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Abstract – We study dynamical regimes of globally coupled genetic relaxation oscillators in the
presence of small detuning. Using bifurcation analysis, we find that under strong coupling via
the slow variable, the detuning can eliminate standard oscillatory solutions in a large region of
the parameter space, providing the dominance of oscillation death. This result is substantially
different from previous results on oscillation quenching, where for homogeneous populations, the
coexistence of oscillation death and limit cycle oscillations is always present. We propose further
that this effect of detuning-dependent dominance could be a powerful regulator of genetic network’s
dynamics.

Copyright c© EPLA, 2009

Since 1928 [1], the studies of coupled nonchaotic
oscillators have provided a rich source of ideas and
insights regarding the role of different coupling types as
well as the dependence on the oscillator structure in the
generation of new rhythms [2–4]. It has been shown that
even ensembles consisting of identical oscillators may
generate a variety of rhythms that differ in their period
and phase relations [5–7]. Apart from such rhythmogenic
activity, coupling can suppress oscillations in a network
by different mechanisms. This particular behavior known
as oscillation death (OD) was initially found by Prigogine
and Lefever [8] for two identical Brusselators coupled
in a diffusion-like manner. Their interaction can break
symmetry, which leads to a stable inhomogeneous steady
state. Furthermore, it has been shown theoretically
that OD is model independent, persisting for a large
parametric region in several models of diffusively coupled
chemical [9] or biological oscillators [10]. Experimental
results reported by Dolnik and Marek demonstrate the
extinction of oscillations in chemical reactors coupled by
mutual mass exchange [11]. Later, Crowley and Epstein
demonstrated for two coupled, slightly nonidentical
chemical oscillators that the basis for the OD is a
specific, vector-type coupling, namely, coupling via a
slow recovery variable [12]. Very recently, OD has been

experimentally observed in chemical nano-oscillators
(micro fluidic Belousov-Zhabotinsky-octane droplets),
diffusively coupled via signaling species (Br2 in this
case) [13]. It is important to note that the OD in the
investigated systems is always accompanied (coexists)
in parameter space with stable synchronous oscilla-
tions [12,14].
Besides the OD phenomena, other types of coupling-

dependent quenching of oscillations, called amplitude
death (AD), are discussed in the literature [15,16]. It
has been proven that for sufficiently strong coupling
and sufficiently large variance of the distribution of the
frequencies, AD can be observed – the oscillators pull
each other off their limit cycles and into the origin,
a stable equilibrium point [17]. Moreover, it has been
shown that AD, in contrast to OD, is stable also for
delayed coupling (scalar or vector) [18,19]. Thus, AD
results in a homogeneous steady state (all oscillators in
the system display identical steady-state behavior) and is
therefore, principally different from the OD phenomena,
which emerges from a symmetry-breaking bifurcation and
is manifested as an inhomogeneous steady state (distinct
steady-state levels are present in the system).
Recently, collective rhythms of regulatory genetic

networks have been a subject of considerable interest
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both to theoreticians and experimentalists, due to the
rapid advancement in molecular-biology techniques,
which allows the design and construction of de novo
synthetic genetic circuits. Moreover, several theoretical
models have been proposed to examine the dynamics of
different types of synthetic oscillators, such as coupled
repressilator [20–22] or relaxation oscillators of different
types [23,24]. In these models, the role of what is known
as a quorum sensing mechanism has been investigated in
regulation of the dynamics on a population-wide scale.
The quorum sensing mechanism underlying intercellu-
lar communication is accomplished by transmembrane
diffusion of signaling molecules (autoinducer, AI) into
extracellular medium, resulting in a coherent, in-phase
dynamical behavior in networks of synthetic genetic
circuits [20,23,24].
In [25], we have investigated the dynamics of

