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The method of twin surrogates has been introduced to test for phase synchronization of complex
systems in the case of passive experiments. In this paper we derive new analytical expressions for
the number of twins depending on the size of the neighborhood, as well as on the length of the
trajectory. This allows us to determine the optimal parameters for the generation of twin surrogates.
Furthermore, we determine the quality of the twin surrogates with respect to several linear and
nonlinear statistics depending on the parameters of the method. In the second part of the paper we
perform a hypothesis test for phase synchronization in the case of experimental data from fixational
eye movements. These miniature eye movements have been shown to play a central role in neural
information processing underlying the perception of static visual scenes. The high number of data
sets �21 subjects and 30 trials per person� allows us to compare the generated twin surrogates with
the “natural” surrogates that correspond to the different trials. We show that the generated twin
surrogates reproduce very well all linear and nonlinear characteristics of the underlying experimen-
tal system. The synchronization analysis of fixational eye movements by means of twin surrogates
reveals that the synchronization between the left and right eye is significant, indicating that either
the centers in the brain stem generating fixational eye movements are closely linked, or, alterna-
tively that there is only one center controlling both eyes. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3072784�

In a typical laboratory experiment, in which phase syn-
chronization of two systems is studied, the coupling
strength between both systems is systematically in-
creased, until both systems adapt their rhythms, and
hence, become phase synchronized. In the case of passive
experiments, it is not possible to systematically vary the
coupling strength. This is the case in many natural sys-
tems, such as, the synchronization among the electrical
activity of different brain areas. There, we have only ac-
cess to one single value of the coupling strength. Comput-
ing the phase synchronization index in these cases is not
enough to assess the statistical significance of the result.
The method of twin surrogates has been proposed to
overcome this problem, allowing the performance of a
hypothesis test that assess the significance of the result. In
this paper, we revisit the method of twin surrogates and
derive new analytical expressions for the number of twins
depending on the size of the recurrence neighborhood
and the number of points of the trajectory. These results
allow us to determine the optimal parameters for the gen-
eration of twin surrogates, which is a very relevant prob-
lem in the case of experimental data. Moreover, we vali-
date the method of twin surrogates comparing the
generated surrogates to “natural” surrogates in an ex-
perimental system consisting of fixational eye movements,

and show that the phase synchronization of the left and
right fixational eye movements is statistically significant.

I. INTRODUCTION

Synchronization of complex systems has been inten-
sively studied in the last decade. This nonlinear phenomenon
has been found in numerous technical and natural systems.1

Recently, the conditions for synchronizability in complex
networks has become a main focus of research.1 In spite of
the large number of papers about this topic, the problem of
synchronization analysis of experimental data in passive ex-
periments remains an open problem. Passive experiments are
those in which it is practically impossible to systematically
change the main parameters responsible for synchronization:
the coupling strength or the frequencies of the two or more
interacting systems. This is the case in many natural systems,
such as, in geophysical and neurophysical ones. For ex-
ample, synchronization is often analyzed between the elec-
trical activity from different brain areas. In such cases, we
obtain just one value for the synchronization index, and then,
it is difficult to statistically judge whether the result is sig-
nificant or not. In one of the standard textbooks for
synchronization,1 the authors state: “The general problem is,
what kind of information can be obtained from a passive
experiment. In particular, a natural question appears, whether
one can detect synchronization by analyzing bivariate data.a�Electronic mail: m.romano@abdn.ac.uk.
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Generally, the answer to the formulated question is nega-
tive.”

In Ref. 2 the authors encountered the same problem
when analyzing phase synchronization �PS� between the
heartbeats of pregnant women and their fetuses. To assess the
significance of their results, they computed the synchroniza-
tion index between a mother and the fetus of another preg-
nant surrogate woman. By means of this analysis, they ob-
tained statistically significant results. However, the different
women were shown to have rather different distributions of
times between consecutive heartbeats, and therefore, it was
not clear whether the synchronization results were significant
just due to the physiological differences between the women.

In order to overcome this problem, we have recently
proposed a mathematical algorithm to generate trajectories
which correspond to the same underlying system but starting
at different initial conditions.3 This method, called twin sur-
rogates �TS�, generates an independent copy of the whole
system. If we now compute the synchronization index be-
tween one subsystem from the original, and the other sub-
system from the surrogate system �just as in the case of the
pregnant women�, we are able to assess the significance of
the results. By means of this algorithm we avoid the difficul-
ties with different statistical properties in different subjects
or nonstationarities in the case of comparison between dif-
ferent realizations of the same subject. Therefore, the method
of twin surrogates allows testing for synchronization of com-
plex systems even in the case of passive experiments, which
is a prevalent problem in synchronization research.

