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Long data sets are one of the prime requirements of time series analysis techniques to unravel the dynamics
of an underlying system. However, acquiring long data sets is often not possible. In this paper, we address the
question of whether it is still possible to understand the complete dynamics of a system if only short �but
many� time series are observed. The key idea is to generate a single long time series from these short segments
using the concept of recurrences in phase space. This long time series is constructed so as to exhibit a dynamics
similar to that of a long time series obtained from the corresponding underlying system.
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I. INTRODUCTION

The analysis of the dynamics of a system from measured
data usually requires rather long time series. Practically, ac-
quiring long time series from natural systems is feasible only
in some cases and is often impossible in many due to experi-
mental restrictions. In some cases, the costs involved in a
particular experiment might make the acquisition of such
long time series very difficult. In other cases, it might be the
nature of the system itself, which does not allow recording
long time series. Typical examples of the latter case include
earthquake data, seizure data, financial records, and paleocli-
matological data. The problem of short data sets also prevails
among the modeling community. For example, modeling of
systems such as atmosphere or protein molecules involves
numerous system parameters and variables. Simulating such
high dimensional systems for studying their long term dy-
namics is a tedious task and is also restricted on the compu-
tational front. However, understanding the dynamics of the
above mentioned systems is crucial for the corresponding
fields of research.

Several methods of time series analysis, such as wavelets
or recurrence plots �1�, have been applied to analyze short
data sets. However, there are still many open problems and
questions, e.g., how short is too short for a given time series
analysis method? In this paper we approach the problem dif-
ferently. We propose an algorithm which reconstructs the dy-
namics of an unknown system observed at many different
instances but for a short period of time only. The key idea,
which allows us to tackle the problem, is that even short
segments of a time series contain some �local� information
about the flow. We use this information, i.e., the short trajec-
tories themselves, as building blocks to reconstruct rather
long trajectories, which we call dynamically reconstructed
trajectories �DRTs�. The DRTs closely resemble the dynam-
ics of the underlying system and can then be treated like any
other long trajectory �LT�, so that any standard data analysis
methods can be applied to investigate them.

The algorithm that we propose to generate DRTs is based
on the concept of recurrences �2�, which is in turn linked to
the well-known ergodic theory. The phase space trajectories
of measure preserving dynamical systems come back in
close proximity to any former phase space point after a suf-
ficiently long time, due to their ergodic nature. It is this “re-
currence” property of dynamical systems that we utilise in
our algorithm. The concept of recurrences has already been
used to understand different aspects of the dynamics of a
wide range of model and real world systems. A related
method called recurrence plots �RPs� �3� has been to shown
to be useful for the detection of transitions in the dynamics
of complex systems �4–7�, synchronization analysis and de-
tection of nonlinear correlations �8�, estimation of system
invariants �9�, and even generation of surrogates �10,11�.
Furthermore, RPs have found applications in numerous fields
of research such as life sciences �12�, engineering �13,14�,
earth sciences �15–17�, and astrophysics �18–20�. A method
related to our approach has been proposed to deal with the
problems related to transient chaos �21�.

The organization of the paper is as follows. In Sec. II we
propose an algorithm that generates DRTs. We compare the
generated DRTs to LTs in terms of linear and nonlinear mea-
sures, which are described in Sec. III. We then apply the
proposed algorithm to paradigmatic dynamical systems in
Sec. IV. In Secs. V and VI we study the robustness of our
approach with respect to the choice of the parameters of the
algorithm and the number and length of the given short tra-
jectories. In Sec. VII we show how to reconstruct a DRT
from trajectories consisting of only two points and in Sec.
VIII we discuss the application of the algorithm to an en-
semble of scalar time series. We study the effect of noise on
the algorithm in Sec. IX. Finally we apply the algorithm to
real world data sets from electrochemical oscillators in Sec.
X before concluding in Sec. XI.

II. ALGORITHM

Suppose that we have obtained a set of K short trajectories
each of length N, i.e., x�1
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from a series of measurements and simulations. The vector
x�i

j �Rd denotes the phase space vector at time i of the tra-
jectory j in a d-dimensional phase space. Assuming that the
system under investigation is ergodic, the ensemble of short
trajectories started at many different random times or that
have been successively measured at different stages of a
single experiment will contain all the important �local� infor-
mation about the dynamics. A dynamically reconstructed tra-
jectory is then generated by the following algorithm �see Fig.
1�.

�1� First, the short trajectories are appended to generate
one long concatenated trajectory x�1 , . . . ,x�L where L=NK.

�2� We compute the set of neighbors of each phase space
vector x�i of the concatenated trajectory with respect to a
threshold �, i.e., we determine the set Ni= �x� j � �x�i−x� j���� for
i=1, . . . ,L, where �·� is a norm, e.g., the Euclidean or the
Maximum norm.

�3� A point x�m is then randomly chosen from the concat-
enated trajectory, where m�L. This point is the first one of
the DRT.

