
Spatial coherence resonance on diffusive and small-world networks
of Hodgkin–Huxley neurons

Xiaojuan Sun,1,2,a� Matjaž Perc,3,b� Qishao Lu,1,c� and Jürgen Kurths2,d�

1School of Science, Beihang University, Beijing 100083, China
2Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam, Germany
3Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor,
Koroška Cesta 160, SI-2000 Maribor, Slovenia

�Received 20 November 2007; accepted 29 February 2008; published online 16 April 2008�

Spatial coherence resonance in a spatially extended system that is locally modeled by Hodgkin–
Huxley �HH� neurons is studied in this paper. We focus on the ability of additive temporally and
spatially uncorrelated Gaussian noise to extract a particular spatial frequency of excitatory waves in
the medium, whereby examining the impact of diffusive and small-world network topology that
determines the interactions amongst coupled HH neurons. We show that there exists an intermediate
noise intensity that is able to extract a characteristic spatial frequency of the system in a resonant
manner provided the latter is diffusively coupled, thus indicating the existence of spatial coherence
resonance. However, as the diffusive topology of the medium is relaxed via the introduction of
shortcut links introducing small-world properties amongst coupled HH neurons, the ability of
additive Gaussian noise to evoke ordered excitatory waves deteriorates rather spectacularly, leading
to the decoherence of the spatial dynamics and with it related absence of spatial coherence reso-
nance. In particular, already a minute fraction of shortcut links suffices to substantially disrupt
coherent pattern formation in the examined system. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2900402�

Nontrivial effects of noise on nonlinear dynamics have
been a vibrant topic for many years. It is thoroughly
documented and established that noise can play a con-
structive role in different types of nonlinear dynamical
systems. Stochastic and coherence resonance are just two,
perhaps most prominent, examples of this fact. The no-
tion of coherence resonance is particularly inspiring in
that an appropriate intensity of noise alone is sufficient to
evoke ordered temporal responses of a nonlinear dynami-
cal system. Nowadays, however, effects of noise on spa-
tially extended systems have gradually slipped into the
focus of many scientists working in diverse fields of re-
search, consequently spawning the need to investigate
whether phenomena observed previously for isolated dy-
namical system can also be observed, at least conceptu-
ally similar, if the latter are coupled. Indeed, it has been
shown that the coherence resonance phenomenon origi-
nally reported for dynamical systems evolving only in
time can also be observed in spatially extended systems
that are locally described by excitable nonlinear dynam-
ics. Importantly there is the fact that the previously stud-
ied order in the temporal dynamics has been “replaced”
by the order of the noise-induced spatial dynamics, which
mostly manifests as propagating waves of excitatory
events throughout the spatial grid. Presently, we aim to
extend the scope of spatial coherence resonance by con-
firming its possibility also in models of neuronal dynam-

ics, in particular by employing as the constitutive unit of
the spatially extended system the renowned HH model.
We show that while the diffusive interactions between
coupled neurons warrants the observation of noise-
induced pattern formation and with it related spatial co-
herence resonance, the small-world topology is not an ap-
propriate medium for such observations. More precisely,
even a minute fraction of shortcut links amongst distant
neurons prohibits noise-induced waves to be ordered, and
hence also precludes the observation of spatial coherence
resonance. Since the present study is setup around a com-
prehensive HH model of neuronal dynamics, the pre-
sented results should prove valuable not just from the
purely theoretical point of view, but hopefully also from
the experimental point of view, especially by shedding
light into the functioning of neural tissue.

I. INTRODUCTION

Randomness is a common feature in the real world. It is
well known that noise can play a constructive role in differ-
ent nonlinear dynamical systems, such as optical devices,1

electronic circuits,2 or neural tissue.3 Stochastic and coher-
ence resonance are two prominent examples of such con-
structive effects that rely on the influence of noise on non-
linear systems.4,5 Remarkably, by the coherence resonance6–8

an enhanced ordered behavior results solely from the intro-
duction of noise in the absence of additional weak determin-
istic signals that are otherwise a standard ingredient by the
observation of stochastic resonance.4 The phenomenon of co-
herence resonance has been studied extensively also in non-
identical coupled neurons9,10 as well as one-dimensional ar-
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rays of nonlinear dynamical systems in general.11–13 Zhou
and Kurths14 showed, for example, that in a weakly coupled
region noise could induce spatio-temporal coherence reso-
nance but reduced the degree of synchronization by stronger
couplings.

