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Abstract

The human electroencephalogram (EEG) is globally characterized by a 1=f power spectrum superimposed with certain peaks, whereby

the ‘‘alpha peak’’ in a frequency range of 8–14Hz is the most prominent one for relaxed states of wakefulness. We present simulations of

a minimal dynamical network model of leaky integrator neurons attached to the nodes of an evolving directed and weighted random

graph (an Erd +os–Rényi graph). We derive a model of the dendritic field potential (DFP) for the neurons leading to a simulated EEG that

describes the global activity of the network. Depending on the network size, we find an oscillatory transition of the simulated EEG when

the network reaches a critical connectivity. This transition, indicated by a suitably defined order parameter, is reflected by a sudden

change of the network’s topology when super-cycles are formed from merging isolated loops. After the oscillatory transition, the power

spectra of simulated EEG time series exhibit a 1=f continuum superimposed with certain peaks.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The electrical activity of the brain can be measured with
the electroencephalogram (EEG). Its origin is due to the
synchronized activity of large formations of cortical
neurons, the pyramidal cells. These nerve cells possess an
axial symmetry and they are aligned in parallel perpendi-
cular to the surface of the cortex thus forming a palisade of
cell bodies and dendritic trees [11,45]. They receive
excitatory input at the superficial apical dendrites from
thalamic relay neurons and inhibitory input at the basal
dendrites and at their somata from local interneurons
[11,45,18]. Excitatory and inhibitory synapses cause
different ion currents through their cell membranes thus
leading to either depolarization or hyperpolarization,

respectively. When these synapses are activated, a single
pyramidal cell behaves as a microscopic electric dipole
surrounded by its characteristic dendritic field in the
extracellular space. The dendritic field potentials (DFP) of
a large assembly of cortical pyramidal cells superimpose to
the local field potential (LFP) of a dipole layer which
eventually contributes to the EEG measurable at the
human’s scalp [11,56,5,40].
One of the most obvious features of the EEG are

oscillations in certain frequency bands. The alpha waves are
sinusoidal-like oscillations between 8 and 14Hz, strongly
pronounced over parietal and occipital recording sites
which reflect a state of relaxation during wakefulness, with
no or only low visual attention. Alpha waves are related to
awareness and cognitive processes [41,4,30,47]. In the
power spectrum of the EEG, these oscillations are
represented by particular peaks superimposed to a broad-
band 1=f continuum [11,7].
The 1=f behavior and the existence of distinguished

oscillations in the EEG such as the alpha waves are
cornerstones to evaluate computational models of the
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EEG. Yet, modeling these brain rhythms has a long
tradition. Wilson and Cowan [53] were the first who used a
population model of excitatory and inhibitory neurons that
innervate each other. They introduced a two-dimensional
state vector whose components describe the proportion of
firing McCulloch–Pitts neurons [38] within a unit volume
of neural tissue at an instance of time. Lopez da Silva et al.
[35] pursued two different approaches: a distributed model
of the thalamus where relay cells and interneurons are
considered individually, and a ‘‘lumped’’ model analogous
to the neural mass model of Wilson and Cowan [53]. Lopez
da Silva et al. [35,36] were able to show that their model
reproduces a peak around 10Hz, i.e.‘‘alpha waves’’, in the
spectrum.

The neural mass model [35] has been further developed
by Freeman [17], Jansen et al. [24,25], Wendling et al.
[51,52], and researchers from the Friston group [12–14] in
order to model the EEG of the olfactory system, epileptic
EEGs, and event-related potentials (ERP), respectively.

On the other hand, Rotterdam et al. [50] generalized the
model [35] to spatiotemporal dynamics by considering a
chain of coupled cortical oscillators. A similar approach
has been pursued by Wright and Liley [55,54] who
discussed a spatial lattice of coupled unit volumes of
excitatory and inhibitory elements obeying cortical con-
nectivity statistics. The most important result that we shall
appreciate here is that the power spectrum exhibits the
alpha peak, and that there is a shift of that peak towards
the beta band with increasing input describing arousal.