In this paper, we first review the method of twin surro-
gates �Sec. II� and then thoroughly analyze the influence of
the parameters of the method on the quality of the generated
surrogates. We derive analytical expressions for the average
number of twins in the underlying trajectory depending on
the parameters of the method and compare the theoretical
expressions with numerical simulations �Sec. III�. Moreover,
we compute several linear and nonlinear statistics for the
surrogates and compare them with the ones obtained from
trajectories starting at different initial conditions generated
from the equations of the underlying system �Sec. IV�. Hav-
ing done all these computations, allows us to choose optimal
parameters of the method to generate twin surrogates in the
case of experimental data. Hence, we exemplify in Sec. V
how to apply the method of twin surrogates to a passive
experiment: phase synchronization of fixational eye move-
ments. This experiment is very appropriate to validate the
twin surrogate technique in the case of experimental data,
because measurements from 21 subjects with 30 trials per
person are available. Then, we can compare the generated
twin surrogates to the different trials performed by the same
subject. But first of all, we review the twin surrogates algo-
rithm in the next section.

II. ALGORITHM FOR THE GENERATION
OF TWIN SURROGATES

The algorithm to generate twin surrogates is based on
the recurrence matrix

Ri,j = ��� − �x��i� − x��j���, i, j = 1, . . . ,N , �1�

where ��·� denotes the Heaviside function, � · � a norm �e.g.,
Euclidean or maximum norm�, and � is a predefined thresh-
old. x��i� denotes the vector of the trajectory of the system in
phase space at time t= i�t, with �t being the sampling time
of the trajectory and i=1, . . . ,N. In the case that only a scalar
time series has been observed, the trajectory of the system
has to be reconstructed using some embedding technique,
such as, the delay coordinates.4,5 Coding the “1’s” in the
matrix as black dots and the “0’s” as white ones, we obtain
the recurrence plot �RP� of the trajectory. The method of RPs
was introduced in Ref. 6 to visualize the trajectories of dy-
namical systems in phase space. This method and the related
“Recurrence Quantification Analysis” have proven to be very
useful for the analysis of data, as can be shown by the nu-
merous publications in many different fields of research.7 In
Fig. 1 the RP of a trajectory of the Lorenz system in the
chaotic regime �Eq. �A2�� is represented for illustration. Note
that the RP consists mainly of diagonal lines of different
lengths. A diagonal line indicates that the trajectory recurs to
the neighborhood of a former visited point of phase space,
and that the trajectory evolves similarly to the past during a
certain time interval, which is given by the length of the
diagonal line. Since the system is chaotic, after some time
interval two segments of the trajectory starting at slightly
different initial conditions diverge, and therefore, the diago-
nal lines in the RP are interrupted. There are different statis-
tics based on the distribution of the diagonal lines in RPs,
which are the basis for the RQA.

Furthermore, it has been shown that it is possible to
estimate several invariants of the dynamics using the recur-
rence matrix,8 and even the rank order of a univariate time
series can be reconstructed from its recurrence matrix.9,10

These facts suggest that the recurrence matrix contains the
topological information about the underlying system.

Hence, a first idea for the generation of surrogates is to
change the structures in a RP consistently with the ones pro-
duced by the underlying dynamical system and then recon-
struct the trajectory from the modified RP. Furthermore, we
use the fact that in a RP there are identical columns, i.e.,
Rk,i=Rk,j ∀k. This is because two different points of the tra-
jectory can have exactly the same set of neighbors with re-
spect to the threshold �. Thus, there are points which are not
only neighbors �i.e., �x��i�−x��j�����, but which also share
the same neighborhood. These points are called twins. Twins
are special points of the time series as they are dynamically

FIG. 1. Recurrence plot of a trajectory from the Lorenz system �Eq. �A2��.
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indistinguishable considering their neighborhoods but in
general different and hence, have different pasts and, more
important, different futures. The key idea of how to introduce
the randomness needed for the generation of surrogates of a
deterministic system is that one can jump randomly to one of
the possible futures of the twins. A surrogate trajectory x�s�i�
of x��i� with i=1, . . . ,N is then generated as follows:

1. Identify all pairs of twins, i.e., all pairs x��i� and x��j�
such that Ri,k=Rj,k for k=1, . . . ,N.

2. Choose an arbitrary starting point x��l� and set x�s�1�
=x��l�.

3. Next, we generate the twin surrogate iteratively. The jth
entry of the surrogate may be given by x�s�j�=x��m�. If
x��m� has no twins, set x�s�j+1�=x��m+1�. If, on the other
hand, x��n� is a twin of x��m�, set x�s�j+1�=x��m+1� or
x�s�j+1�=x��n+1� with equal probability.28

Step �3� is then iterated until the surrogate time series has the
same length as the original one.