�4� Next, we distinguish between the following two situ-
ations. �i� If x�m is not at the end of a short segment, i.e., if m
mod N�0, we jump to the future �22� of one of the neigh-
bors of x�m with probability p. That means, we generate a
random number r between 0 and 1; if r� p, we choose ran-
domly between one of the neighbors �23� of x�m and take its
future as the next point of our DRT. Otherwise, i.e., if r� p,
we choose x�m+1 as the next point of the DRT. �ii� If x�m is at
the end of a short segment, i.e., if m mod N=0, we jump to
the future of one of its neighbors, since x�m has not a “proper”
future.

�5� The above steps are repeated until a DRT of length LD
is generated, where LD is the desired length for the DRT and
fulfills LD�L.

During the DRT generation, it is, in principle, possible
that we arrive at a point x�i, which is at the end of a short
segment but has no neighbors with respect to �, except for
itself. In this case, we run the algorithm again but starting at
a different initial point x�m. If the number of trials T to gen-
erate a DRT exceeds a certain threshold, e.g., T�1000, the
process is aborted assuming that it is not possible to find a

DRT for the given ensemble of short trajectories and chosen
set of parameters � and p of the algorithm. This, however,
does not mean that the algorithm fails. It is just an indication
that the parameters � and p have not been chosen appropri-
ately.

In the next sections, we show that the DRTs reproduce
very well the dynamics of the underlying system. For this
purpose, we compare an ensemble of original LTs to an en-
semble of DRTs with respect to linear and nonlinear mea-
sures that characterize the dynamics.

III. ASSESSMENT OF THE QUALITY OF THE DRTs

To demonstrate that DRTs can reproduce the dynamics of
the underlying system, we compare the generated DRTs to
the original long trajectories �LTs� with respect to the follow-
ing measures: �i� the correlation time �c of the autocorrela-
tion function C��� �24�, �ii� the first minimum �m of the mu-
tual information function M��� �24�, and �iii� the mean

diagonal line length D̄ of the recurrence plot of the trajectory,
which is an estimate for the Rényi Entropy of second order
�K2� �Appendix�.

The correlation time �c is a linear measure for the time
during which points of the time series are correlated. The
first minimum �m of the mutual information is a nonlinear
measure for the time during which points of the time series
contain information about each other. The mean diagonal

line length D̄ is estimated from the recurrence plot and it
characterizes the predictability of a given system. There are

two main reasons to choose D̄ for assessing the quality of the
generated DRTs: �i� it is closely related to K2 �1� which is a
dynamical invariant measure �not a topological one� of a
given system and �ii� is computationally faster to determine

than K2. In Sec. IV we provide the estimates of both D̄ and
of K2 to demonstrate the potential our algorithm. In the later
sections, where we investigate the robustness of our algo-
rithm with respect to different parameters and the effects of

noise, we estimate only D̄ because of computational effi-
ciency.

IV. CASE STUDIES

We test the validity of our algorithm by applying it to
three paradigmatic chaotic systems: the Bernoulli shift map,
the Hénon map, and the Rössler oscillator. For these three
cases, we numerically simulate the dynamical equations of
the respective systems to generate K short trajectories, each
of length N. Then we construct DRTs using the proposed
algorithm. We first exemplify the results for a specific set of
parameters � and p. We show that in all three cases the pro-
posed algorithm successfully generates DRTs that mimic the
properties of a LT of the respective system. In Sec. V we will
study how the results depend on the specific choice of the
parameters � and p. Also we will investigate the robustness
of the algorithm with respect to the length N and number K
of short trajectories.

A. Bernoulli map

First, we consider the Bernoulli map
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FIG. 1. Algorithm to construct DRTs from short trajectories.
The short trajectories which are concatenated are marked with dif-
ferent symbols. The data points x̃1 , x̃2 , . . . , x̃LD

denote the generated
DRT. For a detailed explanation of the procedure, see Sec. II.
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xi+1 = 2xi mod 1. �1�

Starting at 100 different initial conditions, Eq. �1� is iterated
to generate short trajectories of length 40, i.e., N=40 and
K=100. The generated short trajectories are appended to
generate a concatenated trajectory of length L=4000. Figure
2�a1� shows the return map of the concatenated trajectory,
where the “jumps” or discontinuities between the short seg-
ments are clearly seen. It is clear that the last point of a short
segment is independent of the first point of the next short
segment. Therefore, at these points, xi+1�2xi mod 1. Then,
the set of neighbors Ni of each data point is estimated for a
threshold �=0.001. Setting p=0.03 and following the steps
of the algorithm, we generate a DRT of length LD=4000. The
phase portrait of the generated DRT is shown in Fig. 2�a2�.
Note that it perfectly reproduces the phase portrait of a LT
�Fig. 2�a3��.