Moreover, Liley et al. [34] suggested a distributed model
of cortical alpha activity using a compartmental descrip-
tion of membrane potentials [31]. In such an approach,
nerve cells are thought to be built up by cylindrical
compartments that are governed by generalized Hodgkin–
Huxley equations [21]. Liley et al. [34] reported two
oscillatory regimes of this dynamics: one having a broad-
band spectrum with a peak in the beta range of about
20Hz, and the other narrowly banded with a peak around
the alpha frequency.

Surveying these attempts, one recognizes two main lines
of research. In the first approach, relatively small networks
of neurons, or even of neural masses, are hand-crafted in
order to meet anatomical and physiological constraints
[1,16,17,34–36,50–55,24,25,12–14]. In the second one,
statistical properties of the nervous tissue are treated by
field theoretical approaches [40,28,26,42,43,56,57]. Yet, the
recent developments of random graph theory describing
networks with complex topology [2,10,9,39,23,8,44,46,29]
suggest a third, medial, way of brain modeling using
complex networks whose nodes are attached to dynamical
neuron models [46,27,48,22,58,32].

In this paper, we shall pursue this third approach by
proposing a minimal dynamical network model where the
onset of oscillatory behavior is correlated with the
emergence of super-cycles in the network’s topology. The
network is provided by an evolving directed and weighted
Erd +os-Rényi graph of N nodes where all connections

between two nodes are equally likely with increasing
probability [2,10,9]. To each node of the graph a simple
neuron model, the leaky integrator neuron, is attached
[53,20,33,22].

2. Minimal random neural networks

In this section, we describe our minimal neural network
model, namely an evolving directed and weighted Erd +os–
Rényi graph. The nodes of this most simple network type
are occupied by a rather simple neuron model, the leaky
integrator unit. We argue that the net input to such a unit
can be regarded as a rough approximation of the DFP, and
demonstrate how the superposition of the DFPs of a neural
mass give rise to an estimator of the LPF. Finally, the
superposition of the LFPs should be considered as our
model EEG.

2.1. A minimal network model

A directed Erd +os–Rényi graph consists of a set of
vertices V that are randomly connected by arrows taken
from an edge set E � V � V with equal probability q. The
topology of the graph is completely described by its
adjacency matrix A ¼ ðaijÞ where aij ¼ 1, if there is an
arrow connecting the vertex j with the vertex i (i.e. ðj; iÞ 2 E

for i; j 2 V ) while aij ¼ 0 otherwise. A directed and
weighted Erd +os–Rényi graph is then described by the
weight matrix W ¼ ðwijÞ which is obtained by element-wise
multiplication of the adjacency matrix with constants gij,
wij ¼ gijaij .
The weights wij may be positive or negative. In the

former case the connection j! i is called excitatory, in the
latter inhibitory. Biologically plausible models must satisfy
Dale’s law saying that excitatory neurons have only
excitatory synapses while inhibitory neurons only possess
inhibitory synapses [15]. Therefore, the column vectors of
the weight matrix are constrained to unique sign. We meet
this requirement by randomly choosing a proportion p of
the vertices to be excitatory and the remainder to be
inhibitory.
In our model the weights become time-dependent due to

the following evolution algorithm:

(i) Initialization: Wð0Þ ¼ 0.
(ii) At evolution time t, select a random pair of nodes i; j.
(iii) If they are not connected, create a synapse with weight

wijðtþ 1Þ ¼ dex if j is excitatory, and wijðtþ 1Þ ¼ din if j

is inhibitory. If they are already connected, enhance
the weight wijðtþ 1Þ ¼ wijðtÞ þ dex if wijðtÞ40 and
wijðtþ 1Þ ¼ wijðtÞ þ din if wijðtÞo0. All other weights
remain unchanged.

(iv) Repeat from (ii) for a fixed number of iterations L.

For the excitation-to-inhibition ratio for balanced activity
[49] to be of the order of magnitude of 1:4 [42], we chose as
the ‘‘learning rates’’ dex ¼ þ1 for excitatory synapses and
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din ¼ �4 for inhibitory synapses. Note that this algorithm
is not intended to describe synaptic plasticity, but rather to
give a minimal description of brain development where the
connectivity evolves during the time L.