This algorithm creates twin surrogates �TS� which are
shadowed11 by �typical� trajectories of the system in the limit
of an infinitely long original trajectory. Note that the TS are
multivariate surrogates, i.e., if the original trajectory is
d-dimensional, the TS are also d-dimensional. In Ref. 3 it has
been shown that already for a trajectory of finite length, the
errors or jumps �x��i�−x��j�� introduced by the TS generation
are rather small �i and j denote the time indices of two twins�
and that longer time series lead to even smaller jumps.

Note that other existing algorithms for the generation of
surrogates are not so appropriate to test for PS. For example,
the linear surrogates based on randomization of the Fourier
phases �e.g., the iterative amplitude adjusted Fourier trans-
form surrogates� or wavelet based surrogates,12 mimic the
probability distribution, the individual spectra of both com-
ponents of the original bivariate series as well as their cross-
spectrum, i.e., their linear properties, but not the higher order
moments. In this case, the corresponding null-hypothesis is
that the putative synchronization in the underlying system
can be explained by a bivariate linear stochastic process ob-
served through a nonlinear measurement function. The sta-
tistical specificity—considered as a count of false
positives13—of such a test is not always satisfactory, because
the concept of PS assumes the mutual adaption of self-
sustained oscillators, i.e., nonlinear deterministic systems.
On the other hand, the algorithm for the generation of the
pseudoperiodic surrogates14 might appear to be rather similar
to the one for the twin surrogates. However, the pseudoperi-
odic surrogates have been proposed to test the null hypoth-
esis that an observed time series is consistent with an �un-
correlated� noise-driven periodic orbit. The pseudoperiodic
surrogates are closer to the surrogates needed to test for PS
than the iterative amplitude adjusted Fourier transform sur-
rogates, since they correspond to a trajectory of a determin-
istic system with noise. Nevertheless, they are still not ap-
propriate to test for PS, because they are not capable of
mimicking chaotic oscillators. Moreover, surrogates based
on a time shifting algorithm have also been studied,15 but the
problem of truncating the time series or alternatively joining
different blocks is still unsolved in that case. For an exhaus-

tive comparison between twin surrogates and other types of
surrogates mentioned above, please see Ref. 3.

In the next two sections we investigate the properties
and quality of the TS depending on the parameters of the
algorithm. We consider prototypical systems of different
kinds of dynamics �chaotic maps, chaotic continuous sys-
tems, and discrete stochastic systems�, since the algorithm to
generate twin surrogates is, in principle, applicable to all
kinds of dynamics. This study will allow us to decide objec-
tively how to choose the parameters of the method before
applying it to experimental data. Note that even though the
method of the twin surrogates enables us to test for PS in
passive experiments, we can generate twin surrogates of all
kinds of systems, i.e., also systems which do not fulfill the
assumptions necessary to have PS �e.g., chaotic one-
dimensional maps or linear systems�. Hence, the technique
of twin surrogates can be also used to test for other kinds of
synchronization, such as, generalized synchronization or
even to test the direction of the coupling.16 In the last section
we exemplify the use of twin surrogates for testing phase
synchronization in a passive experiment of fixational eye
movements.

III. NUMBER OF TWINS

Regarding the algorithm for the generation of TS, the
natural following question arises: How does the number of
twins of the trajectory depend on the threshold � and on the
number of points N of the time series?

In order to address this basic question, we first consider
a univariate time series �xi�i=1

N consisting of random numbers
uniformly distributed in the unit interval, for the sake of
simplicity. This time series allows us to concentrate on the
topology without having to take the dynamics into consider-
ation. Note that two points are called twins if their neighbors
are exactly the same. Assume that xi and xj are twins and that
they are separated by the distance r, i.e., �xi−xj�=r. As the
twins share their neighborhood, the nonoverlapping seg-
ments of their �-intervals are empty �Fig. 2�. Therefore, to
compute the probability that two points of the time series are
twins, we have to consider the probability that the nonover-
lapping regions �NOR� are empty, or equivalently, the prob-
ability that the distance between two nearest neighbors is at
least r �note that the length of the nonoverlapping segments
is equal to r�. As the considered time series is uniformly
distributed, this probability is given by

