
Significance for a recurrence based transition analysis

Norbert Marwan, Stefan Schinkel and Jürgen Kurths

Interdisciplinary Center for the Dynamics of Complex Systems
University of Potsdam, 14415 Potsdam, Germany

Email: marwan@agnld.uni-potsdam.de

Abstract—The recurrence of states is a fundamental be-
haviour of dynamical systems. A modern technique of
nonlinear data analysis, the recurrence plot, visualises and
analyses the recurrence structure and allows us to detect
transitions in the system’s dynamics by using recurrence
quantification analysis (RQA). In the last decade, the RQA
has become popular in many scientific fields. However, a
sufficient significance test was not yet developed.

We propose a statistical test for the RQA which is based
on bootstrapping of the characteristic small scale structures
in the recurrence plot. Using this test we can present confi-
dence bounds for the detected transitions and, hence, get a
more reliable result. We demonstrate the new technique on
marine dust records from the Atlantic which were used to
infer climate changes in Africa for the last 4 Ma.

1. Introduction

Recurrence plots (RPs) and recurrence quantification
(RQA) [1] are widely accepted methods for data analysis
in various disciplines, like life science [2, 3, 4, 5], engi-
neering [6, 7, 8] earth science [9, 10, 11] or finance and
economy [12, 13]. Based on RPs, we can study, e.g.,
complex system’s dynamics, transitions or synchronisation
[3, 14, 15, 16]. The investigation of transitions in the sys-
tem’s dynamics is based on changes in the system’s re-
currence structure. The different aspects of recurrences
can be measured by measures of complexity, which are
also known asrecurrence quantification analysis(RQA)
[1]. Although these measures are often applied to real data
and interpreted as indicators of changes in the system, up
to now there are no means to statistically validate the re-
sults. Statistical tests were suggested for the validationof
interrelation and synchronisation analysis using bivariate
extensions of RPs [17, 18]. These tests use certain sur-
rogates (AR models, twin surrogates) to test against the
null-hypothesis. However, these are special cases of a re-
currence based analysis and are not applicable for our pur-
pose to detect transitions. In this letter we propose a tech-
nique which calculates the confidence level for the most
important RQA measures. Using this method we are able
to provide a significance statement for detected transitions
in the systems dynamics based on RQA. We illustrate this
approach on a climate proxy time series (marine dust de-
posits), which were used to infer climate variability in the
past.

2. Recurrence based detection of transitions

A recurrence plot tests for the pairwise closeness of all
possible pairs of states (~xi , ~x j) (i = 1 . . .N, N as the number
of time points or measurements) in anm-dimensional phase
space,

Ri, j = Θ
(

ε − ‖~xi − ~x j‖
)

, (1)

with Θ as the Heaviside function andε as a threshold for
spatial closeness, which is given by the norm‖·‖ (e.g. maxi-
mum or Euclidean norm) [1]. The binary recurrence matrix
R contains the value one for all close pairs‖~xi − ~x j‖ < ε.
From a univariate timeseries the phase space trajectory can
be reconstructed using time delay embedding [19].

Similar evolving epochs of the phase space trajectory
cause diagonal structures parallel to the main diagonal. The
length of such diagonal line structures depends on the dy-
namics of the system (periodic, chaotic, stochastic). There-
fore, the frequency distributionP(l) of line lengthsl can be
used to characterise the system’s dynamics. Several RQA
measures are based on this distributionP(l). Here we focus
only on the measuredeterminism(DET), which is the ratio
of the recurrence points forming diagonal structures,

DET =

∑N
l=lmin

l P(l)
∑N

l=1 l P(l)
. (2)

We use a minimal lengthlmin for the definition of a diagonal
line [1].