Recently, many authors have shifted their interests to the
influences of noise on two-dimensional spatially extended
systems, and to their spatial rather than temporal dynamics in
particular.15 Spatio-temporal stochastic resonance has been
reported first in Ref. 16 while the spatial coherence reso-
nance has also been studied in many different types of spa-
tially extended systems, e.g., in chlorine dioxide-iodine-
malonic reactions,17 Rulkov maps,18 or excitable
biochemical media.19 More precisely, Carrillo et al.17 dem-
onstrated that spatial coherence resonance could be evoked
close to pattern-forming instabilities, mimicking one of the
mechanisms of standard temporal coherence resonance,
while Perc et al.18,19 showed that in locally discrete excitable
spatially extended systems and excitable biochemical media
additive or internal noise could also lead to the observation
of spatial coherence resonance. Importantly, however, there
is still a lack of comprehensive studies investigating whether
the above results concerning spatial coherence resonance can
be obtained also in more complex spatially extended sys-
tems, particularly such that are locally modeled by realistic
nonlinear dynamical systems that faithfully describe a real-
life biological process, as is for example, the neuronal
activity.

In this paper, we would like to address the above-
described void and extend the scope of spatial coherence
resonance by examining the possibilities of its existence in a
spatially extended system that is locally modeled by excit-
able HH neurons.20 More precisely, we analyze spatial fre-
quency spectra of the examined medium in dependence on
different levels of additive noise and topologies of the inter-
action network constituting the couplings amongst the HH
neurons. By calculating the average spatial structure func-
tion, we present conclusive evidence for spatial coherence
resonance provided the neurons are diffusively coupled. In
particular, we show that then there exists an optimal level of
additive noise for which a particular spatial frequency of
excitatory events in the medium is best pronounced. We em-
phasize that thereby no additional deterministic inputs are
introduced to the system, and the latter is locally initiated
from steady state initial conditions. In contrast with results
obtained when employing diffusive nearest-neighbor interac-
tions, however, we find that small-world interaction
networks21,22 fail to sustain coherent patterns of spatial
noise-induced excitations, and thus do not warrant the obser-
vation of spatial coherence resonance. More precisely, even a
minute fraction of rewired links, connecting two nearest
neighbors in case of diffusive coupling, heavily disrupts co-
herent pattern formation in the medium and induces decoher-
ence of excitatory waves. We thus reveal the impact of addi-
tive noise and small-world topology on an ensemble of HH
neurons, hence providing interesting theoretical insights into
the functioning of neural tissue.

The paper is structured as follows: Sec. II is devoted to
the description of the employed spatially extended system

and the HH mathematical model as its main ingredient. Sec-
tions III and IV feature evidence for spatial coherence reso-
nance on diffusive grids and decoherence of pattern forma-
tion on small-world networks, respectively, while in the last
section we summarize the results and outline biological im-
plications of our findings.

II. MATHEMATICAL MODEL

In 1952, Hodgkin and Huxley presented a mathematical
model to predict the quantitative behavior of an isolated
squid giant axon.20 Since then, the model has become a para-
digm for mathematically describing neuron functioning, and
many authors have studied its nonlinear dynamics. In par-
ticular, it has been discovered that with the change of an
external current injected into the cell membrane, different
bifurcations can occur rendering a stable HH neuron oscilla-
tory, bursting, or even chaotic.23–28 Moreover, the dynamics
of coupled HH neurons has also been studied quite exten-
sively in the past.29–31 In this paper, we employ the HH
model as the constitutive unit of a spatially extended system,
and study the effects of different intensities of additive noise
and topologies of the interaction network on the spatial dy-
namics of excitatory waves. The equations of a single HH
model are given as follows:

CdV/dt = − gNam
3h�V − VNa� − gKn4�V − VK�

− gL�V − VL� + Iext, �1a�

dm/dt = �m�1 − m� − �mm , �1b�

dh/dt = �h�1 − h� − �hh , �1c�

dn/dt = �n�1 − n� − �nn . �1d�

In Eq. �1�, V is the membrane potential of the neuron, Iext is
the external stimulus current, whereas m, h, and n are the
gating variables describing the ionic transport through the
membrane. Moreover, the constants gNa, gK, and gL are
maximal conductances for ion and leakage channels, while
VNa, VK, and VL are the corresponding reversal potentials.
The functions �m, �h, �n, �m, �h, and �n are defined as

�m = 0.1�V + 40�/�1 − exp�− �V + 40�/10�� , �2a�

�h = 0.07 exp�− �V + 65�/20� , �2b�

�n = 0.01�V + 55�/�1 − exp�− �V + 55�/10�� , �2c�

�m = 4.0 exp�− �V + 65�/18� , �2d�

�h = �1 + exp�− �V + 35�/10��−1, �2e�

�n = 0.125 exp�− �V + 65�/80� . �2f�

In the literature one may find different forms of the HH
equations, mainly depending on the zeros of the potential.
Here we choose the form so that the membrane potential at
rest is V�−61 mV. Then according to the studies of
Hodgkin and Huxley,20 the parameter values in Eq. �1� are as
follows: C=1 �F /cm2, gNa=120 ms /cm2, gK=36 ms /cm2,
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gL=0.3 ms /cm2, VNa=50 mV, VK=−77 mV, and VL

=−54.4 mV.
First, we outline some properties of a single HH neuron

evoked by the above parameters dependent on the external
stimulus Iext.

23 When Iext� I0�6.2 there exists only a glo-
bally stable fixed point. The birth of stable and unstable limit
cycles occurs at Iext= I0�6.2 via a saddle-node bifurcation.
For I0� Iext� I1�9.8 there coexist a stable fixed point, a
stable limit cycle, and an unstable limit cycle. The unstable
limit cycle constitutes the boundary separating the attractive
basins corresponding to the fixed point and the limit cycle,
respectively. For a more precise description of the bifurca-
tion structure of the HH model, in dependence also on other
system parameters, we refer to Refs. 23–28.

Based on the original HH model given by Eqs. �1� and
�2�, we introduce the spatially extended system

CdVi,j/dt = − gNami,j
3 hi,j�Vi,j − VNa� − gKni,j

4 �Vi,j − VK�

+ ��i,j�t� − gL�Vi,j − VL� + Iext

+ D�
k,l

�i,j,k,l�Vk,l − Vi,j� , �3a�

dmi,j/dt = �mi,j
�1 − mi,j� − �mi,j

mi,j , �3b�

dhi,j/dt = �hi,j
�1 − hi,j� − �hi,j

hi,j , �3c�

dni,j/dt = �ni,j
�1 − ni,j� − �ni,j

ni,j , �3d�

where subscripts i , j=1, . . . ,N denote each of the N�N
coupled HH neurons. The sum in Eq. �3� runs over all lattice
sites whereby �i,j,k,l=1 if the site �k , l� is coupled to �i , j� and
�i,j,k,l=0 otherwise. If the fraction of randomly rewired links
q, constituting the small-world topology if 0�q	1, equals
zero, �i,j,k,l=1 only if �k , l� is one of the four nearest neigh-
bors of site �i , j� on a regular two-dimensional mesh.
Thereby, we obtain a diffusively coupled network of HH
neurons as depicted in Fig. 1�a�, which will form the back-
bone for the study of noise-induced spatial dynamics in Sec.
III. If q
0, however, the corresponding fraction of nearest-
neighbor links is randomly rewired via the analogy with the

