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Abstract
The generation of random networks is a very common problem in complex
network research. In this paper, we have studied the correlation nature
of several real networks and found that, typically, a large number of links
are deterministic, i.e. they cannot be randomized. This finding permits
fast generation of ensembles of maximally random networks with prescribed
1-node and 2-node degree correlations. When the introduction of self-loops or
multiple-links are not desired, random network generation methods typically
reach blocked states. Here, a mechanism is proposed, the ‘force-and-drop’
method, to overcome such states. Our algorithm can be easily simplified for
undirected graphs and reduced to account for any subclass of 2-node degree
correlations.

PACS numbers: 87.18.Sn, 89.75.Da, 89.75.Hc, 05.45.Xt

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Random networks play a fundamental role in the development of network theory and its real
life applications. Whether it is for significance testing of real data analysis or for numerical
corroboration of theoretical results, researchers often need to face the practical problem of
generating random networks. The random graph is probably the most studied network model
ever. It consists of an initially empty network of N unconnected nodes where a total of
L links are randomly introduced one-by-one so that all pairs of nodes are connected with
equal probability [1–3]. Very often it is desirable to generate networks that, while having
specified basic properties, are maximally random. Random networks with prescribed degree
sequence are commonly considered in the literature as a manner to test the significance of
measured properties. Degree assortativity, a measure of 2-node degree correlations, represents
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Figure 1. 2-node 2-degree correlations of neighbouring nodes in directed networks. Links
corresponding to correlated degrees are coloured black.

the tendency of nodes to connect to other nodes of (dis-)similar degree. A network is called
assortative when nodes of similar degree are connected with each other, and disassortative
when low degree nodes preferentially link to high degree ones and not among them. As
summarized in [3], social networks tend to be assortative while other real network classes tend
to be disassortative, e.g. technological and biological networks.

When the network is directed, the input degree ki(s) and the output degree ko(s) of
an individual node s are not necessarily equal, giving rise to different conditions of 1-node
correlations. The 2-node correlations become also splitted into different classes. Imagine a
link s → t pointing from a source node s with input and output degrees (ki, ko) to a target node
t with degrees (qi, qo). When all the four values (ki, ko, qi, qo) are correlated, both 1-node
and 2-node 4-point degree correlations are present. For notation simplicity, we will call to
this general case as the 1n2n correlation class. If only one of the degrees {ki, ko} is correlated
to one of the {qi, qo} then different special classes of 2-node 2-point degree correlations may
happen as depicted in figure 1.

In our recent paper [4], the expected reciprocity of directed networks under different
classes of 1-node and 2-node degree correlations has been studied. The results clearly show
that both the 1-node and the 2-node degree correlations influence the outcome of graph
measures. In order to numerically corroborate our theoretical results, several algorithms
have been presented to randomize real networks while conserving only the desired class of
correlations. However, those methods differ from each other and this makes their application
confusing. In this paper, we present a general framework for the generation of random directed
networks with 1n2n degree correlations. The algorithm is very easily simplified to account
for any of the 2-node 2-point correlation classes. First, a general algorithm will be presented
that allows the introduction of self-loops (links connecting a node to itself) and multiple-links
(more than one link between two nodes). In section 3, the correlation nature of real networks
is explored searching for hints to improve the method. As the main result, in sections 4
and 5 strategies to avoid self-loops and multiple-links are presented together with the general
algorithmic implementation.

2. Generation of random networks with prescribed 1n2n correlations

Given a network of N nodes and L links we characterize the 1-node degree correlations by the
number of nodes N(k) = N(ki, ko) having in-degree ki and out-degree ko. Let us characterize
the 2-node degree correlations by the number of links L(k → q) pointing from nodes with
degrees k = (ki, ko) to nodes with degrees q = (qi, qo). All these quantities are easy
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to calculate from real networks and contain all the necessary information about the degree
correlations. For theoretical applications, one can define the desired correlation structure by
taking into account that the following conservation rules do necessarily hold:

N =
∑
k′

N(k′) and L =
∑
k′,q′

L(k′ → q′), (1)

koN(k) =
∑
q′

L(k → q′) and
∑
k′

L(k′ → q) = qiN(q). (2)

Equations (1) are simply the conservation of nodes and links, and equations (2) arise from the
fact that the set N (k) of nodes with degrees k necessarily project koN(k) edges. Equivalently,
the same set of nodes necessarily receives kiN(k) edges.