P�NOR of size r empty� = e−�r, �2�

where � is the density of points in the unit interval, and
hence, proportional to the number of data points N of the
time series.17 Now, to compute the average number of twins
of the time series, we have to integrate P �NOR of size r
empty� considering the distribution of the distances ��r� of
the time series. For a uniformly distributed time series in the
unit interval, it is easy to see that the distribution of the
distances is given by ��r�=2−2r. Moreover, the average
number of twins of the time series is proportional to the total
number of points N. Hence, the average number of twins
	Ntwins
 of the time series can be estimated as follows:
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	Ntwins
 � N�
0

�

e−�r�2 − 2r�dr

=
2N

�2 �e−������ − 1� + 1� + � − 1� . �3�

Note that we integrate between 0 and �, because xi and xj

must first be neighbors in order to be twins. Since � is pro-
portional to N,17 we can plot our estimation of 	Ntwins
 de-
pending on � and N �Figs. 3�a� and 3�b�, respectively�. We

see that the average number of twins depending on � reaches
very fast a maximum and then remains constant. On the
other hand, the average number of twins depending on N is
almost constant. These analytical findings reproduce the ob-
tained numerical simulations for uniformly distributed ran-
dom noise �Figs. 3�c� and 3�d��, but also for uniformly dis-
tributed one-dimensional chaotic maps, such as, the
Bernoulli map �Figs. 3�e� and 3�f�� or the logistic map for
r=4 �not shown here�.

The two-dimensional case must be considered sepa-
rately, since the above arguments do not hold exactly there.
A heuristic derivation for the number of twins in this case is
as follows: For the sake of simplicity, suppose again that we
have a bivariate uniformly distributed time series �x�i�i=1

N �note
that it is not necessary to consider the dynamics, but just the
distribution of the points of the time series�. Two neighbor-
ing points x�i and x� j with distance r are twins if the nonover-
lapping regions �NOR� are empty. Since we are now in the
two-dimensional space, the area of NOR is not only depen-
dent on r but also on the size � of the neighborhood �see
Fig. 2�. If we use the Euclidean norm, the NOR in the two-
dimensional case can be approximated by ��r. Note that in
the two-dimensional case the probability that NOR is empty
is not equivalent anymore to the probability that the distance
between nearest neighbors is equal to r. Therefore, we can
just estimate P �NOR empty� by assuming that it is inversely
proportional to the area of NOR and to the density of points
�, and integrating over the distribution of distances ��r�. Fur-
thermore, the average number of twins of the time series will
be proportional to the probability that two points of the bi-

FIG. 2. �Color online� A: Two neighbors in the one-dimensional space with
distance r. The nonoverlapping regions �NOR� have the length r. B: Two
neighbors in the two-dimensional space with distance r. The nonoverlapping
regions �NOR� depend on r and on the radius � that defines the
neighborhoods.
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variate time series are neighbors, and to the total number of
points N of the time series

	Ntwins
 � N�
0

� 1

���r
��r�dr�

0

�

��r�dr . �4�

According to numerical simulations, the distribution of
distances ��r� seems to have the same form for many two
and higher dimensional systems, such as, a bivariate random
time series and the Lorenz system �Fig. 4�. This form can be
fitted by ��r�=	x exp�−
x2�. Substituting this distribution in
Eq. �4�, we obtain

	Ntwins
 �
N

�

	2

4
3/2�1/2
erf��
���1 − exp�− 
�2��

�
. �5�

Next, we can represent the average number of twins 	Ntwins

depending on the threshold � and the number of points N in
the time series, considering that in the two-dimensional case,
� scales as N2. The results from the analytical and numerical
computations are shown in Fig. 5. Note that 	Ntwins
 has a
very well pronounced maximum for small values of �. This
behavior is rather different from the one-dimensional case.
Furthermore, we see that the average number of twins de-
creases with the length of the time series. That means, that
the longer the time series, the more improbable is that two
points of the time series are twins. This is also very different
from the one-dimensional, where the average number of
twins does not depend on the number of points of the time
series. However, note that for the two-dimensional case the
average number of twins decreases fast for short lengths of
the time series, but for longer time series, the average num-
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ber of twins decreases very slowly. Moreover, the analytical
estimation reproduces rather well the numerical results for
very different kinds of dynamics, such as, bivariate uni-
formly distributed noise �Figs. 5�c� and 5�d�� and the chaotic
Lorenz system �Figs. 5�e� and 5�f��. Numerical simulations
show that for higher dimensional systems, the dependence of
	Ntwins
 on � and N is the qualitatively the same as for the
two-dimensional case.

