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Numerous studies have shown that strange nonchaotic attractors �SNAs� can be observed generally
in quasiperiodically forced systems. These systems could be one- or high-dimensional maps,
continuous-time systems, or experimental models. Recently introduced measures of complexity
based on recurrence plots can detect the transitions from quasiperiodic to chaotic motion via SNAs
in the previously cited systems. We study here the case of continuous-time systems and experimen-
tal models. In particular, we show the performance of the recurrence measures in detecting transi-
tions to SNAs in quasiperiodically forced excitable systems and experimental time series. © 2008
American Institute of Physics. �DOI: 10.1063/1.2897312�

Like many other systems, excitable systems can show dif-
ferent responses depending on the kind of driving signal
chosen to force them. In particular, it has been observed
that, when the forcing is quasiperiodic, an excitable sys-
tem can undergo transitions from quasiperiodic to cha-
otic behavior via a strange nonchaotic dynamics. In the
strange nonchaotic regime, the system possesses strange
(i.e., fractal) attractors but still has only a negative
Lyapunov exponent, thus showing the nonchaotic behav-
ior. Due to the negative Lyapunov exponent, two systems
starting from arbitrary different initial conditions will
converge to the same trajectory. We show that recently
introduced measures of complexity based on the recur-
rence plots (RPs) allow one to detect transitions from
quasiperiodic to chaotic motion via strange nonchaotic
attractors (SNAs). Many electronic circuits showing cha-
otic dynamics have been derived from mathematical
models based on nonlinear differential equations. In this
paper, we present electronic implementations, based on
operational amplifiers, of two different excitable systems
both showing SNAs for particular values of the amplitude
of the quasiperiodic forcing. Moreover, we apply recently
introduced recurrence techniques based on RPs to the
obtained experimental data. We show that recurrence
measures are able to identify the transition to strange
nonchaotic behavior in the experimental data.

I. INTRODUCTION

Excitable systems are omnipresent in nature. Excitable
dynamics have been observed in various fields ranging from
neuroscience, solid state physics, nonlinear optics, chemical
reaction kinetics, to climate dynamics.1–3 A system is said to
be excitable if, for an external perturbation larger than a
certain threshold value, the response of the system is inde-
pendent of the size of the perturbation.4 All forced excitable
systems show a spiking behavior. They display the rest, fir-
ing, and recovery states. In the absence of perturbation, the

system stays in the rest state. For a sufficiently strong per-
turbation, the system leaves the rest state, undergoes long
excursions in phase space going through the excited and re-
fractory states, before coming back to rest again. Many stud-
ies have been devoted to the effects of external noisy driv-
ings on excitable systems.5 It has been found that noise can
induce various phenomena, such as oscillations, coherence
resonance, stochastic synchronization, phase transitions, or
spiral dynamics.5,6 Quasiperiodic forcing could also play an
important role in changing the dynamics in a system. Quasi-
periodically forced nonlinear dynamical systems may exhibit
SNAs which are objects lying between quasiperiodicity and
chaos.7 Mandell et al.8 analyzed electroencephalogram data
for signatures of SNAs and suggested that quasiperiodic
driving may be a relevant internal mechanism for neuronal
dynamics. Recently, Prasad et al.9 studied the effect of qua-
siperiodic forcing in excitable systems. They found that the
characteristic behavior of the spiking changes and strange
nonchaotic or chaotic attractors are created. An experimental
observation of SNAs in a driven excitable system made of an
electromechanical cell has been realized.10

While some studies on SNAs have focused on the
mechanisms through which SNAs appear in a system, others
have focused on their characterization using tools such as
Lyapunov exponents, spectral and geometrical properties,
phase sensitivity and rational approximations, functional
maps and invariant curves, as well as a renormalization-
group analysis.11,12

Techniques based on recurrence plots have found appli-
cations in various fields.13 In applications related to physics,
the subjects of quasiperiodicity and chaos have been widely
explored. For example, an analytic description of RPs and
recurrence time statistics of chaotic processes have been
done.14,15 Zou et al. proposed procedures to distinguish qua-
siperiodic dynamics from chaos in short time series.16,17 In a
recent paper, we introduced measures of complexity based
on the recurrence time and on a quantification of the syn-
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chronization of trajectories on SNAs.18 We showed the ap-
plicability of these measures on quasiperiodically forced
maps and their robustness to additive noise. These measures
are able to detect transitions, through different routes, from
regular to chaotic motion via SNAs. Moreover, they identify
the fractalization transition to SNAs, which most of the other
tools of characterization fail to detect.