We remind now that a network with prescribed 1n2n degree correlations is considered as
maximally random when any of the nodes s in the set N (k) is equally likely connected to any
of the nodes t in the set N (q). This probability is expressed by,

p(k → q) = L(k → q)

N(k)N(q)
, (3)

where N(k)N(q) is the total number of possible links from nodes with k to nodes with q.
When the network is directed, L(k ← q) does not necessarily equal L(k → q). We refer the
reader to appendix A for computational tips on implementing N(k) and L(k → q).

2.1. Basic algorithm

Once N(k) and L(k → q) have been calculated out of a real network or arbitrarily specified,
an empty network of N nodes is created. Following N(k), all the nodes are assigned their final
degrees k. Then L links are introduced in the following manner:

(1) One node is chosen at random to act as the source s. As the final degrees have been
previously assigned, we know that s will have degrees k′.

(2) A list of possible target nodes, tlist, is constructed containing all the nodes in the sets
N (q′) such that L(k′ → q′) > 0.

(3) From tlist one target node is chosen at random, t ′, and the connection s ′ → t ′ is created.

The algorithm needs to keep track of the nodes that cannot accept more connections and
of those (k, q) combinations for which all the k → q links have already been introduced.
Therefore, we define the free in-degrees f ki as the remaining number of incoming links that
a node can still receive and the free out-degrees f ko as the number of its remaining outgoing
links4. Equivalently, f L(k → q) counts the number of k → q links that are yet to be
introduced. With these quantities in hand, s is selected in step-1 out of those nodes with
f ko(s) > 0. In step-2, only those q′ are considered for which f L(k′ → q′) > 0, and from
N (q′), only the nodes with f ki(t

′) > 0 are included into tlist.

2.2. Performance and optimization of the basic algorithm

So far, an algorithm implemented following these rules generates random networks with the
prescribed 1n2n correlations in L iterations. Each iteration, however, comprises of three
steps and step-2 is the slowest of them. In order to construct tlist the whole structure

4 We use the term free because f ki and f ko are the number of remaining ‘free stabs’ in analogy to the configuration
model.
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f L(k → q), the largest structure of all, needs to be fully iterated searching for those q′

for which f L(k′ → q′) > 0. Being k′ the degrees of the chosen node s, one would typically
code the step-2 as:

tlist = empty

for each (k′′, q′′) combination in f L(k → q) :

if k′′ == k′ :

if f L(k′ → q′′) > 0 :

for node in N (q′′) :

if f ki(node) > 0 :

include node in tlist.

As we will later discuss, the size of L(k → q) largely depends on the precise 2-node correlation
structure of the real network. Hence, the complexity of each iteration is distinct for different
networks. In the worst possible situation, when L(k → q) = 1 for all (k, q) combinations,
then its size equals L and the generation process, described as it is, has a complexity of the
order O(L2). The introduction of the following additional structures largely helps improving
the performance of step-2:

fqlist = {k : {q′ such that f L(k → q′ > 0)}}
For each of the degrees k present in the network, fqlist(k) contains the list of degrees q′ for
which the random process still needs to introduce links of the type k → q′.

fN (k) = {k: {t ′ ∈ N (k) such that f ki(t
′) > 0}}

contains the updated sets N (k) of nodes with degrees k that still have free place for incoming
links.

The introduction of these look-up tables allows us to simplify the step-2 and replace the
highly expensive iteration through f L(k → q) by few memory access operations:

tlist=empty

for q′in fqlist (k′) :

for node in fN (q ′) :

include node in tlist.

Furthermore, if these look-up tables are properly updated, they are smaller after each iteration
and step-2 becomes faster as the process advances.

Generating an ensemble of random networks requires an initial preparation that needs
to be performed only once. Given a network in adjacency list form, the input and output
degrees can be obtained in O(N), and the 2-node degree correlations L(k → q) are obtained
in O(L), see appendix A. Creation of the look-up tables fqlist and fN (k) requires also O(L),
see appendix B.