creation of Watts–Strogatz small-world networks,21,22

whereby we preserve the initial connectivity z=4 �as by the
diffusive nearest-neighbor coupling� of each HH neuron as
depicted in Fig. 1�b� to focus explicitly on the effect of net-
work randomness rather than possible effects originating
from different numbers of inputs per neuron. The precise
procedure for generating such small-world networks is given
in Ref. 32 while results obtained when using them as inter-
action networks for the noise driven HH spatially extended
system will be presented in Sec. IV. Importantly, each inter-
action network was generated at the beginning of a particular
simulation and was held fixed, and if necessary, results pre-
sented below were averaged over 30 different realizations of
the interaction network by each q. Turning back to Eq. �3�, �
is the main control parameter to be varied in this study, de-
noting the standard deviation of additive uncorrelated Gauss-
ian noise �i,j that satisfies 	�i,j�t�
=0 and 	�i,j�t��m,n�t��

=��t− t���i,m� j,n. Moreover, D=0.35 is the presently em-
ployed coupling strength, while all other parameters are
taken the same as mentioned by the description of a single
HH neuron. In the present study the periodic boundary con-
dition is used, namely, V0,j =VN,j, VN+1,j =V1,j, Vi,0=Vi,N, and
Vi,N+1=Vi,1, and the system size is N=128 in each spatial
dimension of the two-dimensional grid. In order to study
explicitly the impact of noise on the spatial dynamics of the
system, we take the external current Iext=6.1 �in accordance
with the above outlined properties of a single HH neuron
assuring a unique stable steady state solution of each coupled
unit� and initiate all units from the excitable steady state
�−61.198, 0.081 99, 0.460 14, 0.377 27�. Thus, without the
addition of noise the medium would remain quiescent for-
ever, and consequently the dynamics of below-discussed spa-
tial patterns is evoked solely by additive Gaussian noise.

III. SPATIAL COHERENCE RESONANCE
BY DIFFUSIVE COUPLING

As announced, in this section we take q=0 whereby the
coupling term D��i,j,k,l�Vk,l−Vi,j� in Eq. �3� reads as
D�Vi−1,j +Vi+1,j +Vi,j−1+Vi,j+1−4Vi,j�. We start by visually ex-
amining three snapshots of the spatial profile of Vi,j obtained
by three different values of �, as presented in Fig. 2. Evi-
dently, there exists an intermediate value of �, at which
nicely ordered circular excitatory waves propagate through
the spatial domain �Fig. 2�b��. On the other hand, smaller or
larger values of � clearly fail to have the same effect evoking
either only small-amplitude deviations from the steady state
�Fig. 2�a�� or rather violent and uncorrelated excitations
throughout the spatial grid �Fig. 2�c��, respectively. Hence,
the visual inspection of the snapshots already gives some
indication for a typical coherence resonance scenario for the
spatial dynamics of the studied HH medium.

To make the above observations quantitative, we calcu-
late the spatial structure function of the Vi,j field according to

P�kx,ky� = 	H2�kx,ky�
 , �4�

where H�kx ,ky� is the spatial Fourier transform of the Vi,j

field at a particular time t, and 	…
 is the ensemble average
over noise realizations. The results from numerical simula-
tions for different � are presented in Fig. 3. The three de-

FIG. 1. Examples of considered network topologies. For clarity only a 6�6
excerpt of the whole network is presented in each panel. �a� Diffusively
coupled network characterized by q=0. Each vertex is directly connected
only to its four nearest neighbors, hence having connectivity z=4. �b� Re-
alization of small-world topology via random rewiring of a certain fraction
q of links, constrained only by the requirement that the initial connectivity
z=4 of each unit must be preserved.

023102-3 Spatial coherence resonance Chaos 18, 023102 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



picted panels correspond to the same values of � as used
already in Fig. 2. Indeed, the results in Fig. 3 fully support
our visual assessments, as it can be observed nicely that for
small and large noise levels �Figs. 3�a� and 3�c�, respec-
tively� the presented spectra show no particularly expressed
spatial frequency, although a close examination of P�kx ,ky�
at �=1.9 still reveals some remnants of structure formation
in the system. Only for intermediate levels of noise the spa-
tial structure function develops several well-expressed circu-
larly symmetric rings, indicating the existence of a preferred
spatial frequency induced by additive Gaussian noise. As the
noise level is increased, random fluctuations start to domi-
nate the spatial dynamics and thus, similar as by small noise
levels, the characteristic waterfall-like outlay of P�kx ,ky�
vanishes and no preferred spatial frequency can be inferred.