Moreover, we compute the autocorrelation function and
the mutual information for the generated DRT and for a LT
�Figs. 3�a1� and �a2�; DRT �solid line�, LT �dashed line��. It
is clearly seen that up to statistical fluctuations, the DRT
reproduces both, the autocorrelation function and the mutual
information, very well. The autocorrelation function of both
DRT and LT decays to the critical value of 1 /e at �c=2.
Analogously, the mutual information of both DRT and LT
has its first minimum at �m=4. The mean diagonal line

length D̄ estimated from the RP of the DRT is 2.02 and that
of the LT is 2.00. Both values are very close to the expected
analytical value of 2.0. Moreover, the estimated value of K2
from the DRT is 0.69�0.00, while the same estimated from
the LT is 0.69�0.00. Both of them are in agreement with the
theoretical value of ln�2�.

B. Hénon map

Next, we analyze the Hénon map �25�

xi+1 = 1 − axi
2 + byi,

yi+1 = xi �2�

in the chaotic regime �a=1.4 and b=0.3�. Starting at differ-
ent initial conditions, Eqs. �2� are iterated to generate 100
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FIG. 2. Phase portraits before �a1, b1, and c1� and after �a2, b2, and c2� applying the reconstruction algorithm for �a� the Bernoulli map,
�b� the Hénon map, and �c� the Rössler oscillator. Phase portraits of the three systems obtained form their respective LTs are given in a3, b3,
and c3 for comparison. Note that in a1, b1, and c1 the different short trajectories of the ensemble are plotted with different point types.
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FIG. 3. Autocorrelation function �a1, b1, and c1� and mutual
information �a2, b2, and c2� of a DRT �solid line� and a LT �dashed
line� plotted in dependence of the lag �. �a� Bernoulli map, �b�
Hénon map, and �c� Rössler oscillator.
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short trajectories of length 60 each, i.e., N=60 and K=100.
The generated short trajectories are appended to generate a
concatenated trajectory. Figure 2�b1� shows the phase por-
trait of the concatenated trajectory, where the discontinuities
between the short segments are clearly seen. Following the
procedure described in Sec. II, a two-dimensional DRT of
length LD=6,000 is generated with parameters �=0.01 and
p=0.03.

Again the phase portrait of the DRT reproduces very well
that of the original Hénon map �Figs. 2�b2� and 2�b3��. The
autocorrelation function and mutual information estimated
from the x component of the reconstructed trajectory also
reproduce well the corresponding functions of the original
system �Figs. 3�b1� and 3�b2��. The correlation time for both
DRT and LT is �c=1 and the mutual information reaches its
minimal value at �m=10 for both DRT and LT. The mean

diagonal line length D̄ of the recurrence plot of the DRT and
that of the LT is 2.47 and 2.44, respectively. Both of them are
well in agreement with the expected value 2.474 �26�. The
estimated K2 of the DRT is 0.33�0.01 and differs slightly
from that computed from a LT, 0.32�0.02. Again both val-
ues are close to the expected value of 0.32 �27�.

C. Rössler oscillator

Finally, we apply the reconstruction algorithm to an en-
semble of short trajectories from the Rössler oscillator in a
chaotic regime �28�

ẋ = − y − z ,

ẏ = x + ay ,

ż = b + �x − c�z , �3�

with the parameters a=b=0.2 and c=5.7. We generate short
trajectories starting at different initial conditions using the
fourth order Runge-Kutta algorithm. The integration step is
h=0.01 and we sample every 20th point, i.e., the sampling
time is 0.2. We generate 500 trajectories, each of length N
=50 �corresponding to about 1.5 oscillations only�. In this
case, we fix the parameters as follows: �=0.1 and p=0.03.
We then generate a three-dimensional DRT of length LD
=5000.

The generated DRT is found to have a smooth attractor
that reproduces the phase portrait of the chaotic Rössler os-
cillator rather well �Figs. 2�c2� and 2�c3��. The autocorrela-
tion function of both DRT and LT reaches the critical value
of 1 /e at a lag of �c=7 �Fig. 3�c1�� and the mutual informa-
tion has its minimum at �m=8 for both DRT and LT �Fig.
3�c2��. In fact, the autocorrelation function and the mutual
information of the DRT and LT coincide almost perfectly.

Moreover, the mean diagonal line D̄ for the DRT is 10.21
and that for the LT is 10.25.

Due to the nonhyperbolicity of the Rössler attractor, there
exist two time scales and hence two different K2 values �9�.
While the first K2 value characterises the short term dynam-
ics and amplitude fluctuations of the system �K2

S�, the second
scaling region corresponds to the long term dynamics and

phase diffusion of the attractor �K2
L�. However, both K2 esti-

mates are important as they measure predictability of a single
attractor on two different time scales.

The K2 estimates of the DRT generated are as follows: �i�
K2

S=0.23�0.00 and �ii� K2
L=0.10�0.02. The corresponding

values estimated from a LT are 0.23�0.04 and 0.07�0.04.
The K2

S estimates of both the DRT and LT are rather close to
the literature value of 0.23 �9�. However, the K2

L of the DRTS
deviates from the expected value of 0.07 �9� due to the fre-
quent jumps made by the algorithm during the reconstruction
process. However, results suggest that a better value of K2

L

can be obtained if the jumps induced by the algorithm are
limited by either increasing N or decreasing p.