globally coupled identical synthetic genetic relaxation
oscillators [23] and showed that in addition to coherent
behavior, there exist various other modes of organized
collective behavior. However, we have also shown that OD
coexists with these limit cycle oscillations (at most with
in-phase oscillations) throughout the population (that is,
their regions of stability coincide). In synthetic genetic
networks, oscillators engaged in OD are distributed be-
tween two clusters, each of them being in a steady state,
which corresponds to two different but constant protein
synthesis levels [21,23,25]. We suppose that synthetic
circuits in the OD mode are a promising tool for cell func-
tion regulation because they can provide for stable vari-
ability of protein concentration. Moreover, OD can be seen
as an additional mechanism for genetic switch production
composed of interacting limit cycles, which substantially
differs from that of a standard genetic toggle switch [26].
Although all modern investigations demonstrate inter-

esting prospects for further development of synthetic
genetic circuits and their biotechnological applications,
they are still limited to the study of identical elements.
It is important to emphasize that this strong condition
never holds in experiments or in nature. To that extent,
in our present work we introduce detuning between the
oscillators as an additional parameter to provide a more
realistic view of interacting elements in a population.
Unexpectedly, we observe that in a large part of the para-
meter interval this detuning can abolish limit cycle oscilla-
tions (in-phase and partial synchronization regimes), and
replace them with OD at certain, appropriate magnitude
of the coupling strength. This effect is sensitive to the
extent of detuning, being observed even for small values
of the detuning parameter. We propose furthermore, that
this effect of detuning-dependent dominance could be used
as a powerful regulator of genetic network’s dynamics in
the case of strong coupling.
The model considered here consists of hysteresis-based

relaxation genetic oscillators coupled via quorum-sensing
mechanism, as proposed in [23]. Namely, the system is
constructed by combining two engineered gene networks,

the toggle switch [26] and an intercell communication
system, which have been implemented experimentally in
Escherichia coli and Vibrio fischeri [27]. The synthesis of
both repressor proteins which constitute the toggle switch,
are regulated in such a way that the expression of both
genes is mutually exclusive, and organizing bistability.
The second network is based on the dynamics of an
autoinducer (AI), which, on the one hand, drives the
toggle switch through the hysteresis loop, and, on the
other hand, provides an intercellular communication by
diffusion through the cell membrane.
The time evolution of the elements in this system

is governed by the dimensionless equations (see details
in [23]):

dui
dt
= α

(i)
1 f(vi)−ui+α3h(wi), (1)

dvi
dt
= α2g(ui)− vi, (2)

dwi
dt
= ε(α4g(ui)−wi)+ 2d(we−wi), (3)

dwe
dt
=
de
N

N∑

i=1

(wi−we), (4)

where N is the total number of cells (oscillators), ui
and vi represent the proteins from which the toggle
switch is constructed in the i-th cell, wi represents the
intracellular, and we the extracellular AI concentration.
The mutual gene regulation is defined with the functions:
f(v) = 1/(1+ vβ), g(u) = 1/(1+uγ) and h(w) =wη/(1+
wη). The coupling coefficients in the system are given
by d and de (intracellular and extracellular) and depend
mainly on the diffusion properties of the membrane, as
well as on the ratio between the volume of the cells
and the extracellular volume. The presence of multiple
time scales in this system (achieved for ε≪ 1) allows
to produce relaxation oscillations, which emerge via a
Hopf bifurcation HB; (for a single oscillator, α1HB ∼

1.18). The dimensionless parameters α
(i)
1 and α2 regulate

the repressor operation in the toggle switch, α3 the
activation due to the AI, and α4 the repressing of the AI.
Taking into account that the dynamics of the synthetic
circuit is regulated by α1, we assume that the detuning
between different cells is expressed in the variability of the
α1-parameter values, thus defining the detuning measure
between two cells as

dij =
α
(i)
1

α
(j)
1

. (5)