Slowly changing states, as occuring during laminar
phases (intermittency), cause vertical structures in the RP.
Therefore, the distributionP(v) of line lengthsv is used to
quantify the laminar phases occuring in a system. Similar
to the measureDET, we define the ratio of the recurrence
points forming vertical structures,

LAM =

∑N
v=vmin

v P(v)
∑N

v=1 v P(v)
, (3)

and call this measurelaminarity (LAM) [1].
In order to study the time-dependent behaviour of a sys-

tem or data series, we compute these RQA measures us-
ing a moving window. The window has sizeW and is
moved with a step ofs over the data in such a way that
succeeding windows overlap withW − s, thus providing
time-dependent measuresDET(t) and LAM(t) with t =
W/2,3W/2,5W/2, . . . ,N −W/2. The number of windows



NW covering the data is floor-roundedNW = (N−W+ s)/s.
This technique was successfully applied to detect chaos-
period transitions [15], chaos-chaos transitions [3] or dif-
ferent kinds of transitions between strange non-chaotic be-
haviour and periodic or chaos [20]. It is applicable on real
world data, as demonstrated for the study of cardiac vari-
ablity [21], brain activity [5], changes in finance markets
[13] or thermodynamic transitions in corrosion processes
[7]. However, all these applications miss a clear signifi-
cance statement or require repeated measurements to allow
for statistical testing.

3. Confidence intervals of univariate timeseries

In order to perform a statistical inference for the RQA
measures, we propose a bootstrapping approach [22]. The
bootstrap is a statistical tool that allows for estimating the
precision ofany sample statistics (mean, median,P(l) or
P(v)) by randomly resampling (with replacement) from the
observed data.

Since the basis of the RQA measures are the frequency
distributionsP(l) or P(v) of the diagonal and vertical re-
currence lines, we will bootstrap these distributions. For
the sake of simplicity, we only considerP(l), but the same
logic applies toP(v).

For each of the moving window t (t =

W/2,3W/2,5W/2, . . . ,N − W/2), i.e. for different time
points, we have a local distributionPt(l). However, we
will use all local distributions for bootstrapping in orderto
get an overall distribution over the entire region of interest
in the recurrence plot, which is covered by the moving
windows. This means, we bootstrap from the unification

P̂(l) =
⋃

t

Pt(l) (4)

of the local distributions. We drawn recurrence structures
(i.e. diagonal lines) from̂P(l). The numbern of drawings is
the mean number of recurrence structures contained in the
local distributionsPt(l),

n =
1

NW

N−W/2
∑

t=W/2

N
∑

l=lmin

Pt(l). (5)

From the resulting empirical distributionP∗(l), we compute
the corresponding RQA measure, in our caseDET, Eq. (2).
Repeating this procedureB times (e.g.B = 5,000), pro-
vides a test distribution forDET, sayF(DET). F(DET)
provides a robust estimate for the system’s overall be-
haviour as captured by the complexity measures. To this
baseline of the system we can later compare any occuring
transitions.

Calculating theα-quantiles of the distributionF(DET),
we derive the confidence intervals ofDET which can be
used to statistically infer whether the changes ofDET(t),
and thus the observed transitions, are statistically signifi-
cant.

4. Illustrative example

In this section we illustrate the proposed statistical test
on a signal with chaos-period and chaos-chaos transitions.
We use a modified logistic map with mutual transitions [15]

xi+1 = a(i) x(i)
(

1− x(i)
)

(6)

with the control parametera in the range [3.9200 3.9325]
with increments of∆a = 0.000001. Using this intervall
we find fora = [3.92221 3.92227] a period-7 window, for
a = [3.93047 3.93050] a period-8 window and at a broad
range arounda = 3.928 intermittency (Fig. 1A).
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Figure 1: (A) Logistic map with chaos-period and chaos-
chaos transitions for control parametera = [3.9200 3.9325]
and corresponding RQA measures (B)DET and (C)LAM.
Fora = [3.92221 3.92227] we have a period-7 window, for
a = [3.93047 3.93050] a period-8 window and at a broad
range arounda = 3.928 intermittency (marked with dotted
lines). 99% confidence bounds are shown as dash-dotted
lines.

Next we compute the RQA measuresDET and LAM
from this data series (no embedding) using windows of size
W = 200 and with a step size ofs = 50. The thresh-
old ε is chosen for each window separately in order to pre-
serve a constant recurrence rate of 5%. As a line structure



we consider each line with a length of at least two points,
i.e. lmin = vmin = 2.

The measureDET shows for the periodic windows at
a = [3.92221 3.92227] anda = [3.93047 3.93050] maxima
(Fig. 1B) [3]. The periodic behaviour of the system causes
only long diagonal lines, resulting in high values ofDET.
In contrast,LAM shows high values only for the region of
intermittency arounda = 3.928 (Fig. 1C). In this region,
the system has slowly changing, laminar states [3].

