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Abstract

We have investigated plasma turbulence at the edge of a tokamak plasma using data from electrostatic potential fluctuations measured in the
Brazilian tokamak TCABR. Recurrence quantification analysis has been used to provide diagnostics of the deterministic content of the series. We
have focused our analysis on the radial dependence of potential fluctuations and their characterization by recurrence-based diagnostics. Our main
result is that the deterministic content of the experimental signals is the most pronounced at the external part of the plasma column just before
the plasma radius. Since the chaoticity of the signals follows the same trend, we have concluded that the electrostatic plasma turbulence at the
tokamak plasma edge can be partially explained by means of a deterministic nonlinear system.
© 2007 Elsevier B.V. All rights reserved.
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R1. Introduction

Recurrence plots (RPs) are graphical representations of the
matrix [1–3]

(1)Ri,j = Θ
(
ε − ‖xi − xj‖

)
, i, j = 1,2, . . . ,N,

where x ∈ R
D represents a dynamical state in the D-dimen-

sional phase space of the system under consideration at time i,
ε is a predetermined threshold, Θ(.) is the unit step function,
‖ · · · ‖ stands for the Euclidean norm, and N is the total number
of points. The RP is thus obtained by assigning a black (white)
dot to the points for which Ri,j = 1 (0).

RPs have been originally introduced as a numerical tool to
calculate the maximum Lyapunov exponent related to a time
series [1]. Later it has been shown that RPs can also be used
to study non-stationarity of a time series as well as to indicate
its degree of aperiodicity [4]. In particular, there are several
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measures proposed by Webber and Zbilut to make recurrence
quantification analysis from an RP, turning it into an extremely
useful tool in nonlinear time series analysis [5]. Recurrence
quantification analysis has been extensively used in a plethora
of problems ranging from meteorology [6], finance [7], and
geophysics [8] to cardiology [9]. In particular, RPs have be-
come important to characterize data from space plasmas [10].

In such disciplines one usually considers a univariate time
series from which one can make an embedding using the vec-
tors [11]

(2)xi = {xi, xi+τ , xi+2τ , . . . , xi+(d−1)τ },
where d is the embedding dimension and τ is the delay. There
are standard methods devised to obtain reliable estimates from
both d and τ [12]. The basic idea of an RP is to start from such
a phase space embedding and compare the embedding vectors
with each other, drawing pixels when the Euclidean distance
between vectors is below some threshold ε, defined as a small
fraction of the standard deviation of the time series being con-
sidered [13,14].
cation analysis of electrostatic fluctuations in fusion plasmas, Physics Letters

112

113

114

http://www.elsevier.com/locate/pla
mailto:viana@fisica.ufpr.br
http://dx.doi.org/10.1016/j.physleta.2007.07.088


ARTICLE IN PRESS

T

JID:PLA AID:17224 /SCO Doctopic: Plasma and fluid physics [m5+; v 1.75; Prn:14/09/2007; 12:06] P.2 (1-8)

2 Z.O. Guimarães-Filho et al. / Physics Letters A ••• (••••) •••–•••

1 58

2 59

3 60

4 61

5 62

6 63

7 64

8 65

9 66

10 67

11 68

12 69

13 70

14 71

15 72

16 73

17 74

18 75

19 76

20 77

21 78

22 79

23 80

24 81

25 82

26 83

27 84

28 85

29 86

30 87

31 88

32 89

33 90

34 91

35 92

36 93

37 94

38 95

39 96

40 97

41 98

42 99

43 100

44 101

45 102

46 103

47 104

48 105

49 106

50 107

51 108

52 109

53 110

54 111

55 112

56 113

57 114
U
N

C
O

R
R

E
C

The taxonomy of dynamical behaviors can be explored in a
large extent by using RPs and the quantifiers associated with
them (recurrence quantification analysis, or RQA for short) [5].
As an example, stationary time series yield RPs which are ho-
mogeneous along a diagonal line. Moreover, if the RP shows
a cloud of points with a homogeneous yet irregular distribu-
tion, then the time series has a pronounced stochastic nature.
On the other hand, the formation of patterns in RPs may in-
dicate stationary chaotic behavior. Moreover, RPs enable the
computation of dynamical invariants, such as the second order
Rényi entropy and correlation dimension [15,16].