The basic algorithm presented here is trivially reduced to generate undirected networks
with prescribed 2-node degree correlations. In such a case ki(s) = ko(s) for all node s and
the 1-node degree correlations disappear. The quantity N(k) becomes the typical degree
distribution N(k). The only drawback is that, described as it is, the current algorithm allows
for the introduction of self-loops and multiple-links. For many applications this is not a
problem at all, but very often one needs to avoid such types of connections. In section 5,
we will introduce an extended algorithm that also avoids the formation of self-loops and
multiple-links. Before that, let us first turn our attention to the correlation structure of real
networks.
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Table 1. The real networks analysed in this paper are very different in sizes N, link densities ρ and
degree correlation structures. The number of embedded deterministic links Ldet is also shown for
comparison.

Network N L ρ Ldet Ldet/L

Cortical networks
Cat [5] 53 826 0.300 654 0.792
Macaque [6] 70 747 0.155 569 0.762

Food webs [7]
St. Martin Isl. 45 224 0.1131 139 0.621
St. Marks sea. 49 223 0.0948 146 0.655
Grassland 88 137 0.0179 9 0.0657
Ythan estuary 135 597 0.0330 267 0.447
Silwood Park 154 365 0.0155 33 0.315
Little Rock lake 183 2476 0.0743 2149 0.868

World-trade-webs [8]
Year 1948 82 2539 0.382 2433 0.958
Year 2000 190 20 105 0.560 19 138 0.952

Wikipedia Website [9]
Chinese 18 089 332 434 0.0010 96 611 0.291
Portuguese 30 374 373 215 0.0004 78 152 0.209
Spanish 39 562 655 615 0.0004 166 073 0.253

3. Exploring the correlation nature of real networks

In this section, we will study the correlations of several real networks summarized in
table 1. They represent a wide range of network classes: there are both small networks
with large density and with low density of links. The density of links ρ = L

N(N−1)
is the

fraction between L and the total number of possible links, N(N − 1). The three Wikipedia
networks display the typical characteristics of many large networks: very low density and
scale-free degree distribution.

We have measured N(k) of all these real networks (appendix A). In general, it is observed
that most of the nodes possess a unique degree k′ = (k′

i , k
′
o) that no other node has. This

means that for most of the (ki, ko) combinations N(k) = 1 as observed in the histograms of
figure 2 (left column). From figure 2(a) we see that in both cortical networks over 70% of the
nodes have a unique combination of degrees (k′

i , k
′
o) and only very few nodes share the same

combination with another node, i.e., N(k′) = 2. This observation has a very large impact on
the 2-node correlation structure of the networks. As N(k)N(q) is the total number of possible
k → q links, when any of the following conditions hold,

L(k → q) = N(k)N(q) if k �= q, (4)

L(k → q) = N(k)[N(k) − 1] if k = q, (5)

then all nodes s ∈ N (k) are connected to all nodes t ∈ N (q). We refer to this local all-to-all
connections as deterministic links. When for most of the degrees k, N(k) = 1, it is clear
that many links connect (k, q) combinations that are unique giving rise to deterministic links.
See, for example, figure 2(b) for the cortical networks. Note that when all nodes have unique
degrees, i.e. N(k) = 1 for all k, then all links are necessarily deterministic. In general, the
lower the N(k) are, the higher is the chance for deterministic links. In all the real networks
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(e) ( f )

Figure 2. (left column) Number of times that any combination of in- and out-degrees k = (ki , ko)

is used by 1 node, 2 nodes, etc. (right column) the number of times that any given class of links
k → q is represented by 1 link, 2 links, etc.

analysed here there exists a clear tendency for low values of N(k), although to different extent.
Figures 2(c) and (d) show the histograms for both world-trade-webs. Most of the nodes have
also a unique combination of degrees. There are only 10 degree combinations k = (ki, ko)

that two nodes have, i.e. N(k) = 2. It occurs only once that three or four nodes have the
same degrees, i.e., N(k) = 3 or N(k) = 4. Figures 2(e) and (f) show the histograms for the
Spanish Wikipedia network. The distributions are much broader in this case, but still, the low
values of N(k) and L(k → q) dominate.

3.1. Embedded deterministic networks

These findings are fundamental for our goal of obtaining an efficient random network generator
algorithm because it can simply obviate the deterministic links. For all the real networks in
table 1 we have extracted their embedded deterministic networks, say, the subnetwork
composed uniquely of those links that are deterministic after conditions (4) and (5). Let
Ldet be the number of deterministic links and Ndet the size of the deterministic network, i.e.,
the number of nodes that send or receive at least one deterministic link. In figure 3(a) the
relative sizes of the embedded networks are plotted for comparison. In some cases a rather
small part of the original connections is deterministic, e.g. 20%–30% in the Wikipedias. In
other cases the fraction is much larger. In both cortical networks near 70% of the links are
deterministic while, in the world-trade-webs they even account for 95% of the connectivity!