We have shown the potential of our method by applying it
to three different prototypical chaotic systems. In the next
section we systematically analyse the robustness of our algo-
rithm with respect to the choice of the two parameters of the
algorithm. Furthermore, we study the performance of the al-
gorithm by varying the length and number of short trajecto-
ries.

V. ROBUSTNESS OF THE ALGORITHM

The quality of a DRT using the proposed method depends
on the length N and the number K of short trajectories, as
well as on the choice of the threshold � and the value of p. In
order to quantify how well the generated DRTs reproduce the
dynamics of the underlying system depending on these pa-
rameters, we apply the following procedure.

We generate K short trajectories of N points each. We
append them and from this concatenated trajectory, we gen-
erate an ensemble of 100 different DRTs of length LD, by
choosing different starting points randomly.

We generate an ensemble of 100 LTs from the original
system, each of length LD.

To quantify how close both ensembles are, we compute
the following errors with respect to the three different statis-
tics introduced in Sec. III. We compare the autocorrelation
function and the mutual information of the two different en-
sembles for 1����max. The error for the autocorrelation
function and the mutual information, respectively, is esti-
mated as follows:

EC/M =
1

�max
	
�=1

�=�max ����� − ������
0.5����� + ������

, �4�

where ���� is the mean value of the autocorrelation function
at lag � of the ensemble of DRTs, and ����� is the mean
value of the autocorrelation function at lag � of the ensemble
of LTs. Similarly, ���� and ����� are the standard deviations
of the autocorrelation function at lag � estimated from 100
realisations of DRTs and LTs, respectively. The error for the
mutual information function �EM� is computed analogously.

In the case of the D̄, we estimate the error simply as

ED̄ =
�� − ���

0.5�� + ���
, �5�

where � and �� represent the average D̄ over 100 DRTs and
100 LTs, respectively, and � and �� are the estimated stan-
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dard deviations. That means, ED̄
1 if the difference be-
tween the expected values is of the same size as the standard
deviation of both ensembles �LTs and DRTs�; in contrast,
ED̄	1 indicates a very small difference between both ex-
pected values. The same holds for EC/M.

Now we present the results of the sensitivity studies car-
ried out with respect to each of the parameters � and p, as
well as the given number K of the short trajectories and their
length N. We exemplify the results obtained for the Rössler
system, since the results for the Bernoulli and the Hénon
map are qualitatively the same.

A. Sensitivity with respect to p and �

To investigate the influence of the values of p and � in the
generation of DRTs, we first fix N=50 and K=1000, and
vary p and � systematically. For each set of values of p and
�, we generate 100 DRTs of length LD=5000 and compare
them to 100 LTs from the underlying system.

In Fig. 4 we show the errors in the autocorrelation func-
tion �a�, mutual information �b�, and mean diagonal line �c�
for the Rössler system in dependence of the probability p to
jump and on the threshold �. For all three measures, the error
increases with p, as expected. This is because if p increases,
we jump more frequently to the future of the neighbors in-
stead of staying on the same short trajectory. Due to these
frequent jumps, the errors accumulate and we see a deviation
of the ensemble of DRTs from the ensemble of LTs with
respect to the considered measures. However, it is remark-
able that even for p=1.0, i.e., if we allow the trajectory to
jump at every point, the errors are rather small. For example,
the maximal error in the mutual information is 1% �Fig.
4�b��. Furthermore, if p�0.1 the errors also increase with
the threshold �. This is due to the fact that a large threshold
will lead to larger jumps, and therefore the errors will be-
come larger.

A blow-up of the errors for p�0.1 reveals that there is a
minimum in the error for intermediate values of �, namely, at
about �=0.35 �most clearly seen in Fig. 5�b��. This is due to

the fact that for very small values of p, we practically jump
only at the end of a short segment. Hence, if the threshold
� is too small, then the number of neighbors of the points at
the end of the short segments will be very low. This de-
creases the number of possible points to which we can jump,
leading to a repetition of the segments used in the recon-
structed trajectory. Hence, the algorithm generates a DRT
which is more predictable than the LTs. For this reason, if p
is small, it is better to use a larger threshold � than the
threshold that we would choose for larger values of p.

Summarizing, Figs. 4 and 5 clearly show that good DRTs
can be generated for appropriate values of p and �. The mag-
nitude of the errors is the smallest for the autocorrelation
function and the highest for the mean diagonal line length.

Nevertheless, even for D̄, the maximal error is less than one

standard deviation of the distribution D̄ of LTs. Hence, we
can conclude that, either if we stay on a short trajectory as
long as possible and choose an intermediate value for the
threshold �, or if we stay just a few steps on a short trajectory
and use a very small value of �, we can reproduce the un-
derlying dynamics rather closely.

B. Sensitivity with respect to N and K

It is also important to investigate the influence of the
length N and the number K of short trajectories on the qual-
ity of the generated DRTs. In practice, these values are fixed
by the given experimental conditions. Therefore, it is crucial
to study the dependence of the results on these values to
explore the limits of the applicability of the proposed algo-
rithm. We fix the values of the parameters to �=0.3 and p
=0.05 and vary N and K systematically.