2.2. A minimal neuron model

Our minimal dynamical neural network model comprises
the simple topology described in Section 2.1 and moreover
a simple dynamics that will be derived in the sequel.

We consider the somatic membrane potentials V iðtÞ of
the ith neuron in the vicinity of its axon hillock as the state
variables of the model. The gradient between the post-
synaptic potential ~Vij at the synapse connecting neuron j

with neuron i and the potential Vi at the trigger zone of
neuron i drives the current

I ij ¼
~V ij � Vi

rij

(1)

through the somato-dendritic cell plasma with resistance
rij. The superposition of these currents flows from the axon
hillock into the extracellular space thereby dropping to the
membrane potential ViðtÞ that obeys Kirchhoff’s law

X
j

I ij ¼
Vi � Vm

rm

þ ci

dV i

dt
, (2)

where Vm denotes the Nernst equilibrium potential (which
we deliberately equal to zero subsequently) of the cell
membrane with resistance rm and ci is the membrane’s
capacitance.

Inserting Eq. (1) into Eq. (2) substitutes I ij with the
postsynaptic potentials ~Vij . These are obtained by the
convolution products

~V ijðtÞ ¼ SijðtÞnRjðtÞ (3)

of the spike train RjðtÞ arriving at the presynaptic terminal
of neuron j with a postsynaptic impulse response function
SijðtÞ, which is usually described as an alpha function
[31,15]. Yet, for the sake of simplicity, we shall approx-
imate

SijðtÞ ¼ gijdðtÞ, (4)

where gij is the gain factor of the synapse between neuron j

and i, and dðtÞ denotes Diracs’s distribution.
Finally, we have to express the spike rate RjðtÞ by the

state variable Vj of the presynaptic neuron j that is given
by the logistic function

RjðtÞ ¼ f ðV jðtÞÞ ¼
1

1þ exp½�bjðV jðtÞ � yjÞ�
(5)

with the parameters gain bj and threshold yj [3].
From Eqs. (1)–(5) we obtain the basic equation of the

leaky integrator neuron [53,20,33,22],

ti

dV i

dt
þ V i ¼

X
j

wijf ðVjðtÞÞ (6)

with time constants

ti ¼
rmci

1þ
P

j ðrm=rijÞ

and synaptic weights

wij ¼ gij

rm=rij

1þ
P

jðrm=rijÞ
.

The DFP of the ith neuron is proportional to the total
synaptic current flowing through its membrane into the
extracellular space and returning back to the soma [56,5].
In our model, the DFP is estimated by net input

DiðtÞ ¼
X

j

wijf ðVjðtÞÞ (7)

to neuron i. It describes the amount of excitation (wij40)
minus the contribution of inhibition (wijo0)
[24,25,51,52,12–14,56,5].

2.3. A minimal neural mass model

The dynamics of a minimal random neural network
resulting from the evolution algorithm described in Section
2.1 is governed by the differential equation (6). Following
Freeman [16,17], neural networks can be regarded as being
hierarchically composed from neural masses. For two such
populations of either mutually connected excitatory or
inhibitory neurons (Freeman’s ‘‘KIe’’ and ‘‘KIi sets’’) the
sum in the r.h.s. of Eq. (6) could be split into the difference
of two sums
X

j

wijf ðV jðtÞÞ ¼
X

jþ

wþij f ðVjþðtÞÞ

�
X

j�
jw�ij jf ðV j�ðtÞÞ, ð8Þ

where wþij are the positive and w�ij are the negative weights
and the indices jþ; j� indicate whether the neuron j belongs
to the excitatory KIe set or to the inhibitory KIi set. This
decomposition corresponds to the formation of a KII set in
Freeman’s notation. Note that a neuron with index jþ from
the KIe set can project into both populations i 2 KIe and
i 2 KIi, and correspondingly for j�. Therefore, the mass is
a full KII set and not only its reduced counterpart [16].
Since also the global gain function f for both populations

is given by the logistic function (Eq. (5)) [53,18], the
difference equation (8) obeys

f ðxÞ � f ðyÞ ¼
1

2
tanh

x

2

� �
� tanh

y

2

� �h i
. (9)

Therefore, Eq. (6) describes both single neurons with
logistic activation functions (Eq. (5)) and also whole KII
populations with hyperbolic tangent gain functions. Hence
in the present study, we chose f iðxÞ ¼ tanh x for all
1pipN thereby modeling a random network of neural
masses.
In our approach, the DFP was estimated by Eq. (7).