One fertile field of study where RPs are potentially advan-
tageous is the analysis of fusion plasmas such those generated
by tokamaks [17]. A major goal in the study of such systems
has been to understand the causes and associated rates of anom-
alously large cross-field transport, which is thought to be caused
by plasma turbulence [18,19]. One experimental signature of
plasma turbulence in the plasma edge of a tokamak is the fluc-
tuating behavior of the electrostatic floating potential. Such
signals often display a broad fluctuation spectra, as observed
in the Brazilian tokamak TCABR [20]. A number of probes
have been built in TCABR to measure the particle density and
temperature fluctuations in the edge region. The experimental
results suggest that the turbulent transport is mainly electrosta-
tic in nature [21], as similarly observed in other tokamaks [22].
For example, electrostatic turbulence has been studied in the
plasma edge of TCABR under the influence of radio frequency
excited waves [23] and bias electrode polarization [24].

The deterministic content of the electrostatic fluctuations in
the plasma edge has been assigned to physical mechanisms gov-
erned by nonlinear mechanisms, like the interaction between
drift waves which appear due to the steep density gradients in
the plasma edge region of a tokamak [25]. These drift wave in-
teractions are known to depend critically on the radial position
such that the electrostatic turbulent fluctuations should also ex-
hibit some radial dependence. However, the radial variation of
the deterministic content of the plasma turbulence may not be
immediately apparent from the experimental data obtained in
tokamaks. Hence in this work we used RPs as a tool to quantify
the recurrence properties of such series to provide a quantifica-
tion of the degree of determinism and other related measures of
RQA and their dependence on the radial position at the plasma
edge. It turned out that this radial dependence, formerly elusive
in conventional analysis using, e.g. spectral methods, is best ob-
served using RQA.

The Letter is organized as follows: in Section 2 we briefly
describe the RQA numerical diagnostics used to analyze the
experimental data. Section 3 outlines the experimental setting,
and the kind of data we obtain from the tokamak TCABR. Sec-
tion 4 presents the results of RQA, as applied to data, and the
last section contains our conclusions.

2. Recurrence quantification analysis

RQA comprises many quantitative diagnostics of the distri-
bution of points (actually pixels) in a recurrence plot, focusing
on three basic kinds of structures [26]. The first kind are single,
Please cite this article in press as: Z.O. Guimarães-Filho et al., Recurrence quantifi
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or isolated points, which occur if the dynamical states are rare,
do not persist for any time, or fluctuate heavily. The recurrence
rate (RR) is the probability of finding a black recurrence point
(for which Ri,j = 1), or

(3)RR = 1

N(N − 1)

N∑

i,j=1; i �=j

Ri,j

where N2 is the total number of pixels (black or white) in an
RP [27]. We remark that the main diagonal points are excluded
from the double sum, since each point is recurrent with itself.

Most of the RQA diagnostics deal with diagonal lines,
which are structures parallel to the line of identity Ri,i = 1,
i = 1,2, . . . ,N , and formally defined as

Ri+k,j+k = 1 (k = 1,2, . . . , �),

(4)Ri,j = Ri+�+1,j+�+1 = 0,

where � is the length of the diagonal line, occurs when a seg-
ment of a given trajectory (in phase space) runs parallel to
another segment. In other words, when an RP presents a diag-
onal line, two pieces of a trajectory undergo for a certain time
(the length of the diagonal) a similar evolution and visit the
same region of phase space at different times. This is the key
idea of recurrence and thus a clearcut signature of determin-
ism. Accordingly, we compute P(�) = {�i; i = 1,2, . . . ,N�},
which is the frequency distribution of the lengths �i of diago-
nal lines, and N� is the absolute number of diagonal lines, with
the exception of the main diagonal line which always exist by
construction.

The determinism (DET) is defined as

(5)DET =
∑�max

�=�min
�P (�)

∑�max
�=1 �P (�)

where �min is the minimum length allowed for a diagonal line,
whereas the maximum diagonal length is �max = max({�i; i =
1,2, . . . ,N�}). Thus DET measures the percentage of points in
an RP belonging to diagonal lines. Other related quantities are
the ratio (RATIO) between DET and RR and the average diag-
onal length (Ldm),

(6)Ldm =
∑�max

�=�min
�P (�)

∑�max
�=�min

P(�)
.