The error estimates for the autocorrelation function, the
mutual information and the mean diagonal line calculated for
the Rössler system are shown in Figs. 6�a�–6�c�, respec-
tively. For small values of N and K, the errors increase
abruptly for all of the three measures. However, when N and
K are sufficiently large, the difference between the generated
DRTs and the LTs is rather small. Again, the error in the
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autocorrelation is one and two orders of magnitude smaller
than the error in the mutual information and mean diagonal
line, respectively. But remarkably, note that even in the worst
case, i.e., for low values of N and K, the errors are still very
small. Therefore, even for a rather low number of very short
trajectories, it is possible to reconstruct the underlying dy-
namics to a rather good extent.

VI. AVERAGE NUMBER OF CONSECUTIVE STEPS ON
ONE SHORT TRAJECTORY

In this section we calculate analytically the average num-
ber of consecutive time steps �n� spent on a single short
trajectory before jumping to another short trajectory. This
average number of steps is determined by two parameters.
The length N of the short trajectories, since once we have
reached the end of a short trajectory, we necessarily have to
jump to the future of one of the neighbors of the last point of
the short trajectory and the probability p to jump to the fu-
ture of a neighbor.

It can be shown, that the average number of consecutive
steps on a certain short trajectory is given by

�n� =
1

N − 1 	
k=1

N−1�1 − p�kk + 	
i=1

k−1

ip�1 − p�i�
=

1 − p

N − 1
 �1 − p�N

p2 +
N

p
−

1

p2� . �6�

From Eq. �6� we can distinguish the following cases.
�1� If p=0 and N→
, then �n�→
. This corresponds to

not allowing the trajectory to jump before it reaches the end
of a short trajectory. Then, the DRT algorithm only jumps at
the end of a segment, but since N→
, obviously also �n�
→
.

�2� If p=1 and N→
, then �n�=0. This corresponds to
the case that the DRT algorithm jumps to the future of one of
its neighbors at every point. Therefore, the average number
of consecutive steps on a short trajectory is zero.

�3� If 0� p�1 and N→
, then �n�= �1− p� / p. In this
case we do not have the finite size effect due to the short
trajectories, and hence, have a geometric distribution.

The average number of consecutive steps �n� analytically
estimated by Eq. �6� is compared to that obtained from the
numerical simulations in Fig. 7. The analytical and the nu-
merical results coincide almost perfectly.

Since we know the dependence of the number �n� on N
and p, we can argue how the error of the generated DRTs
with respect to LTs depends on �n�. In order to do this, we
compute the error in the mutual information in dependence
of N and p for K=5000 short trajectories of the Rössler
system and a threshold �=0.03 �Fig. 8�. We observe that for
p�0.05, irrespective of the value that N takes, the error in
the mutual information monotonously increases with p �Fig.
8�a��. This is in accordance with Fig. 7, where we see that for
p�0.05, the value of consecutive number of steps on one
trajectory is almost independent of N. High values of p imply
frequent jumps and therefore, a small average number of
steps �n� on a short trajectory and also an accumulation of
errors.

On the other hand, for small values of p �0� p�0.05�,
the average number of steps �n� is also strongly affected by
N �Fig. 7�. If p is small, then too large values of N would
lead to a situation where we repeat short segments, because
we do not have enough possibilities to jump to neighbors
�only at the end of the segments�. Therefore, for small values
of p, the error between DRTs and LTs will be minimal at
intermediate values of N. This is observed in Fig. 8�a�, where
we find a minimum in the error with respect to the mutual
information for N�50.
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VII. RECONSTRUCTION FROM TWO-POINT
TRAJECTORIES

In the preceding sections, we have compared the gener-
ated DRTs to original LTs with respect to linear and nonlin-
ear measures. We assessed the quality of the DRTs in depen-
dence of the parameters � and p of the reconstruction
algorithm and the number K of available short trajectories
and their length N. We have seen that the largest errors are
made for large values of p. On the other hand, note that N
and p are related, e.g., p=1 is equivalent to have short tra-
jectories consisting of only two consecutive points, i.e., N
=2. Note also that the largest errors committed in these cases
are still very small, namely, less than one standard deviation
of the corresponding distribution �Figs. 4 and 8�. Therefore,
we have shown that even in this extreme case, where we
have very little local information about the flow, one can still
recover most of the information of the underlying dynamics.

In order to illustrate this extreme case, we generate a DRT
of the Rössler oscillator from an ensemble of short trajecto-
ries �K=30 000� consisting of just two phase points �N=2�,
for the parameters p=1.0 and �=0.3. The phase portrait of
the concatenated trajectory and the phase portrait of the gen-
erated DRT are shown in Figs. 9�a� and 9�b�, respectively.

We observe that the state space projection of the DRT
closely reproduces the phase space projection of the original
Rössler system �Fig. 2�c2��. Furthermore, the autocorrelation
function of the DRT is almost identical to that of the original
LT �Fig. 9�c��. Hence, we can state that the reconstruction
algorithm generates DRTs which reproduce the dynamics of
the underlying systems rather well, even from short trajecto-
ries consisting of just two consecutive phase space points.