The suggestion for introducing the variability in α1 is
realistic, because α1, determining the expression strength
of the gene is proportional to the concentration of the
active promoters, thus proportional to the concentration
of plasmids present in the cell. The control of the number
of plasmid copies in experiment is elaborated in [28] and
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it can be therefore coordinated with the cell’s growth and
division.
A detailed analysis of the deterministic model of

identical, globally coupled relaxation genetic oscillators
has revealed the presence of multistability, i.e. the
appearance of several coexisting dynamical regimes (OD,
in-phase, anti-phase and asymmetric oscillations; recall
that, for two coupled cells, asymmetric oscillations are
characterized by large excursions of one of the oscillators,
while the other performs small-amplitude oscillations in
the vicinity of a stable steady state). As shown in [25], the
ability of the system to produce clustering and multiple
rhythms is a result of the inhibitory, phase-repulsive
coupling established through the AI diffusion. Moreover,
the complex dynamic structures persists to exist when
considering the more realistic assumption that a certain
variability between cells is present (e.g. dij = 0.98 under
small coupling, results not shown). We also observed in
this case [29] a significant enlargement of the parametric
area where the asymmetric solution is stable, with respect
to the equivalent investigation for identical elements. It
is noteworthy to mention that in both cases (identical
and slightly nonidentical elements (for small coupling
values, d < 0.004)), in line with the literature data on
oscillation quenching, the OD always coexists with limit
cycle oscillations (in-phase or quasi-in-phase for slightly
nonidentical elements).
The primary focus of this study is the influence of

detuning on oscillation quenching and the dynamics of
the system under strong coupling, in general. Thus,
as a result of the detuning, the homogeneous steady
state corresponding to cells being identical here “splits”
into slightly inhomogeneous steady states with different
protein concentrations: “upper” (black line in fig. 1,
region between α1 = 2.8 and α1 = 2.85) and “lower” (red
line in fig. 1) levels. We show here in detail how the
dynamical behavior of the two coupled cells (time series
(ts) represented through conjecture lines in fig. 1 and
bifurcation diagrams (fig. 2)) varies for fixed detuning
between the cells (dij = 0.96) with increasing the coupling
strength, starting from d= 0.005 (figs. 1, 2, top). The
analysis is performed following the dynamical changes of
the system through the “upper” level branch of the slightly
inhomogeneous steady state (following variable u1) using
the Xppaut package [30].
We observed appearance of many oscillatory regimes on

the branch emanating from the Hopf bifurcation HB1 of
the chosen inhomogeneous (“upper”) steady state (fig. 2).
As shown in the top frames of figs. 1 and 2, the branch of
oscillatory solutions contains a simple asymmetric solution
(stable between LP1 and LP2, ts in fig. 1 (top), for α1
between 2.85 and 3.02), quasi-in-phase solution stable
between PD1 and PD2 (ts for α1 between 3.02 and 3.13),
and dynamical regime characterized by synchronization of
order 2 : 1, which is stable between the period doubling
(PD3) and saddle-node bifurcation (LP3) (fig. 2 (top),
ts for α1 between 3.2 and 3.25). Despite the oscillatory
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Fig. 1: (Colour on-line) Conjugation lines representing time
series (ts) for different interval of α1 values, which corre-
spond to the qualitative changes of the dynamic of the system
(1–4), for top: d= 0.005, middle: d= 0.006, bottom: d= 0.008
and dij = 0.96. These α1 intervals (the vertical dashed lines)
correspond to stable regimes for d= 0.005. We continue them
below to show the dynamical changes in the system. Other
parameters are: N = 2, ε= 0.01, α2 = 5, α3 = 1, α4 = 4,
β = η= γ = 2, and de = 1.
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Fig. 2: (Colour on-line) The resulting bifurcation branch for
top: d= 0.005, middle: d= 0.006, bottom: d= 0.008 and dij =
0.96. Other parameters as in fig. 1. The bifurcation analysis
is performed on the upper branch of the inhomogeneous
steady state. Note that we present only that part of the
diagrams which is necessary for the results discussed, although
the complete bifurcation analysis was performed. This is
the reason why only one level of OD is shown on the top
and middle diagram. Namely, the lower level of the OD,
occupied by the second oscillator can be seen on the lower
branch of the inhomogeneous steady state (as shown on the
bottom figure).