Likewise, the LFP of a neural population i is approximated
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by the same expression

FiðtÞ ¼
X

j

wijf iðV jÞ, (10)

where Vj describes now the mass activity and f is given by
the hyperbolic tangent rather than the logistic function.

In order to compute the model EEG, we finally take the
sum of the LFPs of all KII populations that excite other
masses

EðtÞ ¼
X

iþ

F iðtÞ. (11)

It is easy to recognize that Eq. (6) can be used to
implement a neural oscillator by taking two nodes, one
excitatory and the other inhibitory. Choosing an antisym-
metric weight matrix w12 ¼ �w21 and a linear gain function
f ðxÞ ¼ x, Eq. (6) simply describes a damped harmonic
oscillator. This raises the question whether oscillators
emerge in random neural networks that evolve according
to the algorithm presented in Section 2.1.

3. Simulations

This question is addressed by our simulations. To begin
with, we create networks of increasing size of N ¼ 200; 500,
and 1000 nodes. Since about 80% of cortical neurons are
excitatory pyramidal cells, we assume that also p ¼ 80% of
the network’s nodes (i.e. the neural masses) are excitatory.
For each iteration of the network’s evolution, the dynamics
of its nodes is examined. After preparing them with
normally distributed initial conditions (m ¼ 0;s ¼ 1),
Eq. (6) is solved numerically for an ensemble of K ¼ 10
time series of length T ¼ 100 comprising 4069 samples.
LFP and EEG are computed according to Eqs. (10) and
(11). In order to further simplify the simulations, we set
ti ¼ 1;bi ¼ 1; yi ¼ 0 for all 1pipN.

From the simulated EEGs, the power spectra are
estimated by computing periodograms and averaged over
all K realizations of the network’s dynamics. In order to
monitor sudden changes in the topologies of the networks,
five characteristic statistics are calculated:

(1) The mean degree (the average number of vertices
attached to the nodes) hki of the associated undirected
graphs, described by the symmetrized adjacency matrix
As
¼ YðAþ AT

Þ, where Y denotes Heaviside’s step
function.

(2) The total distribution

dðlÞ ¼
trðAl
Þ

lN
, (12)

of cycles of length l [2,8–10,23,44,46]. In Eq. (12), trðAl
Þ

provides the total number of (not necessarily self-
avoiding) closed paths of length l through the network.
Since any node at such a path may serve as the starting
point and there are l nodes, the correct number of
cycles is obtained by dividing by l. Finally, N ¼P

l trðA
l
Þ=l is a normalization constant.

(3) From the cycle distribution, we derive an order
parameter s for topological transitions by the
averaged slopes of the envelope of dðlÞ, where the
envelopes are estimated by connecting the
local maxima of dðlÞ. Over each complete evolution
cycle, the values

ssub ¼ min
so0

s,

scrit ¼ min
s40

s,

ssuper ¼ max
s40

s, (13)

are determined.
(4) The global excitation

Gex ¼
X

jþ

wþij (14)

and
(5) inhibition

Gin ¼
X

j�
w�ij (15)

of the nodes.

The whole procedure is repeated for each network size
M ¼ 10 times where we have chosen L200 ¼

400;L500 ¼ 800, and L1000 ¼ 1600 iterations of network
evolution.