Our aim in this paper is to extend this study to continu-
ous systems, particularly to excitable systems whose impor-
tance is well established in various fields.5 Furthermore, we
will also apply them to experimental data showing transi-
tions to SNAs.

The paper is organized as follows. In the next section,
we recall briefly the recurrence measures and apply them to
two excitable models. Section III is devoted to the experi-
mental realizations of both systems under study. In Sec. IV,
we present the performance of the recurrence measures in
detecting transitions to SNAs in these experimental data. The
final section summarizes our results.

II. MEASURES OF COMPLEXITY APPLIED
ON CONTINUOUS SYSTEMS

The basis of the measures of complexity to detect the
transition from quasiperiodic to chaotic motion via SNAs is
the recurrence plot �RP�. RPs were introduced to visualize
the time-dependent behavior of the dynamics of systems.19

They allow us to see the recurrences of the phase-space tra-
jectory to a certain state. In order to visualize these recur-
rences of a given trajectory �x� i�i=1

N , one needs to compute an
N�N matrix

Ri,j = ��� − �x� i − x� j��, i, j = 1, . . . ,N �1�

where x� i�Rn, � is a predefined threshold, ��·� is the Heavi-
side function, and � . � denotes a norm, here the maximum
norm. The matrix compares the states of the system at times
i and j. If the states are similar ��-close�, this is indicated by
a 1 in the matrix. If on the other hand the states are rather
different, the corresponding entry in the matrix is zero. The
“1” and “0” are then, respectively, plotted as black and white
points in a two-dimensional plot.13 A reliable criterion for
choosing the threshold has been proposed by Thiel et al.20

They suggested that a measurement of an observation is the
sum of the real signal and some observational noise with
standard deviation. The threshold � should be chosen five
time larger than this standard deviation. We choose to nor-
malize the data. This normalization leads the mean value of
the data approximately to zero and their standard deviation �
to a range close to unity. We then choose the threshold �
=0.04�. We have tried different values for the threshold and
found other values leading to satisfactory results in the re-
currence analysis.

Among the different lines and structures in the RP, we
are interested in the “white vertical lines,” whose length is
equal to the time needed by the system to recur to a previ-
ously visited state. We evaluate the frequency distribution
P�w� of the lengths w of these white vertical lines. The first
measure of complexity is then the mean of the distribution
or, in other words, the mean recurrence time TMRT,

TMRT = �
w=1

N

wP�w�	 �
w=1

N

P�w� . �2�

Another measure of complexity is the number of recur-
rences of the most probable recurrence time �NMPRT�. It is in
fact the maximum value of the frequency distribution P�w�,

NMPRT = Max��P�w��; w = 1, . . . ,N� . �3�

It indicates how many times the system has recurred after the
most probable recurrence time. We also consider the variance
�MRT of TMRT and �MPRT of NMPRT. To compute the vari-
ances, a sufficiently long trajectory is considered and divided
into l segments. TMRT and NMPRT are then computed for each
segment separately. Thus

�MRT =
1

l − 1�
i=1

l

�TMRT�i� − T̄MRT�2, �4�

�MPRT =
1

l − 1�
i=1

l

�NMPRT�i� − N̄MPRT�2, �5�

where the overbar indicates the mean value.
Now we will apply this concept to excitable systems. We

start with a system that models low–frequency fluctuations in
a semiconductor laser with optical feedback:

dx

dt
= y,

dy

dt
= x − y − x3 + xy + �1 + �2x2. �6�

The dynamics of such systems has been extensively
studied.4,21 They present three types of dynamical behavior:
time-independent intensity, low-frequency fluctuations, and
coherent collapse regime. It has been shown that there is a
range in the parameter space in which semiconductor lasers
with optical feedback behave as excitable systems.4,22 In the
region of the parameter space where the system �Eq. �6��
behaves as an excitable system, three fixed points coexist: a
repeller, a saddle, and a node. Their corresponding manifolds
have the following behavior: the unstable manifold of the
saddle is the stable manifold of the node, and the saddle is
connected through its stable manifold with the repeller.4