For the proposed bootstrapping approach, we use 5,000
resamplings in order to construct the empirical distribu-
tionsF(DET) andF(LAM). We have found that this num-
ber of resamplings is sufficient. The parameters of the re-
sulting empirical distributions are already converged. As
expected, the distributionsF(DET) and F(LAM) follow
normal distributions (Fig. 2). As the 99%-quantile we find
for DET q0.99 = 0.75 and forLAM q0.99 = 0.05. These val-
ues provide the 99% confidence level forDET andLAM.
Thus, the two maxima ofDET in the periodic windows are
significant on a 99% level (p < 0.01; Fig. 1B). ForLAM
we find several significant high values of 99% significance
in the region of intermittency arounda = 3.928 (Fig. 1C).
This is due to the longer range of intermittent behaviour in
this region of the control parametera.
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Figure 2: Empirical distributions forDET and LAM de-
rived from bootstrapping recurrence structures. These dis-
tributions follow normal distributions (a fitted normal dis-
tribution shown by the black line).

Using these RQA measures we have shown that we are
able to detect the chaos-period and chaos-chaos transitions
with high significance. This is an improvement of the find-
ings discussed in [3, 15].

5. Application on a marine dust record

Longterm variation in eolian dust deposits is highly re-
lated with terrestrial vegetation and may be used as a proxy
for a changing climate (wet, dry). Therefore, marine dust
records can be used to infer epochs of a drier climate in the
past. In particular, a marine record from the Ocean Drilling
Programme (ODP) derived from a drilling in the Atlantic,
ODP site 659, was used to infer changes in the African cli-
mate during the last 4.5 Ma (Fig. 3A) [23]. The author
claimed that the African climate has shifted towards more
arid but variable conditions at 2.8, 1.7 and 1.0 Ma. How-

ever, a new debate about climate transitions at these times
recently arose because of their importance for the hominin
evolution in Africa [24]. This debate challenges for a re-
liable test and enhanced analysis tools for the detection of
such transitions. Therefore, we apply the RQA and the pro-
posed significance test on the dust flux record of the ODP
site 659 [23].

We used a time delay embedding with dimensionm= 3
and delayτ = 2. The threshold is chosen to preserve a
constant recurrence rate of 5%. The bootstrapping is per-
formed using 5,000 resamplings. We are interested in the
95% confidence interval.

The RQA measuresDET and LAM reveal significant
high values between 4.2 and 4.0 Ma, 3.6 and 3.4 Ma, 2.6
and 2.4 Ma. Around 1.1 Ma onlyDET is significantly in-
creased and around 2.9 Ma onlyLAM is significantly in-
creased. Since 0.6 Ma, both measures increase again sig-
nificantly (Fig. 3B, C).
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Figure 3: (A) Dust flux record of ODP site 659, and cor-
responding (B)DET and (C)LAM measures (95% confi-
dence bounds are shown).

Based on the significant increase of theDET measure
we can infer that especially during the epochs 4.2 to 4.0 Ma
and 3.6 to 3.4 Ma the climate was behaving more regular.
The increase ofLAM at 4.2, 3.6, 2.6 and 0.6 Ma indicates
transitions at these times in the African climate regime,
as exhibited by an intermittency behaviour. These time
epochs differ obviously from the climate changes proposed
by deMenocal [23]. However, deMenocal was just testing
for changes in the frequencies and not in the dynamics. The
linear methods he used (evolutionary power spectra) are not
able to detect dynamical transitions.

These epochs found using RQA coincide with the oc-



curences of lakes in East Africa and with important ho-
minin evolution steps [24].

6. Conclusions

By bootstrapping the smale-scale structures of recur-
rence plots, we were able to provide confidence levels for
the recurrence quantification analysis. We have shown that
the RQA reveals chaos-period and chaos-chaos transitions
in the logistic map with statistical significance. Moreover,
applying this approach on a palaeo-climate proxy record,
we found transitions in the climate regime, which may have
caused significant influences on the African climate and,
thus, on the hominin evolution.
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