Next, we exploit the circular symmetry of P�kx ,ky� as
proposed by Carrillo et al.17 to obtain an estimate for the
signal to noise ratio �SNR� of the spatial dynamics of exci-
tatory events for different �. In particular, we calculate the
circular average of the structure function according to the
equation

p�k� = �
�k

P�k��d�k, �5�

where k� = �kx ,ky�, and �k is a circular shell of radius k= �k��.
Figure 4�a� shows p�k� for the three different � correspond-
ing to the values used already in Figs. 2 and 3. The presented
results reveal that there indeed exists a particular spatial fre-

quency, marked with the vertical dashed line at k=kmax, that
is resonantly enhanced for some intermediate level of addi-
tive Gaussian noise. Note that subsequent local maxima are
just higher harmonics of kmax. To quantify the ability of each
� to extract the characteristic spatial frequency of the me-
dium more precisely, we calculate the SNR as the peak
height at kmax normalized with the background fluctuations in
the system, namely, p�kmax� / p̃, where p̃= �p�kmax−ka�
+ p�kmax+kb�� /2 is an approximation for the level of back-
ground fluctuations in the system, whereby ka and kb

mark the estimated width of the peak around kmax at the
optimal �. This is the spatial counterpart of the measure
frequently used for quantifying constructive effects of noise
in the temporal domain of dynamical systems,4 whereas a
similar measure for quantifying effects of noise on the spatial
dynamics of spatially extended systems was also used in
Ref. 17. Figure 4�b� shows how the SNR varies with �. It is
evident that there exists an optimal level of additive Gauss-
ian noise for which the peak of the circularly averaged struc-
ture function is best resolved, thus clearly indicating the ex-
istence of spatial coherence resonance in the diffusively
coupled HH medium.

We argue that the existence of spatial coherence reso-
nance in the studied HH medium, and with it related remark-
able order of the spatial dynamics of noise-induced excita-
tory events observed by intermediate �, must be primarily
attributed to the characteristic noise-robust excursion time
inherent to all excitable systems.8 The noise-robust excursion

FIG. 2. Characteristic snapshots of the
spatial profile of Vi,j obtained for �a�
�=1.1, �b� �=1.3, and �c� �=1.9. For
the intermediate value of � the spatial
dynamics is clearly most coherent, ex-
hibiting ordered circular waves propa-
gating through the spatial grid.

FIG. 3. �Color online� The spatial structure function of Vi,j obtained for �a� �=1.1, �b� �=1.3, and �c� �=1.9. For the intermediate value of � the characteristic
waterfall-like outlay of P�kx ,ky� is evident, indicating the existence of a preferred spatial frequency of noise-induced excitatory events in the medium. Note
that only an excerpt of the whole P�kx ,ky� plane is shown in all panels.
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time, together with the rate of diffusive spread that is pro-
portional to D, introduces an eigenfrequency of spatial
waves that can be resonantly enhanced by an appropriate
intensity of noise, as recently shown analytically for a simple
toy model of excitable dynamics.33 Our results thus extend
the scope of spatial coherence resonance by showing that
real-life motivated more complex models of excitable dy-
namics, such as the HH mathematical model,20 fully conform
to findings obtained on simpler models, and that indeed this
phenomenon may have important implications in several bio-
logical systems.