It is not trivial to predict the number of deterministic links Ldet. It seems to depend on
the in- and out-degree distributions, the 1-node and the 2-node degree correlations. Let us try
gaining some intuitive understanding. In a network of size N a node can maximally connect
to other N − 1 nodes. If N(ki) and N(ko) are the input and output degree distributions then
N = ∑

ki
N(ki) = ∑

ko
N(ko) must hold. Equivalently N = ∑

ki ,ko
N(ki, ko) = N(k).

This conservation rule implies that, the N nodes are distributed among the space of all
possible (ki, ko) combinations. When the degree distributions are very broad, kmin → 0
and kmax → N − 1, then the space of possible (ki, ko) combinations is very large and it is very
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(a) (b)
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Figure 3. Deterministic Networks. (a) Relative size of the embedded deterministic networks
for several real networks. The dotted line is only a reference. (b) Dependence of the number
of deterministic links Ldet on the variance of the in-degrees. (c) and (d) Cumulative in-degree
distributions.

unlikely that two nodes share the same degree combination. Therefore, the average number
of nodes with a given degree tends to be very low, 〈N(k)〉 → 1. Under such a situation,
the average number of links between nodes with k and nodes with q is also very small and
〈L(k → q)〉 → 1. In the limit, when all nodes have unique degrees, all links are necessarily
deterministic. On the other hand, if the degree distribution is narrow, |kmax−kmin| � N−1, the
space of possible (ki, ko) combinations is much smaller and there is a higher chance that two
or more nodes have the same degrees. Then, the number of possible k → q links N(k)N(q)

grows significantly and there is a lower chance for deterministic links to occur.
To test this argument, the variance of the input degree has been calculated for all the

real networks. Its relationship to Ldet is presented in figure 3(b). The variance has been
normalized by the network size N for comparative reasons. A clear trend exists that, the larger
the variance, the larger is the embedded deterministic network. This indicates the validity of
the argument above, however, the relation is neither perfect nor linear and further factors do
exist.

In figures 3(c) and (d) the cumulative input degree distributions of three real networks
are shown. The output degree distributions display similar behaviour in all cases. The world-
trade-web of the year 2000 possesses an extremely wide input degree distribution, some nodes
having degrees up to ki = 183 (N = 190). The almost constant decay denotes a very uniform
distribution. These two factors imply that 〈N(k)〉 → 1, resulting in a very large number of
deterministic links, indeed Ldet/L ≈ 0.95. The cortical network of the cat has also a very
broad degree distribution with nodes receiving connections from up to 66% of other nodes
(ki,max = 35, N = 53). However, its distribution decays much faster than that of the year 2000
world-trade-web. Indeed, it exhibits a long tail similar to that of scale-free-like networks. The
range ki/N > 0.4 in figure 3(c) shows that only very few of all the nodes have high degree.
This condensation of nodes towards low degrees results in an increase of 〈N(k)〉 and thus, a
lower chance for deterministic links.

7



J. Phys. A: Math. Theor. 41 (2008) 224006 G Zamora-López et al

The Spanish Wikipedia possesses a scale-free-like degree distribution with an exponent
γ ≈ 2.2, meaning that there is an extreme condensation of nodes towards low degrees,
figure 3(d). Up to 98% of the nodes have ki < 100 and only the rest 2% of the nodes have
larger degrees. Besides, as N = ∑

ki
N(ki), the maximal degree is necessarily very low

(kmax � N). The node with the largest input degree has ki = 2987, that is only 10% of
the maximum possible (N = 29 196). These observations indicate that 〈N(k)〉 
 1 and
then conditions (4) and (5) rarely hold, illustrating why the Wikipedias are the networks
with smallest fraction of Ldet from all networks studied here. Anyway, where do the 20%
of deterministic links in the Spanish Wikipedia come from? For degrees ki > 100 and
ko > 100, N(k) is very often 1 or 2 giving rise to deterministic links. From all the deterministic
links, 65% of them correspond to links k → q where all ki, ko, qi, qo > 100. Contrary to
what happens in the world-trade-webs, the deterministic links in the Wikipedias arise mainly
from the long tail due to the limited size effects of the scale-free distribution.

