largest positive Lyapunov exponent of
the response system becomes negative at b,=0.97, confirm-
ing the existence of ILS between the drive and the response
systems.
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FIG. 7. (a) Similarity function, S;(b,), (b) probability of synchronization,
®(b,), and (c) first eight maximal Lyapunov exponents, \,,,,, of the coupled
piecewise linear time-delay systems as a function of the control parameter
b,, indicating the existence of ILS for b,<<0.97 and for the coupling delay
7=10.0.

IV. INVERSE SYNCHRONIZATIONS IN THE COUPLED
IKEDA TIME-DELAY SYSTEMS
[EQS. (1) AND (3)]

In this section, as an illustration for the case where the
coefficient of the A term in the error equation (6) is constant,
while that of the A term is time dependent, we will demon-
strate the existence of inverse anticipatory, inverse complete,
and ILSs as a function of the coupling delay in the coupled
Ikeda time-delay systems (1) and (3) with inhibitory cou-
pling.

A. IAS

We have fixed the values of the parameters of the
coupled Tkeda time-delay systems [Egs. (1) and (3)] as
a=1.0, by=5, 7,=4.0, and 7,=3.0, while the other two pa-
rameters b, and b5 are fixed according to the parametric con-
dition b;=b,+b5. To appreciate the chaotic and hyperchaotic
nature of the uncoupled system, we present in Fig. 8(a) the
first 11 largest Lyapunov exponents for the above values of
the parameters in the range of delay time 7e (2,25) where
several of them take positive values. As an illustration, the
hyperchaotic attractor with three positive Lyapunov expo-
nents of the uncoupled system for 7;=7=4.0 is depicted in
Fig. 8(b).

Now, we will demonstrate the existence of IAS for the
value of the coupling delay 7, less than that of the feedback
delay 7; and for the values of the other parameters satisfying
the stability condition (13). It is evident from Fig. 8(b) that

Downloaded 07 May 2009 to 193.174.17.92. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



023107-7 Inverse synchronizations Chaos 19, 023107 (2009)
0.2 5
(@)
2.5
2oLy £ 0
< =
-2.5
IS |
L f . . _5 L L L
5 10 15 20 25 -5 2.5 0 2.5 5
T x(1)

FIG. 8. (a) The first 11 maximal Lyapunov exponents X\, of the Ikeda time-delay systems [Egs. (1a) and (3)] for a=1.0, b=5, and 7€ (2,25). (b)
Hyperchaotic attractor for the delay time 7,=7=4.0 with three positive Lyapunov exponents for the above values of the other parameters.

the maximum value of x() does not exceed x,,,=5. Corre-
spondingly, x(z—75)n.x=35. As a consequence, the stability
condition (13) can be written as

a > by cos(5) =0.284b,. (18)

Then, one can obtain an asymptotically stable synchronized
state for the values of parameters satisfying the above stabil-
ity condition. The time trajectories of the variables x(1), y (),
and —y() depicting the existence of IAS are plotted in Fig. 9
for the value of the parameter b,=2.0 satisfying the stability
condition (18). The minimum of the similarity function,
S,(b,), defined by Eq. (14) becomes zero for b,<<2.88 as
shown in Fig. 10(a), indicating the existence of IAS in the
coupled Ikeda time-delay system.

The existence of IAS is further characterized by the
probability of synchronization, ®(b,), for complete synchro-
nization between the response, y(z), and the auxiliary, z(z),
systems by augmenting the coupled Ikeda time-delay sys-
tems [Egs. (1) and (3)] with an additional auxiliary system
for the variable z(7) identical to the response system as in Eq.
(15). Figure 10(b) indicates that the value of the probability
of synchronization becomes ®(b,)=1.0 for b,<<2.88, con-
firming the existence of IAS between the coupled drive, x(z),
and the response, y(f), systems. The existence of IAS for
b,<<2.88 is further confirmed from the changes in the spec-
trum of the largest Lyapunov exponents of the coupled Ikeda
time-delay systems [Egs. (1) and (3)]. The nine largest
Lyapunov exponents, .y is shown in Fig. 10(c) as a func-
tion of b,. While the largest three positive Lyapunov expo-
nents of the drive system remain positive, the largest positive
exponents of the response system gradually become negative

x(t), y(1), -y(1)

(S}

| ,% w

2510

4
2500 2520 2530 2540 2550

t

FIG. 9. (Color online) The time trajectory of the variables x(7), y(7), and
—y(t) for a=1.0, b;=5.0, b,=2.0, b3=3.0, 7,=4.0, and 7,=3.0 of the
coupled Ikeda time-delay systems, indicating IAS.

as a function of b, and finally they become negative at
b,=2.88, confirming the existence of IAS for b, <2.88 sat-
isfying the stability condition (18).