A quasiperiodic forcing is applied to the system �Eq. �6��
by substituting �1 by F�t��1, where the modulation

F�t� = 1 + ��cos t + cos �t� �7�

is quasiperiodic in time with the irrational frequency �
= �
5+1� /2. This forcing changes the dynamics substan-
tially. It has been shown that, depending on the value of the
bifurcation parameter � �Eq. �7��, some complex strange cha-
otic or nonchaotic attractors can be created.9 The existence of
the SNAs in which we are interested was confirmed by com-
puting the largest Lyapunov exponent and the variance of a
set of finite-time estimates of the Lyapunov exponent. It has
been found that at the critical value ��5.02 there is a drastic
change in the fluctuations of the Lyapunov exponent indicat-
ing the transition from a quasiperiodic attractor to a SNA.9

Now, we apply our measures �Eqs. �2�–�5�� to the system
given by Eq. �6�. After computing the recurrence time mea-
sures, we observe in almost all the measures a drastic change
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around the critical value ��5.02, confirming that the recur-
rence measures are able to detect the critical value at which
the transition to SNAs takes place �Fig. 1�. In addition, the
fluctuations of the recurrence measures are clearly different
before and after the critical value. TMRT and NMPRT are com-
puted using 10 000 normalized data points. The variances are
computed with a trajectory of 300 000 data points and 1000
is the length of each segment.

Next, we analyze the van der Pol–Fitz Hugh–Nagumo
model �VdP–FHN�, which is a paradigmatic excitable sys-
tem. It models nerve pulses1,23 and is described by the fol-
lowing equations:

�
dx

dt
= x −

x3

3
− y,

dy

dt
= x + � . �8�

The parameter � governs the character of solutions. For
�� � 	1, the only attractor is a stable fixed point, and for
�� � 
1 a limit cycle appears.6 A quasiperiodic forcing is
again introduced in the equations by substituting � by F�t��.
This quasiperiodic forcing involves the creation of SNAs. A
sudden increase in fluctuations of the Lyapunov exponent
above ��0.039 has been found and shown to indicate a
transition to a SNA.9 This abrupt change is also observed in

FIG. 1. Recurrence time measures,
computed using numerically generated
data of Eq. �6� with �1=0.08 and �2

=1, vs bifurcation parameter � �Eq.
�7��. The variances are computed with
a trajectory of 300 000 data points and
1000 is the length of each segment.
The threshold used is �=0.04�, where
� is the standard deviation of the data.
�a� Behavior of TMRT; �b� behavior of
NMPRT; �c� variance of TMRT; �d� vari-
ance of NMPRT.

FIG. 2. Recurrence time measures,
computed using numerically generated
data of Eq. �8� with �=1.05 and �
=0.01, vs bifurcation parameter � �Eq.
�7��. The threshold used is �=0.04�,
where � is the standard deviation of
the data. TMRT and NMPRT are com-
puted using 10 000 normalized data
points. The variances are computed
with a trajectory of 300 000 data
points and 1500 is the length of each
segment. �a� Behavior of TMRT; �b� be-
havior of NMPRT; �c� variance of TMRT;
�d� variance of NMPRT.
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the recurrence time measures �Fig. 2�. The measures fluctu-
ate regularly in the quasiperiodic regime and rather strongly
in the SNA regime. The crossover between these two re-
gimes is abrupt, showing again the strong potential of the
recurrence measures in detecting the transition.