Next, we estimate the number of different twin surro-
gates that are possible to generate given a trajectory of length
N and total number of twins Ntwins. Suppose that the twins
are distributed uniformly within the trajectory and that trip-
lets do not occur �i.e., each point of the trajectory can have
maximally one twin�. Furthermore, we assume that we can
jump also backwards and stop the algorithm when the length
of the surrogate has reached N. Then, the number of possible
twin surrogates scales as 2Ntwins. Moreover, since it is pos-
sible to start the twin surrogate at each point of the original
trajectory, the number of possible twin surrogates is also pro-
portional to the length of the trajectory N. Hence, the total
number of possible twin surrogates can be estimated as
N2Ntwins. Therefore, even in the case that the total number of
twins is rather low, the number of different twin surrogates
that can be generated is extremely high. For example, in the
Lorenz system with �=3.0 and N=10 000 points, we have 14
twins �Fig. 5�e��, and therefore, we can generate 1.64�108

twin surrogates.
In the next section we compare in detail the twin surro-

gates to original trajectories of the underlying system with
respect to different linear and nonlinear statistics and com-
pute the errors made by the twin surrogates depending on the
parameters of the method.

IV. COMPARISON OF TWIN SURROGATES
WITH ORIGINAL TRAJECTORIES

As we have seen in Sec. II, the algorithm for the genera-
tion of twin surrogates depends mainly on the parameter �,
which defines the size of the neighborhood to which the
trajectory recurs �Eq. �1��. Therefore, it is crucial to know
how the quality of the twin surrogates depends on this pa-
rameter. Furthermore, if only a scalar time series can be ob-
served, the trajectory in phase space has to be reconstructed.
Hence, an important question is also how the quality of the
TS depends on the choice of the embedding parameters.
Moreover, it is interesting to study the dependence on the
used number of points of the trajectory.

In order to study these dependencies, we will compute M
twin surrogates for prototypical models of dynamical sys-
tems on the one hand �the logistic map �Eq. �A1��, the
Lorenz system �Eq. �A2��, and an autoregressive �AR� model
of first order �Eq. �A3���, and on the other hand we will
generate M further trajectories of the same system starting at
different initial conditions �random uniformly distributed�
but using the equations of these models. Then, we can quan-
tify how closely twin surrogates mimic basic dynamical
properties of the underlying system by computing several
linear and nonlinear statistics for both the twin surrogates
and the further trajectories, namely, autocorrelation function
�ACF�, mutual information �MI�, mean diagonal line �MDL�,

and mean vertical line �MVL� from the respective recurrence
plots �see the Appendix�. We compute each of the statistics
for each of the twin surrogates, and determine the mean
value and standard deviation. We do the same for the other
”real” trajectories and calculate the error �see the Appendix�.
In the next subsections we present the errors obtained for
each of the former statistics depending on the parameters of
the algorithm for generating twin surrogates for the three
prototypical examples mentioned above.

A. Dependence on �

In Fig. 6 we show the comparison between the twin
surrogates and the “real” trajectories depending on the
threshold � for the logistic map �Eq. �A1��. Note that the
difference in all statistics computed is very small for a broad
interval of values of the threshold �. Only for values of �
�0.5, the errors in some statistics �MI and MDL� increase
significantly. Taking into consideration that for �0.5 the
whole unit interval is covered by the ball, and then such
values for the choice of � are not reasonable any more, this
result indicates that the twin surrogates method does not sen-
sitively depend on the choice of the threshold �. In Figs. 7
and 8 we present the results depending on � for the Lorenz
system �Eq. �A2�� and the AR model �Eq. �A3��. As in the
case of the logistic map, we find a broad interval of values of
� where the errors in the considered statistics are very small.

B. Dependence on embedding parameters

Dealing with experimental time series, usually only one
observable of the system is available, i.e., we have only a
scalar time series. Since the twin surrogates are computed
from the recurrence matrix of one trajectory in phase space,
the trajectory has to be reconstructed first in order to apply
the algorithm. This can be done by, e.g., delay embedding.4

Therefore, it is important to investigate how robust is the
twin surrogates algorithm with respect to the choice of the
embedding parameters m �embedding dimension� and � �em-
bedding delay�.

In order to study this dependence, we compute the errors
in the statistics ACF, MI, MDL, and MVL for different val-
ues of the embedding dimension m and delay embedding �.
We exemplify the results in the case of the Lorenz system
�Eq. �A2��, using the z-component as observable. Note that
the results using the x- or y-components are qualitatively the
same. The length of the time series used is 10 000 and the
time step between two points is 0.03. We see that for the
embedding dimension m=3, the delay � must be chosen
larger than 4. For other choices of m, the error does not
depend strongly on the value of �. For m=5 and m=6 a value
of ��7 seems to be more appropriate �Fig. 9�. In general,
the error remains rather small for all values of the embedding
parameters. This is the reason why the curves in Fig. 9 for
different values of m are difficult to distinguish. Hence, we
can conclude that the performance of the twin surrogates
does not depend strongly on the choice of the embedding
parameters.
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C. Dependence on the number of data points

Another important factor for the performance of the twin
surrogates is the length N of the time series.