regimes, the “upper” steady state stabilizes via another
Hopf bifurcation, HBs1, leading to the appearance of OD
phenomena (solid black line in fig. 2, time series (ts) in
fig. 1 (top), for α1 between 3.13 and 3.2).
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Unexpectedly we observed another, previously not
reported phenomenon in systems of coupled oscillators.
In contrast to the known results that the OD regime
always coexists with in-phase oscillations, we show here
(e.g. fig. 2, bottom) that oscillation quenching can gain
dominance in phase space. The same feature can be
observed also from the corresponding time series in fig. 1.
The effect of the OD dominance is a result of the detuning
present in the system and is dependent on the detuning
value and the coupling strength. Thus, the small para-
meter region of OD dominance between PD2 and PD3 in
fig. 2 (top) becomes significantly larger with increasing
coupling strength. As shown in fig. 2 (middle), for slightly
increased coupling values (d= 0.006), a qualitative differ-
ence in the particular branch is observed, which results in
a subsequent loss of the n :m synchronization regime on
the one hand, and an expansion of the parameter region
of OD dominance, on the other hand.
The dominance of the oscillation quenching regime is

reinforced when the coupling strength in the system is
further increased. For a given critical value (dcrit), the
detuning abolishes completely the oscillatory solutions in
a large part of the parameter plane, replacing them with
OD (see fig. 2, bottom, for d= 0.008). Namely, the branch
of the asymmetric limit cycle represents a link between two
different Hopf bifurcations of stable asymmetric steady
states: the slightly asymmetric solution before HB1 and
the OD stabilized through the other Hopf bifurcation,
HBs1. The detuning and the strong coupling provide the
closed bifurcation branch between HB1(2) and HBs1(2),
thus establishing the dominance of the OD regime. For
comparison, the α1 continuation of the HBs1 for identical
elements always results in an unstable branch, not linked
to other regimes.
The effect of OD dominance is observed even for small

detuning between the oscillators, although a complete
elimination of the oscillatory solutions from the middle of
the parameter plane is established only for critical values
of dij and d. By tracing the interdependence of dij and d,
one can determine dmin for which OD phenomenon occurs
for a fixed detuning between two coupled oscillators (black
dotted line in fig. 3, top), as well as dcrit for which the OD
dominance is established (red dotted line in fig. 3, top).
In addition, we present here several examples for N = 2
and d= 0.008: in the case of identical elements (dij = 1),
there is a coexistence of OD with in-phase oscillations
(see fig. 3(a)). For dij = 0.98, only a partial dominance
of OD is established (fig. 3(b)). However, for dij,crit =
0.97 and d > dcrit = 0.0072, OD abolishes completely the
oscillatory solutions from the middle of the parameter
interval, establishing a complete dominance of OD (see
fig. 3(c)). Increased detuning between the oscillators, e.g.,
dij = 0.92, results in an increased parameter region where
the effect of OD dominance is manifested (fig. 3(d)).
In the generalized case of N coupled oscillators (N > 2),

although the dynamics of the system becomes more
complex, the dominance of the OD phenomena over given
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Fig. 3: (Colour on-line) Demonstrating OD dominance. Top
figure: interdependence of d and dij , marking the relevant
values from the examples on the bottom figure; bottom figure:
a. coexistence of OD and oscillatory solution (in-phase) for
dij = 1; b. partial OD dominance for dij = 0.98; c. complete OD
dominance at dij,crit = 0.97; and d. reinforced OD dominance
for increased detuning, dij = 0.92. The oscillatory branches
(different oscillatory solutions) correspond to the discussed
solutions in fig. 2.