Following Eckmann et al. [1] the lengths of the diagonal
lines are related to the inverse of the largest positive Lya-
punov exponent of the system. Likewise, the divergence DIV =
1/�max is related with the Kolmogorov–Sinai (KS) entropy of
a dynamical system, or the sum of its positive Lyapunov expo-
nents. Moreover, we can use RPs to compute reliable estimates
for the Shannon entropy (ENTR),

(7)ENTR = −
�max∑

�=�min

p(�) lnp(�),

where

(8)p(�) = P(�)
∑�max P(�)
cation analysis of electrostatic fluctuations in fusion plasmas, Physics Letters
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is the probability distribution of the diagonal line lengths.
ENTR reflects the complexity of the deterministic structure in
the system. However, since it depends sensitively on the bin
number, the value of ENTR may differ for different realizations
of the same process, like distinct data preparations.

The third kind of interesting structures in an RPs is vertical
lines, representing time intervals for which a dynamical state
does not change or changes very slowly, and they turn to be
a typical behavior of laminar states in intermittency scenarios.
Vertical lines are defined by:

Ri,j+k = 1 (k = 1,2, . . . , υ),

(9)Ri,j = Ri,j+υ+1 = 0,

where υ is the length of a vertical line. It suffices to consider
vertical lines, since the RP is symmetric under interchange of
indexes i and j . Analogously to diagonal lines, we can obtain
the frequency distribution of the lengths υi of vertical lines,
P(υ) = {υi; i = 1,2, . . . ,Nυ}, which is and Nυ is the absolute
number of vertical lines. The laminarity (LAM) is the percent-
age of RP points forming vertical lines, or

(10)LAM =
∑υmax

υ=υmin
υP (υ)

∑Nυ

υ=1 υP (υ)

where υmin is the minimum lengths of a vertical line, whereas
the maximum vertical length is υmax = max({υi; i = 1,2,

. . . ,Nυ}). The trapping time (TT) is the average length of a
vertical line

(11)TT =
∑υmax

υ=υmin
υP (υ)

∑υmax
υ=υmin

P(υ)
.

3. Electrostatic turbulence in tokamak plasmas

The knowledge of the transport properties of the plasma in
the tokamak edge (i.e., the region comprising the outer por-
tion of the plasma column and the vacuum region that separates
it from the vessel wall) is essential to the stable operation of
the tokamak [25,28]. Field line chaos plays here a major role
in the interpretation of the experimental results, since it was
long recognized that turbulent transport is particularly impor-
tant in the plasma edge [29]. In particular, drift waves can be
destabilized due to the confining magnetic field so as to yield a
turbulent spectrum [30].

Quantitative investigations of the electrostatic turbulent
spectrum have been made using both standard approaches, like
spectral analysis and wavelets, as well as dynamical diagnostics
like the return-time statistics [31]. The use of the latter approach
is encouraged by the role of chaotic behavior in temporal scales
on the onset and development of large-scale turbulence. One
of such toolboxes is just the recurrence quantification analysis,
which we apply to the electrostatic turbulence measurements
available for the tokamak edge region.

The experiments were performed in a hydrogen circular
plasma in the Brazilian tokamak TCABR [20] (major radius
R = 61 cm and minor radius a = 18 cm). The plasma current
reaches a maximum value of 100 kA, with duration 100 ms,
Please cite this article in press as: Z.O. Guimarães-Filho et al., Recurrence quantifi
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Fig. 1. Time evolution of (a) plasma current, (b) electron density, and (c) float-
ing potential for a typical discharge of TCABR tokamak. The vertical lines
indicate the time window used in recurrence quantification analysis.

the hydrogen filling pressure is 3 × 10−4 Pa, and toroidal mag-
netic field BT = 1.1 T. Three Langmuir probes measure the
mean density and the plasma electrostatic potential: two probes
measure the floating potential fluctuations and the third probe
measures ion saturation current fluctuations. The probes are
mounted on a movable shaft that can be displaced radially from
r = 15 cm to 23 cm, with respect to the center of the plasma col-
umn. In this work we shall focus on the range from 16 to 21 cm
so as to cover both the plasma edge and the so-called scrape-
off layer, the latter comprising part of the vacuum layer existent
between the plasma column and the vessel wall. The probe dis-
placement, however, occurs only for separate discharges, in or-
der not to disturb the plasma due to the movement of the probe.
The measurements were performed at a sampling frequency of
1 MHz, and the measuring circuit has a 300 kHz bandwidth to
avoid aliasing, such that in every discharge out of 105 points
can be recorded [21,23].