3.2. Computational implications

So far, the observations above demonstrate that a large number of links are deterministic once
all the 1-node and 2-node correlations have been assigned. The random generation process
can safely ignore them and it only needs to introduce the remaining Lfree = L − Ldet links.
In order to generate an ensemble of random networks, if each realization is started from the
deterministic network, there is a very relevant reduction of computational time. For the real
networks analysed, the worst case corresponds to the Wikipedias whose 20% of links are
deterministic. Even in this case, the computational benefit is very important.

4. Avoiding self-loops and multiple-edges

For different reasons, self-loops and multiple-links are often not desired. If the method in
section 2 is directly modified for that purpose, the process will most likely end up blocked in a
state where the only possibility to continue is to either introduce a self-loop or a multiple-link.
Depending on the specific prescribed properties and the past history of the generation process,
there exist many possible blocked states. Let us illustrate only a few of them.

Consider the situation in figure 4(a). Imagine that the process runs for several iterations
without problems. At some point the node s3 is chosen as source, that has been assigned final
degrees k′. For all nodes s ∈ N (k′), f ko(s) = f ki(s) = 0 except for s3. Imagine also that
from all possible k′ → q links, the only remaining link to be introduced is of the type q = k′:

f L(k′ → q) =
{

1 if q = k′

0 otherwise.
(6)

Under these circumstances, the only possible option for the random process to continue is to
introduce the self-loop s3 → s3.

Another possible blocked situation is depicted in figure 4(b). Assume that during the
random process the links s1 → t1, s3 → t2 and s3 → t3 are introduced. Some iterations later
s3 is again selected. Then we have the following scenario: the node s2 has done all its possible
links, f ko(s2) = 0. There are only three remaining links to be done of the type k′ → q:

f L(k′ → q) =
⎧⎨
⎩

2 if q = q1

1 if q = q2

0 otherwise.
(7)

Nodes t1, t4 and t5 cannot accept more incoming connections f ki(t1) = f ki(t4) = f ki(t5) = 0.
Nodes t2 and t3 have f ki > 0 and are therefore still free to accept incomming connections,
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(a) (b)

Figure 4. Blocked states of the random generation process. (a) The only remaining choice to
connect s3 is to introduce a self-loop s3 → s3. (b) s3 can only connect again introducing a
multiple-link s3 → t2 or s3 → t3.

but both s3 → t2 and s3 → t3 already exist. The only possibility to connect s3 again is to
introduce a multiple-link with t2 or to t3. Hence, the process is blocked.

So, what to do whenever the process closes itself into a state where no more configurations
are possible? We need to ‘re-open’ in a random manner the space of possible configurations
to which it can move ahead. The process will then continue to accomplish its purpose: the
generation of a network that belongs to the space of all possible maximally random networks
with the desired properties. Furthermore, all members of that space should come out with
equal probability. We can image two different strategies to let the process escape from blocked
configurations.

4.1. The ‘fair-trade’ method

When a node s ′ has no choices to form new connections other than make a self-loop or a
multiple-link, it could try ‘trading’ a new link with any of its companions in N (k′). We look
for another s ′′ ∈ N (k′) that has no connections yet to at least one of the free remaining target
nodes, {tfree}. Then, one of those targets is chosen at random and the link s ′′ → tfree is created.
Usually s ′′ ends up with more links than allowed, f ko(s

′′) = −1. In exchange, s ′′ gives one
of its own links to s ′.

s ′′ → tfree, s ′′
� t ′, s ′ → t ′.

The trade done by s ′ consists in taking one of the links from s ′′ in order to escape the blocked
state, and in exchange, we look for a new link for s ′′. Note that this is not a switching step
because one of the links, s ′′ → tfree, does not previously exist.

Let us illustrate this with the example in figure 4(b). Node s3 is blocked. It is already
connected to t2 and t3, the only remaining nodes in N (q1) and N (q2) that are free to receive
connections. However, nodes s1 and s2 are not connected to any of them. One of the {s1, s2}
nodes is taken at random, say s2. One of the free targets {t2, t3} is also chosen at random,
say t3, and the link s2 → t3 is created. Now, as s2 has more connections than it should,
f ko(s2) = −1, it will give one of its links to s3. From the set of nodes s2 → {t}, a t ′ is selected
at random for which s3 → t ′ does not previously exist, otherwise a multiple-link would be
introduced. The link s2 � t ′ is removed and s3 → t ′ created.