III. IMPLEMENTATION OF SNA CIRCUITS

The existence of SNAs was first reported in the work of
Grebogi et al.,7 and then demonstrated in several physical
systems, biological oscillators, and electronic circuits.12 In
particular, SNAs have been observed in electronic circuits
made of an inductor, a capacitor, two or more resistors, and a
nonlinear diode, such as Chua’s diode, driven by quasiperi-
odic forcing.24–26 Now we intend to implement electronic
circuits of both models Eqs. �6� and �8� discussed in Sec. II.
Therefore, we first rescale the dimensionless equations of the
two previously considered models to achieve a realization of
the circuits and we implement the rescaled equations by
discrete-component circuits based on operational amplifiers.

A. Van der Pol–Fitz Hugh–Nagumo model

We first consider the VdP-FHN model. In our implemen-
tation, based on operational amplifiers, we associate the state
variables x and y of Eq. �8� with voltages across two capaci-
tors �C1 and C2 in Fig. 3, respectively� and we rewrite Eq.
�8� as follows:

�
dx

d�
= kx −

x3

3
− y�,

dy

d�
= k�x + �F���� �9�

with F���=1+��cos k�1�+cos k�2�� and t=k�. Although
circuit implementation generally requires rescaling of both
the state variables and the time variable, for our purpose only
the time variable should be rescaled �by the factor k�. Fur-
thermore, let us define 1=k�1 and 2=k�2 as the frequen-
cies of the sinusoidal waveforms used to build the driving
signal F��� getting a SNA regime.

The circuit implementing Eq. �9� is shown in Fig. 3. It
can be described by the following equations:

dx

d�
= k

Rf4Rf5

R8R9
Rf3

R7
x −

Rf3

R5

x3

100
−

Rf3

R6
y� ,

�10�
dy

d�
= kRf1

R1
x +

Rf1

R2
�1 + � cos 1�� +

Rf1

R3
� cos 2�� ,

which, with the choice of the components reported in Fig. 3,
match Eq. �9� with k=1000. In more details, we have set �
= R8R9 / Rf4Rf5 , Rf3 / R7 =1, Rf3 / 100R5 = 1 / 3, Rf3 / R6 =1,
Rf1 / R1 =1, Rf1 / R2 = Rf1 / R3 =�. RP was chosen to satisfy
the gain rule,27 1 / Rf3 + 1 / R5 + 1 / R6 = 1 / R7 + 1 / RP . To
implement the nonlinearity of the circuit, two AD633 multi-
pliers have been used. These devices have four inputs
�I1 , I2 , I3 , I4� which are linked to the output by the following
relationship: Z= �I1− I2��I3− I4� / 10. The two cascaded multi-
pliers shown in Fig. 3 implement the nonlinearity x3 / 100.

Finally, as integrators we used operational amplifiers
into a Miller configuration.27 The integrator block has been
designed by following standard guidelines.27 TL084 opera-
tional amplifiers are used and the power supply has been set
to �15V.

Figure 4 shows the projection of the attractor obtained
experimentally from the circuit and the trend of the state
variable x��� for parameter values such that the circuit is in
the SNA regime. In particular, the parameters of the model
have been chosen according to Ref. 9 �=1.05, �=0.01, �
= �
5+1� /2, �=0.1.

B. Laser system

The second SNA circuit was designed starting from the
dimensionless Eq. �6� and rewriting them in terms of a new
rescaled time variable ��= t /k� as

dx

d�
= ky,

dy

d�
= k�x − y − x3 + xy + �1F��� + �2x2� , �11�

with F���=1+��cos k�1�+cos k�2�� and 1=k�1, 2=k�2.
Even in this case, in fact, the discrete component circuit
implementation based on operational amplifiers allows the
dynamic range of the original state variables to be imple-
mented without the need to rescale them.