Fig. 1 shows the time evolution of a typical tokamak plasma
discharge in TCABR. The plasma current [Fig. 1(a)] grows
rapidly in the first 20 ms and reaches a plateau where the cur-
rent stays at a 100 kA level, decaying slowly during the second
half until the eventual disrupture. The electron density evolu-
tion, indicated by Fig. 1(b), exhibits a similar evolution, with a
plateau level of ne ∼ 1019 m−3. The signals we are particularly
interested to study are for the floating electrostatic potential Vf ,
a representative example being depicted by Fig. 1(c), which
shows highly irregular fluctuations in the −200 V to +200 V
range. The window chosen for measurements of the floating
potential has been indicated by vertical lines. We choose this
window, indicated by vertical bars in Fig. 1, so as to avoid the
discharge phase where external perturbations are applied for
other kinds of investigations. Fig. 1, however, is rather excep-
tional since it represents a tokamak discharge where no such
perturbations have been applied to the plasma.

The nature of the electrostatic potential fluctuation is de-
pendent on the radial location where the probe is placed, as
suggested by Fig. 2, where the first 2 ms of the time window in
cation analysis of electrostatic fluctuations in fusion plasmas, Physics Letters
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Fig. 2. Time evolution of the floating potential measured by Langmuir probes
placed at radii (a) r = 16.5 cm, (b) r = 18.0 cm, and (c) r = 21.0 cm. The cor-
responding power spectral densities are depicted in (d), (e), and (f), respectively.

the plasma current plateau has been selected, as well as the cor-
responding power spectra. Within the plasma column [Fig. 2(a)]
the potential fluctuations present a −50 V to +50 V range. As
we move outside the plasma column [Fig. 2(b)], just after its
radius (imposed by a material limiter which plays no role in
this discussion) such fluctuations increase by a factor of 4, in-
dicating that the turbulence level augments as we approach the
plasma radius. This increase is not monotonic, though, as re-
vealed by Fig. 2(c), where the floating potential range decreases
to an in-between level. Hence the turbulent fluctuations become
weaker as we move outside the plasma radius toward the vessel
wall.

The radial dependence of the electrostatic turbulence level
at the vicinity of the plasma radius is a signature of the role
played by radial density gradients in the generation of drift
waves which is the essential cause of turbulence in the plasma
edge. In fact, the presence of steep density gradients in the
plasma edge can give rise to fully developed drift-wave tur-
bulence, which is considered a likely candidate for explaining
anomalous transport observed in experiments [25]. However,
characterizing turbulence in order to quantify its level and ra-
dial dependence is a difficult task, what can be illustrated by
Figs. 2(d)–(f), where we show the power spectra of the poten-
tial fluctuations in the three radial positions just analyzed. All of
them are broadband, which is already expected from the chaotic
behavior related to turbulence but, apart from some unessential
rippling, those spectra do not show a distinguish feature which
could be used to quantify the turbulence level and specific dif-
ferent dynamical regimes.

The usefulness of linear approaches like power spectra is
naturally limited in view of the strong nonlinear character of
plasma turbulence, and encourages the use of chaos-based di-
agnostics, like the correlation dimension, Lyapunov exponents,
and entropies. However, the existing methods for evaluating
those quantities assume that the time series being investigated
is stationary, long enough, and with low noise. These require-
ments are difficult to fulfill in plasma experiments [12]. To over-
Please cite this article in press as: Z.O. Guimarães-Filho et al., Recurrence quantifi
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come these difficulties, other approaches have been proposed,
like using the statistical properties of the return time to explore
the recurrent behavior typical of turbulent phenomena [31].

The success of using these recurrence methods in charac-
terizing the turbulence level observed in tokamak experiments
suggests that RQA can be also of interest, especially because
it does not impose stationarity nor long series length as neces-
sary conditions, and can also work satisfactorily with moderate
noise levels. Moreover, RQA yields reliable estimates of the
Shannon entropy and can also indicate the amount of determin-
ism in a given time series, what gives us an idea of the noise
level added to the chaotic signal. The recurrence plots for the
first 1000 points (corresponding to a 1 ms interval) of the series
depicted in Figs. 2(a)–(c) are shown in Figs. 3(a)–(c), respec-
tively. We choose the embedding dimension as d = 4 and the
time delay τ was selected by considering the first local mini-
mum of the autocorrelation function [12]. We can recognize the
changes in the turbulent behavior at the plasma radius by com-
paring the diagonal and vertical structures of Fig. 3(b) with the
scattered nature of the recurrence plots depicted by Figs. 3(a)
and (c), which suggest a pronounced stochastic effect, proba-
bly related to noise and/or other mechanisms not accounted for
in a deterministic theory. Figs. 3(d), (e), and (f) contain a mag-
nification of the lower left corner of Figs. 3(a), (b), and (c),
respectively, and illustrate qualitatively the different recurrence
patterns as we consider the turbulent fluctuations in the vicinity
of plasma edge.