In order to investigate the effect of N on the quality of

the twin surrogates, we again compute the errors in the sta-
tistics ACF, MI, MVL, and MDL depending on N. There-
sults for the logistic map, the Lorenz system, and the AR
model are represented in Figs. 10–12, respectively.
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In all three cases, especially in the logistic map and in
the AR model, the general trend is that the errors in the
statistics decrease with the length of the time series, as ex-
pected. Nevertheless, note that even for rather short data sets,
the errors are acceptable. For example, in the case of the
ACF the errors for time series of only 1000 data points are of
the order of magnitude of 1%.

V. APPLICATION TO EXPERIMENTAL DATA
FROM A PASSIVE EXPERIMENT: SYNCHRONIZATION
OF FIXATIONAL EYE MOVEMENTS

In the last decade it has been shown that fixational eye
movements are very relevant in information processing and
visual perception of the world around us. In this section we
apply the method of twin surrogates to data from eye-
movement experiments. The aim is to investigate the rela-
tionship between miniature �or fixational� movements from
the left and right eyes. During fixation of a stationary target
our eyes perform small involuntary and allegedly erratic
movements to counteract retinal adaptation. There are three
categories of fixational eye movements: microsaccades, ocu-
lar drifts, and ocular microtremor.18 If these eye movements
are experimentally suppressed, retinal adaptation to the con-
stant input induces very rapid perceptual fading.19 Fixational
eye movements can be described by random walks, with sta-
tistical correlations showing a time scale separation from
persistence to antipersistence.20 Persistence on the short time
scale counteracts retinal fading, whereas antipersistence on
the long time scale contributes to stability of ocular disparity.
According to current textbook knowledge, the fixational
movements of the left and right eye are correlated very

poorly at best.21 Therefore, it is highly desirable to examine
these processes from a perspective of phase
synchronization.22 In Ref. 23 it has been shown for the data
of only two different subjects, that phase synchronization
between the fixational eye movements from the left and right
eye is significant.

Here we analyze a larger data set, which consists of eye
movements obtained from 21 subjects. Each performed 30
trials, in which they fixated a small stimulus �black square on
a white background, 3�3 pixels on a computer display�
with a spatial extent of 0.12°, or 7.2 arc min during approxi-
mately 20 s. Eye movements were recorded using an
Eyelink-II �SR Research, Toronto, Canada� with a sampling
rate of 500 Hz and an instrument spatial resolution �0.01°
visual angle. Trials in which the subjects closed their eyes
�blinked� were discarded and repeated. The availability of
data from so many trials and subjects in this experiment
allows us to investigate two different aspects: �i� the perfor-
mance of the twin surrogates applied to experimental data,
i.e., how close are the twin surrogates to further real realiza-
tions from the same subject, and �ii� the systematic test of
phase synchronization in fixational eye movements.

Figure 13�a� shows a typical segment of the horizontal
component of the eye movements of the left �red� and right
�blue� eye for one person. The data were first high-pass fil-
tered applying a difference filter x̃�t�=x�t�−x�t−�� with
�=40 ms in order to eliminate the slow drift of the data.
After this filtering, we find an oscillatory trajectory �Fig.
13�b��, which has maximum spectral power in the frequency
range between 6 and 8 Hz.23
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�i� To study the quality of the twin surrogates method
applied to experimental data, we generate 30 twin surrogates
from one trial from one fixed subject. Then, we compare the
generated twin surrogates with the 30 measured trials from
the same subject. The comparison is made with respect to the

statistics ACF, MI, MVL, and MDL, analogously to Sec. IV.
Since both horizontal and vertical components of the trajec-
tories of the eye movements are available, no delay embed-
ding has been applied. The results for one trial of one fixed
subject are shown in Fig. 14. There, we have computed the
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errors in the statistics ACF, MI, MVL, and MDL depending
on the threshold �. For a rather broad range of values of �
covering up to 20% of the phase space, the errors in the
statistics remain rather small. This indicates, that the twin
surrogates perform very well also in the case of experimental
data, and furthermore, that the performance of the twin sur-
rogates is not sensitive to the choice of the threshold �.

In Fig. 15, we show one twin surrogate generated from

one trial of one subject with �=0.02 �A� in comparison with
other measured trial from the same subject. The twin surro-
gate reproduces the structure of the real time series very
well.