4. Results

Figs. 1–3 display typical representatives of the simula-
tions for three different phases of the networks’ evolution.
These phases are determined by the smallest negative (Fig.
1), the smallest positive (Fig. 2) and the largest positive
(Fig. 3) value of the cycle order parameter s, averaged over
the M ¼ 10 network simulations, that are presented in
Table 1. We refer to the first phase as the subcritical one
hssubi, to the second as the critical phase hscriti and to the
third as the supercritical phase hssuperi. The respective values
are determined with Eqs. (13).
Additionally, Tables 2–4 present the averaged mean

degrees, mean excitation and mean inhibition correspond-
ing to the subcritical, critical, and supercritical phase,
respectively.
The characteristic network representatives mcrit dis-

played in Figs. 1–3 are obtained by the optimization

mcrit ¼ arg min
1pmpM

jsðmÞ � hscritij, (16)

where sðmÞ denotes the order parameter for the mth
realization for each network size N. Fig. 1 shows
representative time series (a), power spectra (b) and total
cycle distributions, dðlÞ (Eq. (12)), (c) for the subcritical
phase. For all network sizes we observe a relaxation of the
model EEG E (Fig. 1(a)) settling down in fixed point
attractors after transients. For N ¼ 200; 500 the stable
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state is around E ¼ 0 whereas for N ¼ 1000, E � �70.
This can be explained by the cycle distributions Fig. 1(c).
They exhibit a geometric decay, indicating the presence
only of loops of length one as the numerator of Eq. (12)
is constant while the denominator increases with l. A loop
of length one corresponds to a non-vanishing diagonal
weight wiia0 in Eq. (6). Therefore, the stationary solutions
obey

V�i ¼ wii tanhV�i , (17)

i.e. they are the fixed points of the hyperbolic tangent.
The relaxation of the model EEG is also reflected by the

power spectrum in Fig. 1(b). Since the fixed points V�i of
Eq. (17) are exponentially approached without sufficient
input from the other nodes, the ‘‘power spectrum’’ is
simply the transfer function given by the absolute square of
the Laplace transform 1=ð2pif þ t�1Þ of the exponential
expð�t=tÞ, thus accounting for the broad-band continuum
with the approximated 1=f tail observed in the simulations
(Fig. 1(a)).

Fig. 2 shows the same three network representatives mcrit

in the critical phase when sudden oscillations occur in the
node’s dynamics (as shown in Fig. 2(a) and indicated by
the peaks in the power spectra (Fig. 2(b))). These
oscillations can be speculatively regarded as the ‘‘alpha
waves’’ of the model. The cycle distributions dðlÞ (Fig. 2(c))
display a transition from geometrically decaying to
exponentially growing functions that is indicated by the
small values of hscriti in Table 1.
Finally, Fig. 3 displays these networks late after the

oscillatory transition in the supercritical phase. The power
spectra (Fig. 3(b)) display a broad 1=f continuum whose
tail is again attributed to the relaxation properties of the
leaky integrator neurons (Eq. (6)). By contrast, the 1=f

behavior, now present at small frequencies, is due to the
appearance of sustained transients as shown in Fig. 3(a) for
N ¼ 500; 1000, which are also characteristic for real EEG
oscillations. These transients are more or less periodic
which is reflected by the peaks in the power spectrum
Fig. 3(b). The cycle distributions dðlÞ (Fig. 3(c)) are all
growing exponentials after the transition.
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Fig. 1. (a) Representative simulated time series before the oscillatory transition (subcritical phase) for three different network sizes: N ¼ 200 (dotted),

N ¼ 500 (dashed), and N ¼ 1000 (solid). (b) Power spectra of simulated time series. (c) Total distributions of cycles (Eq. (12)) for the same networks.

P. beim Graben, J. Kurths / Neurocomputing 71 (2008) 999–1007 1003



Author's personal copy

5. Discussion

Our results are robust among all M simulations. For the
network sizes N ¼ 200; 500; 1000, a multitude of dynamic
behavior is possible, including multistability and limit
cycles. The oscillatory transition occurs for critical mean
degrees of hkcriti200 ¼ 2:34, hkcriti500 ¼ 2:28 and hkcriti1000 ¼