FIG. 3. Circuit 1: SNA circuit implementing Eq. �8� with R1=1 k, R2

=952 , R3=952 , R4=10 k, R5=300 , R6=10 k, R7=10 k, R8

=1 k, R9=10 k, RP=300 , Rf1=1 k, Rf2=100 k, Rf3=10 k, Rf4

=10k, Rf5=100 k, C1=235 nF, and C2=27 nF.
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The corresponding circuit is shown in Fig. 5. The state
variables x and y are associated with voltages across the
capacitors C2 and C1, respectively. The circuit is governed
by the following equations:

dx

d�
= k

Rf3

R9
y ,

�12�
dy

d�
= kRf2

R7
Rf1

R3
x +

Rf1

R2

xy

10
+

Rf1

R4
�1�1 + � cos 1��

+
Rf1

R5
�1� cos 2� + �2

Rf1

R1

x2

10
� −

Rf2

R6

x3

100
− y� ,

which match Eq. �11� with the choice of parameters reported
in Fig. 5. In particular, we have set Rf2 / R7 =1, Rf1 / R3 =1,
Rf1 / R2 =10, Rf1 / R4 = Rf1 / R5 =1, Rf1 / R1 =10�2, Rf2 / R6

=100, Rf3 / R9 =1.
The nonlinearities of the system x3 and xy are imple-

mented with three AD633 multipliers. An operational ampli-
fier and a RC filter have been used to perform the integration
of the two state variables x and y, respectively. Their param-
eters have been fixed following standard guidelines27 and
taking into account that k=1000.

As an example of the circuit behavior, a Poincaré section
and the trend of the state variable x���, obtained experimen-
tally from our circuit, are shown in Fig. 6. The parameters of
the model have been chosen so that a SNA appears. In par-
ticular, they have been chosen according to Ref. 9 as follows:
�1=0.08, �2=1, �= �
5+1� /2, �=5.075.

IV. ANALYSIS OF THE EXPERIMENTAL DATA

Both implemented circuits show a transition from quasi-
periodic motion to SNAs when the amplitude of the two
waveform generators used to build the signal F��� is varied,
i.e., when the parameter � is changed. To characterize this
transition, we recorded the trends of the state variables of the
two circuits for different values of the parameter � and ap-
plied the method described in Sec. II. All the data have been
acquired by using a data acquisition board �National Instru-
ments AT-MIO 1620E� with a sampling frequency fs

=200 kHz for T=2s �i.e., 400 000 samples for each time
series�. In all the acquisitions, we set f1= 1 / 2�
=159.00 Hz and f2= 2 / 2� =98.36 Hz. The other param-
eters have been chosen as discussed in Sec. III. In particular,
for circuit 1 we vary � from �=0.01 to �=0.1 at steps of
0.001. This corresponds to varying the peak-to-peak ampli-
tude of the two waveform generators from 20 to 200 mV at

FIG. 4. Experimental results for Circuit 1 with �=0.1. �a� Projection of the
strange nonchaotic attractor in the phase plane x-y; �b� trend of the state
variable x���.

FIG. 5. Circuit 2: SNA circuit imple-
menting Eq. �11� with R1=1 k, R2

=1 k, R3=10 k, R4=10 k, R5

=10 k, R6=1 k, R7=100 k, R8

=1 k, R9=100 k, R10=22 k, Rf1

=10 k, Rf2=100 k, Rf3=100 k,
Rf4=100 k, C1=210 nF, and C2

=13 nF.
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steps of 2 mV and allows us to have a large enough number
of data points to perform the analysis described in Sec. II.

As concerns circuit 2, we vary the parameter � from �
=4.5 to �=5.5. Consequently, the peak-to-peak amplitude of
the waveform generators �which is equal to Vpp=2�1�� var-
ies from 720 to 880 mV at steps of 2 mV.

The measures of complexity defined in Sec. II have then
been applied to analyze these experimental data. Because the
variances of TMRT and NMPRT detect the transitions better
than TMRT and NMPRT, we present, respectively, their behav-
ior in Figs. 7 and 8 for the semiconductor laser system and
the VdP–FHN model. From these figures, one can see that
the experimental results �Fig. 7� match closely with the nu-
merical ones in the semiconductor laser system �Fig. 1�. The
transition to SNAs is clearly observed in the variances which
increase abruptly at the critical value ��5. In the VdP–FHN
model, one encounters some changes before the main transi-
tion which takes place at ��0.034 �Fig. 8�. These changes