If necessary, a ‘fair-trade’ can also happen among the target nodes. If for example
N(k′) = 1, the only node s ′ ∈ N (k′) has no companions. Then, the target nodes could
exchange their sources in an equivalent manner. We have largely explored this sort of strategies
and constructed very satisfactory algorithms that would generate the desired random networks
in only Lfree = L−Ldet iteration steps (starting from the deterministic network). However, the
outcome of a successful realization is not always guaranteed. The blocked situations shown in
figure 4 are only two examples. In reality there exist a myriad of possible blocked states and,
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unfortunately, finding a trade is not always guaranteed. In the following section, we present
an alternative strategy that works in all situations.

4.2. The ‘force-and-drop’ method

Let us consider again the blocked situation in figure 4(b) with node s3 as the chosen
source. From the remaining free target degrees {q1, q2} one is chosen at random, say q1.
There exist N(k′)N(q1) = 6 possible links of the type k′ → q1. Links s1 → t1 and
s3 → t2 are already present in the random network. From the remaining four possible links:
{(s1 → t2), (s2 → t1), (s2 → t2) and (s3 → t1)} one is chosen at random, e.g. s2 → t2. A
priori, this link is not possible because f ko(s2) = 0. However, the link is ‘forced’ into the
network. Now, s2 has more outgoing links than it should, so one of its old links is ‘dropped’
at random. The removal of this link might open new accessible configurations for the random
process. This is not always true, but trying enough times, the generation process will always
find a path to finish.

Due to the randomness of the method, it is not possible to know with certainty the
number of iterations necessary. Some dropped links might not open the space of possible
configurations while others will. When a link s ′ → t ′ is forced, the current iteration might
have a gain of +1 if both s ′ and t ′ finish with degrees f ko(s

′) � 0 and f ki(t
′) � 0. If after the

forcing either f ko(s
′) = −1 or f ki(t

′) = −1, then the iteration has null gain, i.e., one link is
introduced and another one is dropped. If both s ′ and t ′ end up with f ko(s

′) = f ki(t
′) = −1,

then the iteration has a gain of −1 because one link is introduced but two are dropped. Let us
now adequately describe the complete algorithm.

5. Algorithm for the generation of random directed networks with prescribed 1n2n
correlations, without self-loops or multiple-links

When the introduction of self-loops or multiple-links is not a problem, the algorithm described
in section 2 is the algorithm of choice. If several realizations are wanted, only remember to
calculate first the deterministic network (appendix C), update the f ko, f ki and f L(k → q)

quantities, and proceed to introduce the remaining Lfree = L − Ldet links. In order to avoid
self-loops and multiple-links, the same method is applied, only that every time the process gets
blocked then the ‘force-and-drop’ method is activated. This permits the process to continue
and finish all realizations satisfactorily. Additionally, the structures fqlist and fN (k) can be
implemented to speed up the generation process (section 2.2). For clarity reasons, we will
omit them in the description [10].

Once all necessary data structures are ready the deterministic network is taken as the
starting point. The remaining number of Lfree = L−Ldet links are introduced in the following
manner:

(1) From all the nodes with f ko(s) > 0 one is chosen at random to act as the source, s ′. As
degrees have been previously assigned, we know that s ′ needs to have final degrees k′.

(2) A list is constructed, tlist, that contains all potential target nodes for node s ′. This
includes all nodes t with f ki(t) > 0 that belong to any of the degree classes N (q) for
which f L(k′ → q) > 0. Importantly, as no self-loops nor multiple-links are desired,
tlist cannot include s ′ itself nor any of the nodes for which a link s ′ → t already exist.

When the process arrives at a blocked state, tlist remains empty. This is the crucial sign that
allows us to decide whether the process can normally continue or, otherwise, the ‘force-and-
drop’ sequence is to be activated.

10



J. Phys. A: Math. Theor. 41 (2008) 224006 G Zamora-López et al

(3a) if tlist not empty: a target node t ′ is chosen at random from tlist and the connection
s ′ → t ′ is done. The data structures are updated: f ki(t

′)−= 1, f ko(s
′)−= 1 and

f L(k′ → q′)−= 1, where q′ are the degrees of t ′.
The iteration has satisfactorily finished. Return to step (1).