Since we have selected a 1 ms portion of each signal for con-
structing a recurrence plot, an immediate question arises as how
we could assure that this piece of the original signal constitutes
a stationary series. There are standard diagnostics of stationar-
ity for nonlinear time series [12], but we have performed such
a test using the consistency of recurrence-based diagnostics,
like the determinism (but practically any other of the quanti-
ties described in Section 2 could be equally used). Fig. 4(a)
exhibits the results of these tests, where the determinism (DET)
of a sequence of recurrence plots have been determined, us-
ing Eq. (5), for consecutive pieces of an original series, each of
them with 1 ms of length (equivalent to 1000 points, as before).
For data acquired at r = 16.5 cm [depicted as empty circles in
Fig. 4(a)] the values of DET for each series segment are distrib-
uted around a mean value of ≈ 0.17 and with a small dispersion,
indicating a consistency of such diagnostic against the total ex-
tension of the series and thus suggesting that the original series
is stationary enough for our purposes. This stationarity test was
repeated for other two radii, just like those considered in Figs. 2
and 3, the results pointing to values of determinism around 0.23
and 0.36, respectively.

Another issue to be taken into account when analyzing data
from tokamak plasma is that each data set is related to a specific
plasma discharge (tokamaks operate in pulsate regime). Since
there is a plethora of physical factors affecting the nature of a
discharge, we expect that such factors can be adequately man-
aged out, such that the results are reproducible enough to give
trustworthy values for the diagnostics we perform. This can be
obtained, in practice, by making measurements in successive
discharges, for which the tokamak and plasma parameters are
cation analysis of electrostatic fluctuations in fusion plasmas, Physics Letters
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Fig. 3. Recurrence plots for the first 1000 points (corresponding to a 1 ms time window) of the series for floating potential for radial positions (a) r = 16.5 cm,
(b) r = 18.0 cm, and (c) r = 21.0 cm. Magnifications of the lower left corners of these plots are shown in (d), (e), and (f), respectively.
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held constant. Possible differences, however, can arise from in-
stabilities and other effects related to the highly nonlinear (and
actually turbulent) plasma behavior. In Fig. 4(b) we consider
potential fluctuation data from out of 57 discharges involving
9 radial positions of the probe (in each discharge the probe po-
sition is held fixed at a given position). The mean values of
DET obtained in different discharges are plotted versus the ra-
dial positions. The line joining those points is a polynomial
fit just to guide the eye, i.e. it is not intended to give a radial
profile DET (r) but rather a trend: the degree of determinism
Please cite this article in press as: Z.O. Guimarães-Filho et al., Recurrence quantifi
A (2007), doi:10.1016/j.physleta.2007.07.088
increases significantly as we approach the plasma radius, and
decreases afterwards. This suggests a diminishing contribution
of stochastic effects at the plasma edge, in conformity with the
visual inspection of Fig. 3.

One key factor when constructing a recurrence plot is the
choice of the embedding dimension d . We have compared dif-
ferent values of d in Figs. 5(a) to (d) to plot radial profiles
of DET for different discharge, in much the same way as in
Fig. 4(b). The consistency of the radial profile of DET with a
clear maximum near the plasma radius is demonstrated qual-
cation analysis of electrostatic fluctuations in fusion plasmas, Physics Letters
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Fig. 4. (a) Variation of determinism with the time window (each of them containing 1000 points) selected from the original signal for r = 16.5 cm (circles),
r = 18 cm (squares) and r = 21 cm (stars). The mean values are indicated as full lines. (b) Radial profile for the mean value of determinism for various discharges
(see text for details). The full line is a polynomial fit and the horizontal bar placed in the bottom represents the scrape-off layer region, after the plasma radius
(determined by a material limiter).