�ii� Knowing from the former study that the twin surro-
gates for the fixational eye movements perform well,10 we
test for phase synchronization between right and left fixa-
tional eye movements systematically generating 100 twin
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surrogates for every trial of every subject with �=0.02.
Even though the filtered eye movements trajectories

present an oscillatory behavior, the trajectories are rather
noisy and nonphase coherent. Therefore, it is cumbersome to
estimate the phase of these data. Hence we apply a measure
of phase synchronization which is based on the probability of
recurrence of a trajectory in phase space

P��� = 1/N
i=1

N

Ri,i+�, �6�

where Ri,i+� is the recurrence matrix �Eq. �1��. The correla-
tion between the probabilities of recurrence of two interact-
ing oscillators

CPR = 	P̄1���P̄2���
/��1�2� �7�

�where P̄1,2 means that the mean value has been subtracted
and �1 and �2 are the standard deviations of P1���, respec-
tively P2���� has been proposed to detect PS in nonphase
coherent and noisy oscillators, where the phase cannot be
estimated directly.24 Next, we compute 100 twin surrogates
of the left and right eye’s trajectory and compute the recur-
rence based synchronization index CPRsi between the left
eye surrogates and the measured right eye’s trajectory. In
Fig. 16 the results of the test of one trial are visualized. The
value obtained for CPR for the original data is well outside
the distribution of values of CPRsi obtained for the twin sur-
rogates, which indicates that the fixational right and left eye
movements for these data are in PS.

The results for all trials and all subjects are summarized
in Table I. In almost all cases �95%�, the PS index of the
original data is significantly different from the ones of the
surrogates, which strongly indicates that the concept of PS
can be successfully applied to study the interaction between
the trajectories of the left and right eye during fixation. This
result also suggests that the physiological mechanism in the
brain stem that produces the fixational eye movements con-
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trols both eyes simultaneously, i.e., there might be only one
center in the brain that produces the fixational movements in
both eyes or a close link between two centers. Our finding of
PS between left and right eyes is in good agreement with
current knowledge of the physiology of the oculomotor cir-
cuitry. In a single-cell study, 66% of abducens motor neurons
fired in relation to the movements of either eye, while pre-
motor neurons in the brain stem encode monocular
movements.25 Thus, motor neurons—as the final common
pathway of neural control of eye movements—are candidates
for the synchronization of left and right fixational move-
ments.

VI. CONCLUSIONS

In this paper we have revisited the recurrence based
method of twin surrogates, assessing the quality of the gen-
erated surrogates depending on the parameters of the method
for different cases of prototypical dynamics. A twin surrogate
corresponds to a trajectory of the underlying dynamical sys-
tem starting at different initial conditions. Therefore, in order
to quantify the quality of the generated twin surrogates, we
have compared them with “real” trajectories of the underly-
ing system starting at different initial conditions. The com-
parison between the surrogates and the real trajectories is
performed in terms of linear and nonlinear statistics. We
have shown that the precise choice of the threshold �, the
most important parameter of the method, does not influence
the result. We have assumed that we have only scalar time
series, since this is the case in most of the experimental
situations, and therefore, reconstructed the phase space by
delay embedding. We have shown that the quality of the
surrogates is not strongly influenced by different choices of
the embedding parameters. Moreover, the dependence of the
quality of the surrogates on the length of the time series is as
expected, i.e., the longer the original time series, the better
the quality of the surrogates, even though our results show
that already for rather short time series �1000 data points�,

the errors found are very small. The average number of twins
of the underlying trajectory depending on the threshold � and
the number of points has also been studied. We have derived
analytical expressions which are in accordance with numeri-
cal simulations for different kinds of dynamics. Moreover,
we have estimated the total number of different twin surro-
gates that can be obtained from a time series of length N and
average number of twins 	Ntwins
. We have seen that the total
number of different twin surrogates that can be generated is
very large, even in the case that the number of twins of the

TABLE I. Results for the test for PS between the trajectories of the left and
right fixational eye movements performed for 30 trials for 21 subjects. Trials
in which the participants blinked, were discarded. 100 twin surrogates were
used for the test.

Participant
Total number

of trials

No. of trials where
the 0-hypothesis

was rejected

1 30 23
2 29 26
3 30 30
4 30 30
5 30 30
6 30 30
7 30 30
8 30 30
9 30 25

10 30 30
11 28 24
12 30 30
13 30 30
14 30 21
15 30 30
16 30 30
17 29 29
18 27 27
19 29 29
20 30 29
21 30 29

total number of trials=622, rejections=592
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FIG. 15. �Color online� A� Twin surrogate of the left �red, solid line� and
right �blue, dashed line� filtered fixational eye movements, horizontal com-
ponent. B� Segment of another filtered trial of the same subject. The twin
surrogates reproduce the structure of the measured time series very well.