IV. DECOHERENCE OF SPATIAL DYNAMICS
BY SMALL-WORLD INTERACTIONS

Next, it is of interest to investigate what are the impacts
of small-world topology on the above-described phenom-
enon of spatial coherence resonance in the diffusively
coupled HH medium. For this purpose we set q
0 and ex-
amine three characteristic snapshots of Vi,j obtained by �
=1.3, which according to the results presented in Sec. III is
the optimal noise intensity warranting superbly ordered spa-
tial dynamics of excitatory events. Noteworthy, since we
consider regular small-world networks warranting an equal
number of inputs �z=4� to each coupled neuron, the optimal
� for coherent pattern formation �if at all possible� does not
depend on q, as will be confirmed also in Fig. 6�a� below.
The snapshots presented in Fig. 5 clearly evidence that in-
creasing values of q progressively hinder coherent pattern
formation. In particular, while for q=0.0001 �Fig. 5�a�� the
spatial periodicity of excitatory waves is still eligible, the
same is much less true for q=0.0008 �Fig. 5�b��, and is cer-
tainly completely false for q=0.002 �Fig. 5�c��. Thus, if as

little as 0.08% of nearest-neighbor links are rewired the pat-
tern formation is impaired, while by �0.2% noisy perturba-
tions are completely unable to induce coherent spatial dy-
namics of excitatory events. Indeed, the snapshot presented
in Fig. 5�c� lacks any ordered structure, although the same
intensity of noise applied to a diffusively coupled HH me-
dium evokes superbly ordered circular waves �see Fig. 2�b��
showing evidence of fascinating examples of spatial pattern
formation out of noise.

To give a quantitative analysis of the observed phenom-
enon outlined in Fig. 5, we calculate the circularly average
structure function p�k� of the spatial dynamics in dependence
on � and q. The inset in Fig. 6�b� shows three p�k� obtained
by the same parameter values yielding snapshots of spatial
profiles shown in Fig. 5. In accordance with the interpreta-
tion of results presented in Sec. III, it can be inferred that
increasing values of q indeed impair the ability of noise to
evoke ordered patterns with a predominant spatial frequency,
because the peak height of p�k� at k=kmax becomes smaller
in comparison to the level of background noise as the frac-
tion of rewired links increases. While by q=0.0001 and
q=0.0008 the predominant spatial periodicity is still present,
it vanishes completely by q=0.002 as the outlay of p�k� be-
comes essentially flat. These observations can be captured
succinctly by calculating the SNR in dependence on � by
different q. The results presented in Fig. 6�a� clearly evi-
dence that the phenomenon of spatial coherence resonance
fades continuously as q increases, disappearing almost com-
pletely by q=0.002. As already noted, however, the optimal
� for coherent pattern formation �as much as allowed by the
topology of the underlying interaction network� remains vir-
tually identical by all q, equaling �=1.3, as denoted by the

FIG. 4. Evidence for spatial coherence
resonance in the studied HH medium.
�a� The circular averages of structure
functions presented in Fig. 3. The
dashed vertical line at k=kmax marks
the spatial frequency of excitatory
events that is resonantly enhanced by
an intermediate level of additive
Gaussian noise. �b� The signal to noise
�SNR� ratio in dependence on � �the
curve is just a guide to the eye�.

FIG. 5. Characteristic snapshots of the
spatial profile of Vi,j obtained at the
optimal value of �=1.3 for �a�
q=0.0001, �b� q=0.0008, and �c�
q=0.002.
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dashed vertical line in Fig. 6�a�. We exploit this fact in Fig.
6�b�, where the SNR is plotted in dependence on q for the
optimal �. Clearly, the SNR decreases continuously as q in-
creases, thus showing evidence of the decoherence of noise-
induced spatial dynamics due to the introduction of small-
world topology in the studied HH spatially extended system.

While the existence of spatial coherence resonance in the
diffusively coupled HH medium was attributed to the char-
acteristic noise-robust excursion time of the local excitable
dynamics,8 which together with the rate of diffusive spread-
ing proportional to D introduces an eigenfrequency, or
characteristic spatial scale, of waves that can be resonantly
enhanced by an appropriate intensity of noise,33 the decoher-
ence of the spatial dynamics due to the introduction of small-
world topology is simply a consequence of the disruption of
this inherent spatial scale.34 In particular, while the excursion
time of individual space units remains unaltered by the in-
troduction of long-range couplings, the spread rate of exci-
tations is indirectly very much affected by increasing values
of q. Namely, the introduction of shortcut links decreases the
typical path length between two arbitrary sites in comparison
to a diffusively coupled network. Thus, while the spread rate
of excitations is still proportional to D, the typical path
length between two arbitrary grid units decreases dramati-
cally, which in turn has the same effect as if D would in-
crease. Therefore, in a small-world network, a locally in-
duced excitation can instantly reach much more distant sites
than in case of strict diffusive coupling, in turn facilitating
noise-induced synchronization of distinct network units,35 or
assuring fast response abilities of the system.36 Importantly,
however, the typical path length between two arbitrary sites
decreases only on average, meaning that an exact path length
does not exist defining the distance between all possible pairs
of sites in a small-world network. Thus, a given local exci-
tation can, during the excursion time, propagate to the most
distant site or just to its nearest neighbor, whereby clearly the
well-defined inherent spatial scale existing for the diffusive
coupling is lacking, and this leads to spatial decoherence of
noise-induced spatial patterns already for very small values
of q, as emphasized throughout this section.