(3b) if tlist is empty: the ‘force-and-drop’ method needs to be activated:

(3b.1) From all degrees q for which f L(k′ → q) > 0, one is chosen at random, q′.
(3b.2) A list is constructed, posslinks, that contains all possible links from nodes s ∈ N (k′)

to nodes t ∈ N (q′). In principle there exist N(k′)N(q′) such connections, but links
that already exist in the random network are ignored in order to avoid multiple-links.
If k′ = q′, then potential self-loops s → s are neither included into posslinks.

(3b.3) Force a link. One link in posslinks is chosen at random s ′′ → t ′′ and introduced.
Update the data structures f ki(t

′′)−= 1, f ko(s
′′)−= 1 and f L(k′ → q′)−= 1.

(3b.4) Drop links (only if necessary):
• iff ki(t

′′) = −1: from all the incoming links ({s} → t ′′) choose one at random
and drop it, sd � t ′′. Update f ko(sd)+=1 and f ki(t

′′) = 0.
• if f ko(s

′′) = −1: from all the outgoing links (s ′′ → {t}) choose one at random
and drop it, s ′′

� td . Update f ko(s
′′) = 0 and f ki(td)+=1.

The iteration is finished. Return to step (1).

5.1. Performance of the algorithm

Estimating the precise complexity of this algorithm is very difficult. Its performance depends
both on the correlation structure and on the stochastic nature of the ‘force-and-drop’ method.
As discussed in section 2.2, preparation of the data structures requires a computational cost of
the order O(N + L). Creating the deterministic network includes an additional cost of O(L).
However, all these structures need to be created only once.

If self-loops and multiple-links are allowed, starting from the deterministic network, our
algorithm generates a maximally random network of size N and L links in Lfree = L − Ldet

iterations, less than L itself! As shown in section 3, Lfree depends nontrivially on the correlation
structure, therefore, an accurate estimation of the complexity is not possible. Each iteration
consists of three steps whose complexity is neither possible to be estimated for the same
reason. Nevertheless, in section 2.2 we explained how to largely reduce the computational
cost of each iteration by the introduction of look-up tables. Thanks to the presence of the
deterministic links, the temporal requirements to generate an ensemble of m random networks
of size N,L links and prescribed 1n2n degree correlations scales as O(mLfree), not as O(mL).
According to our observations in section 3, Lfree is typically much smaller than L what results
in a great computational benefit for the generation of the random network ensembles.

When self-loops and multiple-links are to be avoided, it is also very difficult to estimate
how often the ‘force-and-drop’ sequence needs to be activated. Furthermore, a ‘dropped’ link
will not always re-open the space of reachable configurations permitting the random process
to advance. In order to explore the influence of the stochastic part in the performance of
the algorithm, we have generated ensembles of 100 random realizations using the correlation
structure of each of the real networks in table 1. The exception are the Wikipedias for
which 30 realizations have been generated. The number of iterations needed to accomplish
each realization has been counted. In general, a realization would rarely finish in only Lfree

iterations, i.e. the process finished without using the ‘force-and-drop’ sequence. For some
network types, none of the realizations did. However, as shown in figure 5(a) the average
number of iterations required to finish all realizations is only slightly larger than Lfree, meaning
that, indeed, the ‘force-and-drop’ sequence is activated in only few occasions.
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(a) (b)

Figure 5. Performance of the algorithm. (a) Average number of iterations necessary to accomplish
a random realization. Averages of 100 realizations. (b) Expected reciprocity of networks due to all
1n2n degree correlations. Theoretical expectation r1n2n and average of the measured reciprocity
in the random networks 〈r1n2n〉. Error bars are very small in both figures.

5.2. Testing the statistical properties

In our recent paper [4], we have presented theoretical results for the expected reciprocity
of directed networks under different conditions of degree correlations. Our most general
result predicts that the expected reciprocity in a maximally random network with all 1n2n

correlations prescribed is

r1n2n = 1

L

∑
k,q

L(k → q)L(k ← q)

N(k)N(q)
. (8)

The ensemble average reciprocities 〈r1n2n〉 of the generated networks has been calculated and
compared to the theoretical expectations r1n2n. The excellent agreement between theory and
the experimental observation reflected in figure 5(b) emphasizes the validity of the algorithm
proposed here.