B. ICS

The time series of the variables x(z), y(7), and —y() in-
dicating the existence of ICS, for the value of the coupling
delay 7, =71,=4.0, and for the same values of the other pa-
rameters satisfying the stability condition (18) as in Sec.
IV A, are shown in Fig. 11. The similarity function, S.(b,),
given by Eq. (16), for ICS shown in Fig. 12(a) indicates that
the minimum of S.(b,)=0 for b,<2.88, depicting the exis-
tence of ICS in the corresponding range of b,. It is also
evident from the probability of synchronization [Fig. 12(b)]
that ®(b,)=1 for b,<2.88, confirming the existence of ICS
between the drive and the response systems. This transition

S, (by)
o
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0.6
0.4
02 (b
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0 e
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FIG. 10. (a) Similarity function, S;(b,), (b) probability of synchronization,
®(b,), and (c) first nine maximal Lyapunov exponents, X, of the coupled
Tkeda time-delay systems as a function of the control parameter b,, indicat-
ing the existence of IAS for b, <2.88 and for the coupling delay 7,=3.0.
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FIG. 11. (Color online) The time trajectory of the variables x(¢), y(¢), and
—y(1) for a=1.0, b;=5.0, b,=2.0, bs=3.0, 7,=4.0, and 7,=4.0 of the
coupled Ikeda time-delay systems, indicating ICS.

from a desynchronized state to ICS for the values of param-
eters satisfying the stability condition (18) is also confirmed
from the changes in the spectrum of the Lyapunov exponents
of the coupled Ikeda systems, as shown in Fig. 12(c). The
largest positive Lyapunov exponents of the response system
become negative at b,=2.88, confirming the existence of ICS
for b, <2.88, while the largest three positive Lyapunov ex-
ponents of the drive system remain positive.

C.ILS

For the coupling delay 7,=5.0 greater than the feedback
delay 7,=4.0, the synchronization manifold A=0 corre-
sponds to the ILS manifold. The time trajectories of the vari-
ables x(7), y(¢), and —y(¢) of the coupled Ikeda time-delay
systems (Fig. 13) clearly depict the ILS for the above choice
of the coupling delay [the other parameters are fixed as in
Sec. IV A satisfying the stability condition (18)]. The mini-
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FIG. 12. (a) Similarity function, S,(b,), (b) probability of synchronization,
®(b,), and (c) first nine maximal Lyapunov exponents, \ .., of the coupled
Ikeda time-delay systems as a function of the control parameter b,, indicat-
ing the existence of ICS for b,<<2.88 and for the coupling delay 7,=7
=4.0.
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FIG. 13. (Color online) The time trajectory of the variables x(z), , y(), and
(1) for a=1.0, b;=5.0, b,=2.0, b;=3.0, 7,=4.0, and 7=5.0 of the
coupled Ikeda time-delay systems, indicating ILS.

mum of the similarity function for ILS turns out to be
S,(b,)=0 as shown in Fig. 14(a) for b, <<2.88, indicating the
existence of ILS for b,<<2.88. Similarly, the value of the
probability of synchronization [Fig. 14(b)] becomes unity in
the corresponding range of b,, confirming the existence of
ILS between the coupled Ikeda time-delay systems. The ex-
istence of ILS for b, <<2.88 is also further confirmed by the
changes in the spectrum of the Lyapunov exponents of the
coupled Tkeda time-delay systems, as shown in Fig. 14(c).
The largest three positive Lyapunov exponents of the drive
system remain unchanged, while those of the response sys-
tem decrease in their values as a function of b, and they
become negative at b,=2.88, confirming the emergence of
ILS in coupled Ikeda time-delay systems.
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FIG. 14. (a) Similarity function, S;(b,), (b) probability of synchronization,

®(b,), and (c) first nine maximal Lyapunov exponents, X, of the coupled

Tkeda time-delay systems as a function of the control parameter b,, indicat-

ing the existence of ILS for b, <<2.88 and for the coupling delay 7,=5.0.
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V. SUMMARY AND CONCLUSION

In this paper, we have shown the transition from inverse
anticipatory to inverse lag via ICS as a function of the cou-
pling delay 7, for fixed value of the feedback delay 7, in
unidirectionally coupled time-delay systems with inhibitory
coupling. We have also arrived at a suitable stability condi-
tion for the asymptotic stability of the synchronized states
using the Krasovskii—Lyapunov functional theory. We have
demonstrated that the same general stability condition result-
ing from Krasovskii—Lyapunov functional approach can be
valid for two different cases, where (i) both the coefficients
of the A and A terms of the error equation corresponding to
synchronization manifold are constants and (ii) the coeffi-
cient of the A, term is time dependent, while that of the other
is time independent using suitable examples. The existence
of different types of inverse synchronizations is corroborated
using similarity function, probability of synchronization, and
from the changes in the spectrum of the largest Lyapunov
exponents of the coupled time-delay systems. We have also
designed suitable couplings for the case where both coeffi-
cients of the A and A terms are time dependent to show the
validity of the same general stability condition (10) resulting
from the Krasovskii—Lyapunov functional theory, the results
of that will be published in a forthcoming paper.
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