It is important to mention here that even if we have two
consecutive points in the phase space, the number of short

trajectories must be large enough, to cover the entire attrac-
tor, and the distance between the consecutive phase space
points must be small enough to obtain the relevant informa-
tion about the local flow. If any of these conditions is not
fulfilled, then a more conservative estimation of the required
length of the univariate segments is given by the longest
characteristic time scale of the underlying system.

Note that the reconstruction from an ensemble of scalar
time series consisting of two points would not be possible.
This is because in this case, we have to first embed each
short univariate time series �see Sec. VIII�. For this we
would need an ensemble of time series of length N�2+ �m
−1�� �where m is the embedding dimension and � the em-
bedding delay� in order to get two-point trajectories in phase
space.

VIII. RECONSTRUCTION FROM UNIVARIATE TIME
SERIES

Until now we have assumed that the starting point for our
reconstruction was an ensemble of short trajectories in phase
space, from which we reconstruct a long one by applying the
DRTs algorithm. In many realistic situations we often can
measure just one variable of the system under study. In such
cases, if we can reconstruct the short phase space trajectories
from each one of the univariate segments, then the process of
generating a DRT is straightforward. Therefore, the question
now is how to find the appropriate embedding parameters
�24� from the ensemble of short univariate time series to first
generate short phase space trajectories.

In order to estimate the embedding parameters, we use the
following procedure: first, we concatenate the set of K short
time series, each of length N and then, apply the usual meth-
ods for the estimation of the time delay and embedding di-
mension to the concatenated time series. To estimate the time
delay �, we apply two different techniques �i� first zero cross-
ing of the autocorrelation function and �ii� the first minimum
of the mutual information. It is important to stress here that
both autocorrelation function and the mutual information of
the concatenated time series are of course different from
those of the underlying system. But the “jumps” in the en-
velope of both functions start at about a lag ��N. Hence, if
the first zero crossing of the autocorrelation function or the
first minima of the mutual information function occur before
N, then one can determine the embedding lag rather pre-
cisely. To estimate the embedding dimension m, we compute
2D2, where D2 denotes the correlation dimension �29�. Since
the correlation integral is a purely geometrical measure, it is
not affected by the “jumps” in the trajectory as long as all the
considered points are in the attractor �30,31�.

We first exemplify the validity of this procedure, by con-
sidering the Rössler oscillator and estimating the embedding
parameters for different ensembles generated by fixing K and
varying N systematically. The obtained embedding delay �
and dimension m are compared to the ones estimated from a
long univariate time series of length NK. For this, we con-
sider an ensemble of K=500 short univariate time series by
considering the x component of the Rössler system �Eq. �3��.
We vary N between 10 and 500 and estimate the embedding
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FIG. 9. Application of the reconstruction algorithm to short tra-
jectories consisting of only two consecutive phase space points
from the Rössler system. �a� Phase space projection of the long
concatenated trajectory, which is the start for the reconstruction
algorithm. Here again, the different short trajectories of the en-
semble are plotted with different point types. �b� Phase space pro-
jection of the DRT. �c� The autocorrelation function of the DRT
�solid line� and that of an original LT �dashed line�. �d� The mutual
information function of the DRT �solid line� and that of an original
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parameters � and m for each value of N for both the concat-
enated time series �squares�, and the original one �plus
signs�. As it can be clearly seen from Figs. 10�a� and 10�b�,
both the methods employed for the estimation of � give a
good estimate of � for N�30. Nevertheless, the autocorrela-
tion function �Fig. 10�a�� performs better in this case, since it
gives the correct estimate of � �the same as the one given by
the long original time series� already for N=10.

Figure 10�c� shows the estimated D2 in dependence of N
for both the concatenated time series �squares� and the origi-
nal time series �plus-signs�. These estimates of D2 are ob-
tained using Grassberger-Proccacia �GP� algorithm. The es-
timated D2 for all the ensembles is 1.4�D2�2 �32–35�.
Hence, an appropriate choice for the embedding dimension is
m=4. If we now embed each of the univariate short trajec-
tories with the estimated embedding parameters m=4 and �
=7, and then apply the DRT algorithm, we see that we can
reproduce the dynamics of the underlying system rather well.
Figure 11 shows a DRT generated form an ensemble of short
univariate time series �N=50, K=500� of the Rössler oscil-
lator for the parameters p=0.02 and �=0.3, after following
the above embedding procedure. Since the DRT is con-
structed from just one of the components �x component� of
the Rössler, the phase space projection is distorted. But the
reconstructed phase space is topologically equivalent to that
of the original attractor.

IX. EFFECT OF OBSERVATIONAL NOISE

It is crucial to analyse the robustness of the algorithm
with respect to noisy short trajectories in order to study the
applicability of the algorithm to real world data. Here, we
consider the impact of observational noise on the DRTs.
First, we add Gaussian white noise with standard deviation
Snoise=�Sj to each component j of the short trajectories,
where Sj is the standard deviation of the component j of the
concatenated time series and � is the noise level. Then we
address the following question: does a DRT generated from
noisy short trajectories �contaminated with a noise level of
�� resemble a LT, which is also contaminated with the same
level of noise?