6. Conclusions and outlook

In this paper, we have presented a method to generate maximally random directed networks
with prescribed 1-node and 2-node degree correlations. For this purpose we have analysed
the correlation nature of real networks and found that a large number of links are not subject
to be randomized. Links that obey the conditions (4) and (5) are referred as deterministic
links. The precise number of such links, Ldet, depends on several factors and it is difficult
to estimate. It has been argued that in a network of N nodes, the wider the range of input
and output degrees (|kmax − kmin| → N), the higher is the chance for deterministic links to
happen. Several observations indicate the validity of this hypothesis, although further work is
necessary.

The embedded determinist network has been defined as the subnetwork containing
uniquely deterministic links. Taking it as the starting point of the random network generation
process, maximally random networks of size N and L links with desired 1-node and 2-node
correlations are obtained in a number of iterations Lfree = L − Ldet, what is typically much
smaller than L. This results in a large computational time benefit when generating ensembles
of random networks. If self-loops and multiple-links are allowed, the method described in
section 2 is sufficient.

If self-loops and multiple-links are not desired, random network generation processes
are known to fall into blocked states. This happens when the only chance for the process to
continue is either to introduce a self-loop or a multiple-link. The widely known configuration
model [11, 12] describes a method to obtain random networks with desired degree sequences.
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If the process reaches a blocked state, it is typically recommended to discard the entire
realization and start a new one [12, 13]. In this paper, we have discussed different techniques
to overcome blocked states and permit all realizations to return a valid random network. Due to
its stability, the ‘force-and-drop’ is proposed as the preferred mechanism. Finally, a complete
algorithm has been described in section 5.

The algorithms proposed in this paper can be very easily simplified for the case of
undirected graphs. They are also very easily reduced to generate maximally random networks
with any of the desired combination of 2-node 2-point correlations depicted in figure 1.
As shown in [4], the distinct classes of degree correlations influence the outcome of graph
measures at different extent. Therefore, the methods presented here are useful tools for the
significance testing of network measures. Certainly, theoretical developments will also benefit
the capacity to generate random networks with the degree correlations of choice.
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Appendix A. Data structures to handle the correlations

The two-dimensional degree distributions could be stored into a matrix whose elements (ki, ko)

contain the value N(k). However, this matrix will be very sparse and a dictionary-like (hash
table) structure is recommended:

Nk = {(ki, ko): N(ki, ko)},
where for each (ki, ko) element, Nk(ki, ko) stores the scalar value N(k).
Given a real network G,N(k) can be extracted with complexity O(N):

Nk = empty

for s in G:

k = (ki(s), ko(s))

if k in Nk: then Nk(k) = Nk(k) + 1.

else: Nk(k) = 1.

The 2-node degree correlations form a four-dimensional space. They can also be easily stored
in a dictionary-like structure. Lkq = {(k, q) : L(k → q)}, where for each combination
of degrees (k, q) = ((ki, ko), (qi, qo)), the structure Lkq(k, q) contains the scalar value
L(k → q).
Being G the adjacency list of a real network where G(s) contains all target nodes t ′ for which
a link s → t ′ exists, Lkq(k, q) can be extracted in O(L):

Lkq = empty

for s in G:

k = (ki(s), ko(s))

for t ′ in G(s):

q = (ki(t
′), ko(t

′))
kq = (k, q)
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if kq in Lkq: then Lkq(kq) = Lkq(kq) + 1

else: Lkq(kq) = 1.

Appendix B. Look-up tables to help improve performance

Being G the adjacency list of the real network, both look-up tables fN (k) and fqlist(k) (see
section 2.2) can be simultaneously created as dictionary-like structures in complexity O(L):

fN = empty

fqlist = empty

for s in G:

k = (ki(s), ko(s))

if k in fN: then include s in fN(k)

else: fN(k) = {s}
for t ′ in G(s):

q = (ki(t
′), ko(t

′))
if q not in fqlist(k): then include q in fqlist(k).

Appendix C. Extracting the deterministic network

Once Nk and Lkq have been calculated, the deterministic network Gdet can be extracted
with complexity O(L) from a real network G in the following manner:

Gdet = empty

for s in G:

k = (ki(s), ko(s))

for t ′ in G(s):

q = (ki(t
′), ko(t

′))
kq = (k, q)

if k == q and Lkq(kq) == Nk(k) ∗ (Nk(k) − 1):

include (s → t ′) in Gdet.

if k �= q and Lkq(kq) == Nk(k) ∗ Nk(q):

include (s → t ′) in Gdet.
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