2:30 (cf. Table 2). According to random graph theory,
Erd +os–Rényi graphs exhibit a percolation transition when
a giant cluster suddenly occurs for hki ¼ 1 [2,10,9]. A
second transition takes place for hki ¼ 2 indicating the
appearance of mainly isolated cycles in the graph. Isolated
cycles are characterized by a geometrically decaying
envelope of the total cycle distribution. Our simulations
suggest the existence of a third important transition when
super-cycles are composed from merging smaller ones. This
is reflected by a transition of the total cycle distribution dðlÞ

from a geometrically decaying to an exponentially growing
behavior due to a ‘‘combinatorial explosion’’ of possible
self-intersecting paths through the network (super-cycles
are common in regular lattices with hkiX3). We detect this
transition by means of a suitably chosen order parameter s

derived from dðlÞ as the averaged slope of its envelope. For
decaying dðlÞ, so0 and for growing dðlÞ, s40. The
appearance of super-cycles is associated with s � 0 if dðlÞ

(Table 1) is approximately symmetric in the range of l. In
this case, sustained oscillations emerge in the network’s
dynamics.
The oscillatory transition is also reflected by a global

excitation-to-inhibition ratio Gex=Gin of about �13 for
N ¼ 200 and �16 for N ¼ 500; 1000 in the critical phase
(cf. Tables 3 and 4). This is consistent with findings on the
balance between excitation and inhibition [49]. The
oscillatory regime persists in the supercritical phase as
long as the number of excitatory connections remains
balanced by the stronger weights of the inhibitory
connections. If too many excitatory loops are created, the
dynamics again saturates in the fixed points of Eq. (17).
The present study is a first attempt towards nonlinear

complex neural network models of the brain (for related
linear models, cf. [46,27]). It opens several directions for
future research, including more appropriate models of
electrophysiology [56,5] and brain development [46,29]
where one could utilize better fitting evolution dynamics
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Fig. 2. (a) Representative simulated time series during the oscillatory transition (critical phase) for three different network sizes: N ¼ 200 (dotted),

N ¼ 500 (dashed), and N ¼ 1000 (solid). (b) Power spectra of simulated time series. (c) Total distributions of cycles (Eq. (12)) for the same networks.
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Fig. 3. (a) Representative simulated time series after the oscillatory transition (supercritical phase) for three different network sizes: N ¼ 200 (dotted),

N ¼ 500 (dashed), and N ¼ 1000 (solid). (b) Power spectra of simulated time series. (c) Total distributions of cycles (Eq. (12)) for the same networks.

Table 1

Averaged subcritical, critical, and supercritical values of the cycle order

parameter s for the three network sizes

N hssubi hscriti hssuperi

200 �0.01396 0.00375 0.01785

500 �0.01361 0.00282 0.01345

1000 �0.01052 0.00198 0.01256

Table 2

Averaged subcritical, critical, and supercritical mean degrees hki for the

three network sizes

N hksubi hkcriti hksuperi

200 1.16 2.34 3.68

500 1.34 2.28 2.89

1000 1.36 2.30 2.87

Table 3

Averaged subcritical, critical, and supercritical values of the global

excitation Gex for the three network sizes

N hGex;subi hGex;criti hGex;superi

200 355.6 730.8 1166.0

500 1092.4 1847.2 2343.2

1000 2180.8 3693.2 4605.6

Table 4

Averaged subcritical, critical, and supercritical values of the global

inhibition Gin for the three network sizes

N hGin;subi hGin;criti hGin;superi

200 �27.4 �53.7 �82.1

500 �61.8 �109.7 �139.6

1000 �135.7 �230.1 �284.7
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that leads to small world or scale-free networks [2,10]. Also
an interplay between the slow weight and the fast node
dynamics could be incorporated by Hebbian correlation
learning rules [15] in order to describe synaptic plasticity.
Finally, one could speculate about implementing cognitive
processes by emergent neural oscillations [56,33,6,37,19].

In order to further improve the physiologic plausibility
of the model, time constants, gain factors and firing
thresholds, i.e. the parameters ti;bi, and yi in Eqs. (5) and
(6), have to be chosen accordingly. Actually, they should be
heterogeneously distributed for accounting to the inhomo-
geneity of biological neural networks.
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