We again consider a collection of 5000 short trajectories
from the Rössler system with 50 data points each. Our stud-

ies from the above sections show that rather good results are
obtained for p=0.03 and �=0.3. Hence, we choose these
parameters and generate DRTs from noise corrupted short
trajectories and compare them to LTs corrupted by the same
level of noise. Figure 12 shows the errors with respect to the
autocorrelation function, mutual information and mean diag-
onal line in dependence of the level of noise. The error EC in
the autocorrelation function �Eq. �4�� does not show any par-
ticular response to the increasing level of noise; the error
remains very small even for the highest levels of noise con-
sidered. On the other hand, the errors in the mutual informa-
tion EM �Eq. �4�� and in the mean diagonal line ED̄ �Eq. �5��
show a slightly increasing trend with higher levels of noise,
but even then, the magnitude of the errors remains very
small.

For levels of noise ��9.0% and the chosen parameters
N, K, p, and �, the algorithm cannot generate a DRT, because

5

10

10 100

τ

N

(a)

5

10

15

10 100

τ

N

(a) (b)

0

0.5

1

1.5

2

10 100

D
2

N

(a) (b) (c)

FIG. 10. Estimation of embedding parameters from an ensemble of short univariate time series in the case of the Rössler oscillator. �a�
Estimated embedding delay ��� by means of the autocorrelation function for the concatenated �squares� and for the original time series of
length NK �plus signs� as a function of N. �b� The same as in �a�, but by means of the mutual information. �c� Estimated correlation
dimension �D2� in dependence of N for the concatenated short trajectories �squares� and for the original time series of length NK �plus signs�.

-10

-5

0

5

10

-10 -5 0 5 10

y i

xi

(a)

-10

-5

0

5

10

-10 -5 0 5 10

y i

xi

(a) (b)

-1

-0.5

0

0.5

1

0 20 40 60 80 100

A
C

F

Lag

(a) (b)

(c)

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

M
I

Lag

(a) (b)

(c) (d)

FIG. 11. DRT constructed from an ensemble of short univariate
time series in the case of the Rössler oscillator. �a� Phase space
projection of the embedded and concatenated univariate short tra-
jectories. N=50, K=500. The different short trajectories of the en-
semble are plotted with different point types. �b� DRTs generated
with the parameters p=0.03 and �=0.3. �c� Autocorrelation function
for the DRT �solid line� and of an original LT �dashed line�. �d�
Mutual information function for the DRT �solid line� and for an
original LT �dashed line�. Notice that they are almost identical and
hence, it is difficult to see the dashed line.

KOMALAPRIYA et al. PHYSICAL REVIEW E 78, 066217 �2008�

066217-8



due to the noise, it does not find enough neighbors to which
the trajectory can jump during the reconstruction. But this
problem can be easily overcome, e. g., by increasing the
number K of short trajectories. In the case that K is fixed by
the experimental conditions, this problem can be solved by
increasing the value of the threshold �. To monitor the errors
made due to the increment of �, one can then consider Fig. 4
or 5.

X. APPLICATION TO ELECTROCHEMICAL DATA

The next challenge is to apply the algorithm to experi-
mental situations where otherwise it is not possible to obtain
long data sets that are necessary to understand the dynamics
of the underlying systems. For example, assimilating long
data sets from tracer particle trajectories and molecular dy-
namics experiments �36� is often not possible. Hence, our
algorithm might play a key role in understanding the dynam-
ics of a wide range of systems which have been so far not
easy to handle.

It is therefore important to demonstrate first the validity of
our algorithm with an experimental data. In this section we
apply it to a scalar time series from an electrochemical ex-
periment. The experimental setup consists of a nickel elec-
trode immersed in sulfuric acid. The current at the electrode,
measured at a constant applied potential, is directly propor-
tional to the rate of metal dissolution. The measured current
displays chaotic dynamics �37–39�. To justify the reconstruc-
tion algorithm with this experimental data, we first generate
an aritificial ensemble by randomly segmenting the measured
univariate data and then generate a DRT by applying the
reconstruction algorithm. We then compare the dynamics of
the generated DRT to that of the embedded original scalar
time series.

The original long time series consists of 33 026 data
points and was measured at a rate of 2 kHz. This time series
is cut at random points to generate an ensemble of nonover-
lapping short segments. By leaving a random number of data
points between two consecutive segments, we reproduce the
practical problem of information loss in the artificially gen-
erated ensemble of short segments �Fig. 13�a��. We generate

an ensemble with K=150 segments, each consisting of N
=170 data points �note that NK�33 026� �Fig. 13�b��. As the
next step, the embedding parameters are estimated from the
concatenated univariate time series as described in Sec. VIII
with the help of autocorrelation function and correlation di-
mension estimates. The embedding delay estimated from the
autocorrelation function is found to be 26 and the correlation
dimension estimate of the concatenated time series is D2
=1.68. Hence the estimated embedding dimension is 4. Each
univariate short trajectory is then embedded, and the DRTs
algorithm is applied to the ensemble of embedded short tra-
jectories. The reconstructed DRT for a threshold of
�=0.012 and p=0.01 is shown in Fig. 13�c�.