FIG. 16. Histogram of the values obtained for CPRsi with i=1, . . . ,100
�bars�. The dashed vertical line indicates the value obtained for CPR for the
original data. Hence, in this case the null hypothesis is rejected, which
indicates that there is PS between the left and right fixational eye move-
ments. This test was performed with the data from subject 2, trial 10.
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trajectory is rather low. The results of this thoroughly analy-
sis have been confirmed in the case of experimental data
from fixational eye movements. In this case, we have com-
pared the generated twin surrogates with “real” further mea-
sured time series, and we have seen, that also in this case, the
precise choice of the threshold � does not influence the per-
formance of the twin surrogates. Finally, we have performed
systematically an hypothesis test using twin surrogates to
infer the statistical significance of phase synchronization be-
tween fixational eye movements of left and right eyes. We
have analyzed the data from approximately 30 trials from 21
subjects. In 95% of the cases, we have found that phase
synchronization is significant. This finding is in agreement
with physiological results about the functional role of oculo-
motor neurons. Contrary to popular belief, fixational eyes
movements are a necessary condition for vision. Thus, an
understanding of their dynamics is fundamental for percep-
tion and the associated control of spatial attention.26
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APPENDIX: PROTOTYPICAL SYSTEMS AND
STATISTICS USED FOR THE COMPARISON

We introduce the equations of the dynamical systems
used for illustration and the definitions of the statistics used
for the quantification of the quality of the twin surrogates
compared to original trajectories of the underlying system.

We consider three prototypical examples:

• the logistic map,

xn+1 = 4xn�xn − 1�; �A1�

• the Lorenz system,

ẋ = 10�y − x� ,

ẏ = 28x − y − xz , �A2�

ż = xy − 8/3z;

• and one autoregressive �AR� model of first order,

xn+1 = 0.87xn + �n. �A3�

The statistics that we use for the comparison of the twin
surrogates with the original trajectories are the following:

• the autocorrelation function of a scalar time series �x�t��t=1
N ,

ACF��� =
1

N − �

t=1

N−�
�x�t� − x̄��x�t + �� − x̄�

�x
2 , �A4�

where x̄ denotes the mean value and �x the standard devia-
tion of the time series;

• the mutual information of a scalar time series �x�t��t=1
N ,

MI��� = − 
i,j

pi,j���ln
pi,j���
pipj

, �A5�

where pi denotes the probability to find a time series value
in the ith interval of the partition, and pi,j��� the joint prob-
ability that an observation falls in the ith interval, and at
time � later, in the jth interval;

• the mean length of black diagonal lines, i.e., the average
value of the black diagonal lines of the RP of a trajectory
�x��t��t=1

N , which is an estimate of the mean prediction time
of the system7

MDL = 
l

lPd�l� , �A6�

where Pd�l� denotes the probability to find a black diago-
nal line of length l in the RP of the trajectory. A black
diagonal line of length l in the RP means that the trajectory
runs close to another segment of the trajectory during l
time steps. Note that we discard the main diagonal line of
the RP, which has length N;

• the mean white vertical line, i.e., the average value of the
white vertical lines of the RP of a trajectory �x��t��t=1

N ,
which is an estimate of the information dimension of the
system27

MVL = 
l

lPv�l� , �A7�

where Pv�l� denotes the probability to find a white vertical
line of length l in the RP of the trajectory. Note that a white
vertical line of length l in the RP means that the trajectory
needs l time steps to recur to the neighborhood of a fixed
point of the trajectory.

We compute each statistic for each of the twin surro-
gates, and determine the mean value and standard deviation.
We do the same for the other “real” trajectories and calculate
the error.

The error in the mean of the autocorrelation function is
computed as

E	ACF
 =��=1
�max�	ACF���
surr − 	ACF���
real�2

�max
, �A8�

where �max is the maximal time lag considered and 	·
 de-
notes the average. The error in the standard deviation of the
autocorrelation function is

E��ACF� =��=1
�max���ACF����surr − ��ACF����real�2

�max
,

�A9�

where ��·� denotes the standard deviation. The error in the
mutual information is computed analogously. In the case of
the mean diagonal line MDL, the error is computed as fol-
lows:
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EMDL =
��	MDL
surr − 	MDL
orig�2

2.96���MDL�surr + ��MDL�orig�/2
, �A10�

and the error in the mean white vertical line MVL is calcu-
lated analogously.
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