Fig. 5. Radial profiles of determinism for embedding dimensions (a) d = 1, (b) d = 2, (c) d = 3, and (d) d = 5. Circles stand for original data, whereas squares refer
to surrogate data. The horizontal bar indicates the scrape-off layer region.
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Uitatively for different embedding dimensions (a quantitative
agreement is clearly impossible since the values of d affect the
topology of the reconstructed attractor). Fig. 5 also shows an-
other numerical experiment we performed, by computing DET
for the same time series as before, but with shuffled points. This
procedure creates a surrogate series for which the statistical
distributions are preserved, but destroying any time correlation
due to determinism. Hence, a difference between the values of
DET between the original series and its surrogate indicates a
deterministic content which yields the (chaotic) dynamics we
observe. Comparing those differences for a fixed radius, say
Please cite this article in press as: Z.O. Guimarães-Filho et al., Recurrence quantifi
A (2007), doi:10.1016/j.physleta.2007.07.088
r = 18 cm, shows that this deterministic content increases when
we pass from d = 1 to 2, but saturates afterwards. We con-
cluded that d = 2 is enough for our purposes. This obviously
does not imply that d = 2 is an optimal embedding dimen-
sion, in the sense we require, for example, for obtaining the
correlation dimension through standard procedures [32], but re-
currence plots with d = 2 already furnish results as good as with
other higher-dimension (and time-consuming) embeddings. We
have varied other parameters as the cutoff radius (ε) and min-
imum diagonal and vertical lengths (�min and υmin), without
noticeable changes in the profiles.
cation analysis of electrostatic fluctuations in fusion plasmas, Physics Letters
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Fig. 6. Radial profiles for several recurrence-based diagnostics: (a) laminarity; (b) entropy; (c) average diagonal length; (d) trapping time. The horizontal bar indicates
the scrape-off layer region.
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Up to here, we restricted our analysis to the determinism
DET, but the general trend exhibited by the latter is also clearly
seen in other diagnostics, as illustrated by Fig. 6. We consid-
ered also the laminarity [Fig. 6(a)], entropy [Fig. 6(b)], average
diagonal length [Fig. 6(c)], and trapping time [Fig. 6(d)]. We
have, in fact, obtained also the radial profiles for the remain-
ing diagnostics defined in Section 2, but we have chosen to
show only four since the results do not differ in a significative
way.

4. Conclusions

Recurrence quantification analysis (RQA) is a powerful ap-
proach for the investigation of nonlinear time series appearing
in a variety of physically interesting applications, since RQA
quantifies the number and duration of recurrences of a dynam-
ical system presented by its phase space trajectory. One of the
advantages from using RQA is to get measures for quantifying
the information content of turbulent signals. Those recurrence-
based diagnostics, like determinism, Shannon entropy, laminar-
ity, trapping time, etc., have been shown to better distinguish
the origins of complex behavior in experimental time series by
evaluating the deterministic and stochastic contents of them, if
compared with other techniques like power spectra, conditional
analysis, etc.

The experimental time series considered in this Letter are
electrostatic potential fluctuations in the edge plasma of a toka-
mak. The stability and reproducibility of RQA results obtained
in this work indicate that the recurrence-based diagnostics are
appropriate to analyze data from plasma edge turbulence ob-
tained from Langmuir probes. The power of RQA diagnostics
Please cite this article in press as: Z.O. Guimarães-Filho et al., Recurrence quantifi
A (2007), doi:10.1016/j.physleta.2007.07.088
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was used to clearly show that the deterministic content of these
fluctuations is not spatially uniform, but it is more pronounced
just before the plasma border. Our results suggest that theo-
retical models for describing such fluctuations, using nonlinear
mode coupling of drift waves, can be used in the vicinity of the
plasma border, but may not give reliable results when applied
in the internal edge plasma or the far scrape-off layer separating
the plasma column from the tokamak wall. The radial location
of the maximum level of determinism is within the region of
steep density gradients observed in tokamaks, the latter being
considered as the main cause of drift wave instabilities leading
to electrostatic plasma turbulence.

Thus, our findings are in favor of theoretical models describ-
ing plasma turbulence in terms of nonlinear interaction of drift
waves and their predictions as the coherent structure propaga-
tion and the onset of zonal flows. On the other hand, usual
techniques of fluctuation analysis may not give the same in-
formation we got from RQA about the radial dependence of
the deterministic content of the signal. As an example, if we
consider that the standard deviation of the fluctuations would
quantify the stochastic content of the signal we would be led
to a rather different conclusion. In fact, the results show a
higher standard deviation in the scrape-off layer, slightly after
the plasma border. Hence this conventional statistical approach
would not recommend the use of deterministic models in the
vicinity of the plasma border, which is just the region for which
RQA warrants the usefulness of such models. Moreover, while
our experimental data do not show stationary behavior from the
stochastic point of view, since their statistical moments are not
constant, we found evidences of stationarity from the determin-
istic point of view.
cation analysis of electrostatic fluctuations in fusion plasmas, Physics Letters
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