V. SUMMARY

We have shown that temporally and spatially uncorre-
lated additive Gaussian noise is able to extract a characteris-

tic spatial frequency of an excitable HH medium in a reso-
nant manner if the latter is coupled diffusively. In particular,
an optimal level of additive noise then exists for which the
spatial dynamics of the system is highly coherent and su-
perbly ordered. Thereby, no additional deterministic inputs
were introduced to the system and all units were initiated
from steady-state excitable conditions. Thus, the results pre-
sented in Sec. III offer convincing evidence for the existence
of spatial coherence resonance in the diffusively coupled HH
medium. On the other hand, when the interactions amongst
coupled neurons are governed by a small-world network, the
ability of noise to induce ordered spatial dynamics vanishes
quickly as q increases. Our results suggest that as little as
0.2% of rewired nearest-neighbor links suffice to completely
hinder coherent pattern formation out of noise within the
currently employed setup. Noteworthy, we have performed
additional simulations using the FitzHugh–Nagumo system37

and the Goldbeter model for calcium oscillations38 as gov-
erning units of the medium, whereby the former excitable
dynamics is governed by a steady node while the latter is
characterized by a stable focus situated prior to a Hopf bi-
furcation. Irrespective of these particularities, we were able
to observe coherent patterns emerging out of noise provided
the units were diffusively coupled. Conversely, if small-
world connectivity was introduced the ordered waves van-
ished quickly already by q	1, albeit stable foci could sus-
tain some order in the spatial dynamics up to 0.5% of
rewired links due to larger resettlement times associated with
their excitable dynamics. Larger resettlement times follow-
ing an excitation yield waves with larger wavelengths, and
hence then the probability of shortcuts to link two quiescent
units increases, thus leaving the spatial dynamics temporarily
unaffected. Aside from these rather minute differences, how-
ever, we conclude that the present findings appear to be ro-
bust with respect to variations in models governing the local
excitable dynamics of diffusive and small-world networks.

Since the present results rely on the use of the HH model
for the description of the local dynamics of the excitable
medium, the present study might also have some biological
implications. Specifically for neural systems, it has been ar-
gued that excitable media guarantee robust signal propaga-
tion through the tissue in a substantially noisy
environment.39 It would thus be fascinating to elucidate if
spatial coherence resonance in the neural system can also be

FIG. 6. Evidence for decoherence of
the spatial dynamics in the studied HH
medium with small-world topology.
�a� The signal to noise ratio �SNR� in
dependence on � for different q. �b�
SNR in dependence on q by the opti-
mal � denoted by a dashed vertical
line in panel �a�. Inset features the cir-
cular average of the structure function
p�k� for the optimal � and three differ-
ent values of q, corresponding to the
three snapshots presented in Fig. 5.
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confirmed experimentally. The above theoretical results indi-
cate that such findings might indeed be attainable at least if
the units are diffusively coupled, and that it thus seems rea-
sonable to pursue this problem in the future. Moreover, our
results obtained when using small-world networks may help
by revealing structural functionality of complex topologies
within the neural apparatus, although additional studies re-
garding the concept of function-follow-form40–43 in the pres-
ence of noise and other uncertainties are necessary to clarify
the importance of different structural physiological proper-
ties of such networks.
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