parameter range persists to exist in the form of clus-
ter formation. For inhomogeneous steady states (OD),
the system demonstrates only two cluster decompositions,
independently of N . As reported however [25], for N
coupled oscillators there exist N − 1 different distributions
of the oscillators between the two stable clusters through
which the OD is manifested. In the case of nonidentical
elements, grouping of the oscillators between the “upper”
and “lower” cluster in OD is still present, although, due
to the parameter mismatches present in the system, the
concentrations of the proteins produced by different oscil-
lators are slightly inhomogeneous (note that for N cells,

we define dij by fixing the α
(1)
1 value, and further vary-

ing the remaining N − 1 values of α1 the range [α
(1)
1 ±

10%]). Again, N − 1 different distributions of the oscilla-
tors between the two “cluster groupings” are possible with
different stable cluster distributions in distinct parameter
intervals (e.g., for N = 4 given in fig. 4). The oscillatory
solutions are in this case “pushed” between the stable OD
distribution branches, thus establishing parameter regions
with dominant OD regime. We note here that the effect
of clustering in the case of nonidentical elements is out of
the scope of the current manuscript, thus we limit here
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our discussions regarding this matter. Moreover, the accu-
racy of the OD dominance in a system of N > 2 coupled
nonidentical oscillators was re-confirmed by extensive
numerical simulations. For example, in order to check for
OD dominance in the case of N = 5, 8 and 11 oscillators,
we started from any of the limit cycles which are formed in
this system under medium values of the coupling strength
d. In contrast to the bifurcation analysis, the set of stable
regimes in this method is generated by extensive probing
of the large initial values set. Such method is effective for
extracting the most probable attractors in cases of many
oscillators, for which it is seemingly difficult to perform
bifurcation analysis. Then we adiabatically increased the
coupling strength and observed critical values of d which
destabilized the given limit cycles that is manifested as
the transition of phase points from limit cycle to the OD
regime. We found that these critical values almost coincide
with those found by Xppaut for destabilization of quasi-
in-phase regime (e.g., see fig. 4, PD1 bifurcation).
In summary, we have demonstrated that coupling in the

presence of detuning provides the dominance of OD, thus
eliminating main periodic regimes from the middle part of
the phase diagram for two coupled oscillators, whereas in
the generalised case (N coupled oscillators), all oscillatory
solutions are not removed from the middle of the parame-
ter plane as in the previous case, but a clear dominance
of OD is still established. However in both cases, this
means that the stable steady states do not compete any
longer with the full-amplitude periodic regimes in the
phase space and, additionally, the bifurcation branches
which start in the HBs through which OD is stabilized,
are linked with the HBs of the emerging asymmetric
limit cycle. These results are substantially different
from previous works on oscillation quenching, where for

homogeneous populations, OD always coexists with
in-phase oscillations. Moreover, the particular detuning-
dependent dominance of OD demonstrates once more the
difference between the OD and AD regimes, since disorder
of frequency dispersion eliminates AD [31]. Due to the
effective realization of the detuning-dependent dominance,
we suggest this mechanism as a powerful regulator of the
genetic network’s dynamics in case of a strong coupling.
In this paper we have devoted special attention to

OD, which (in contrast to AD) is poorly investigated
in population of globally coupled oscillators. The OD
for these systems, as mentioned earlier, manifests itself
as a set of two cluster decompositions, with different
distributions of cells between them. Both clusters have
different stable steady protein concentrations, which might
be biologically interpreted as dynamical differentiation.
Namely, OD, as a stable inhomogeneous steady state,
resembles Turing’s dissipative structure [32], only without
space variables. In a sense, instead of the space Turing
structure, in OD, a set of clusters is present. However,
both phenomena are intrinsically related to fast diffusion
of the slow variable. The fast diffusion of AI in the
problem investigated is a natural process, and the model
structure is typical for relaxation oscillators. Therefore
we suggest that the phenomenon of OD dominance is
rather general (we have confirmed it on other models as
well) and the main results presented here will be valid
not only for the particular genetic circuit, but, e.g., in
general synthetic genetic networks, chemical models and
other systems where global intensive inhibitor diffusion
takes place.
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