could be related to the fact that we are dealing with real
components and the changes show that the circuit behaves in
a slight different manner. When dealing with experiments,
noise could also lead to parameter mismatches. However, the
main transition to SNAs takes place at ��0.034 and is close
to the one of the numerical case at ��0.039 �Fig. 2�. The
relative error �about 13%� of the result from the experiments
is in the order of magnitude of the electronic parameter tol-
erance �about 10%�. In order to plot Figs. 7 and 8, we have
done experimentally eight realizations of time series for each
value of the bifurcation parameter � and computed �MRT and
�MPRT for each realization. We then computed, respectively,
the mean value and the standard deviation of �MRT and
�MPRT of the eight realizations for each value of �. Finally,
we plotted the mean value versus �. Above and below the
mean value, the corresponding standard deviation is plotted.
We see clearly that the changes of the measures of complex-
ity are well above the error bars. The number of realizations
is not large. However, when dealing with experiments, one

FIG. 6. Experimental results for Circuit 2 with �=5.075. �a� Poincaré sec-
tion of the strange nonchaotic attractor in the phase plane x−y; �b� trend of
the state variable x���.

FIG. 7. Variances of the recurrence measures computed on experimental
data of the semiconductor laser system with the threshold �=0.04�, where �
is the standard deviation of the data. �a� Variance of TMRT; �b� variance of
NMPRT. In fact, the mean values of �MRT and �MPRT are plotted and the
corresponding standard deviation over different trajectories of 50 000 data
points and 500 as the length of each segment are plotted.
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encounters some difficulties and it is not always easy to gen-
erate as many realizations as one would wish in order to
make an even more precise computation.

Note that, in all the computations, the real coordinates
have been used. This does not mean that, if only one observ-
able of the system is available, as it usually is in nature, the
recurrence analysis could not be done. In that case, one could
use the delay embedding technique28 and then perform the
analysis. However, the embedding parameters should be cho-
sen carefully and appropriately to the system under study to
avoid spurious structures in the RP that could influence the
analysis. We wish also to mention that, in this study we know
a priori where the transitions to SNAs take place and the
recurrence measures indicate these transitions rather well. If
it happens that one has only observations at a fixed value of
the bifurcation parameter and wishes to infer in which state
the system is, this is still possible using recurrence tech-
niques. The work done in Refs. 16 and 17 gives reliable
criteria to recognize quasiperiodic dynamics. The computa-

tion of the recurrence measure called Determinism �DET� on
the main diagonal line of the cross-recurrence plot could
show whether the system is in the strange nonchaotic
regime.13,18

V. SUMMARY

We have applied some recently introduced measures of
complexity that are based on the white vertical structures in
recurrence plots to detect the transition from quasiperiodic
motion to SNAs in continuous systems and experimental
data. More precisely, we have studied the transition to SNAs
through the intermittency route in two excitable systems,
namely a semiconductor laser model with optical feedback
and the van der Pol–Fitz Hugh–Nagumo model. The mea-
sures of complexity based on the time needed by the system
to recur to a neighborhood of a previous point of the trajec-
tory are able to detect the onset of the strange nonchaotic
dynamics in the numerically obtained data. The measures
fluctuate slightly in the quasiperiodic regime and strongly in
the strange nonchaotic one, but at the critical value of the
bifurcation parameter there is a drastic jump that makes it
easy to identify this bifurcation.

The experimental circuits, based on operational amplifi-
ers, implementing the equations governing the two systems,
have been realized and experimental data showing transitions
to SNAs have been generated. We have observed a good
matching in the behavior of the recurrence measures com-
puted from the numerical and experimental data for the semi-
conductor laser system. In the van der Pol–Fitz Hugh–
Nagumo model, some changes in the variation of the
variances of the recurrence measures have been observed
before the main transition to SNAs. These changes could be
explained by some parameter mismatches introduced by the
electronic implementation.

We hope that this work will add a contribution to all the
works done up to now in order to observe SNAs in experi-
ments. We also expect that the potentials of RPs for applica-
tions will be increased and that the recurrence quantification
based on white vertical lines in RPs will find applications in
other fields of life science.
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