On the other hand, the phase space of the original long
scalar time series is reconstructed using standard embedding
methods. The embedding delay is estimated from the auto-
correlation function is also found to be 26. Next, we estimate
the embedding dimension using the false nearest-neighbor
method �24�. The embedding dimension is found to be 4.
Note that both embedding parameters are the same as those
obtained from the concatenated time series. The phase space
of the original time series is shown in Fig. 13�d�. It is clearly
seen that the generated DRT resembles the phase space dy-
namics of the original long trajectory. Furthermore, the au-
tocorrelation function and the mutual information of the
original long time series is well reproduced by the generated
DRT �Fig. 14�.

XI. CONCLUSIONS

Short data sets render the application of many standard
time series analysis techniques impossible. Different tech-
niques, such as symbolic dynamics �40–42�, order pattern
recurrence plots �1� or wavelets �43,44�, are often applied for
the analysis of short data sets. However, depending on how
short the time series are, the methods mentioned above are
not applicable anymore. In this paper we have approached
the problem from a different angle. We have proposed a new
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algorithm which is capable of reconstructing a long trajec-
tory �dynamically reconstructed trajectories, DRTs� of a sys-
tem given an ensemble of short trajectories. This method
uses the concept of recurrence in phase space. We have dem-
onstrated that the DRTs very closely mimic the dynamics of
the underlying system and reproduce its linear and nonlinear
properties.

Moreover, we have studied the influence of the param-
eters � and p of the algorithm on the quality of the generated
DRTs compared to an ensemble of original long trajectories
�LTs�. Furthermore, we have analyzed the dependence of the
quality of the DRTs on the given number K and length N of
the short trajectories. We have also addressed the important
problem of reconstructing a long trajectory from univariate
short time series.

The analysis of observational noise effects suggests that
the algorithm is also quite efficient even if the short trajec-
tories are corrupted by noise. Moreover, we have applied the
algorithm to experimental data from electrochemical oscilla-
tors and shown that even in the case of real world data we
can reproduce the dynamics of the original long trajectory
accurately. This shows the potential of DRTs for the analysis
of not only simulation data but also for experimental time
series. A next step in this direction will be to apply the algo-
rithm to further challenging sets of experimental data.
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APPENDIX: MEAN DIAGONAL LINE LENGTH
FROM RP

Suppose that x�i, with i=1, . . . ,L, is a trajectory in a
d-dimensional phase space. Then, the recurrence matrix is
defined as

Ri,j = �� − �x�i − x� j��, i, j = 1, . . . ,L , �A1�

where  is a predefined threshold, ��·� is the Heaviside step
function and �·� is a norm, e.g., the Euclidean or the maxi-
mum norm. The graphical representation of the recurrence
matrix, obtained by encoding the ones by black and zeros by
white dots, is called recurrence plot �RP�. Figure 15 shows
the RPs of some prototypical systems. A periodic trajectory
in phase space �e.g., a circle in the phase space� can be
represented by a two-dimensional system of equations xi
=sin�2�i /100�, yi=cos�2�i /100�. The RP of such a system
is characterized by noninterrupted continuous diagonal lines,
whereas the RP of white noise consists of mainly single
points. The RP of the Röessler system in the chaotic regime
consists of interrupted diagonal lines.

As Fig. 15 illustrates, the length and the distribution of the
diagonal lines in an RP is related to main properties of the
underlying systems. Longer comoving segments of the phase
space are represented by longer diagonal lines of an RP and
shorter comoving segments correspond to short diagonal
lines. In fact, it has been reported in Ref. �9� that the cumu-
lative distribution of the diagonal lines is related to the sec-
ond order Rényi entropy �K2� �24�. K2 quantifies how rapidly
the number of possible future evolutions increases with time.
For periodic systems K2=0, for stochastic systems K2→

and for chaotic systems K2 takes a finite, positive value. K2
can be estimated from the cumulative distribution of diago-
nal lines in an RP by
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P
c�l� 
 D2 exp�− K2���tl� , �A2�

where P
c�l� is the cumulative distribution of diagonal lines in

the RP, i.e., the probability of finding a diagonal line of at
least length l. D2 is the correlation dimension of the system
under consideration and �t is the sampling rate of the time
series. If we plot Pc

�l� in a logarithmic scale versus l, we
obtain a straight line with slope −K2��t� for large l. Hence,

the mean diagonal line D̄

D̄ =
	l=2

N lP�l�
	l=1

N lP�l�
�A3�

of an RP is an estimate for K2 �1�. P�l� in Eq. �A3� denotes
the probability to find a diagonal line of length l in an RP.

Moreover, D̄ is numerically straightforward and fast to com-
pute.
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