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Rapidly switched random links enhance spatiotemporal regularity
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We investigate the spatiotemporal properties of a lattice of chaotic maps whose coupling connections are
rewired to random sites with probability p. Keeping p constant, we change the random links at different
frequencies in order to discern the effect (if any) of the time dependence of the links. We observe two different
regimes in this network: (i) when the network is rewired slowly, namely, when the random connections are
quite static, the dynamics of the network is spatiotemporally chaotic and (ii) when these random links are
switched around fast, namely, the network is rewired frequently, one obtains a spatiotemporal fixed point over
a large range of coupling strengths. We provide evidence of a sharp transition from a globally attracting
spatiotemporal fixed point to spatiotemporal chaos as the rewiring frequency is decreased. Thus, in addition to
geometrical properties such as the fraction of random links in the network, dynamical information on the time
dependence of these links is crucial in determining the spatiotemporal properties of complex dynamical

networks.
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I. INTRODUCTION

Coupled map lattices (CMLs) were introduced as a simple
model capturing essential features of nonlinear dynamics of
extended systems [1]. A very well-studied coupling form in
CMLs is nearest-neighbor coupling. While this regular net-
work is the chosen topology of innumerable studies, there
are strong reasons to revisit this fundamental issue in the
light of the fact that some degree of randomness in spatial
coupling can be closer to physical reality than strict nearest-
neighbor scenarios [2—4]. In fact many systems of biological,
technological, and physical significance are better described
by randomizing some fraction of the regular links. So here
we will study the spatiotemporal dynamics of CMLs with
some of its coupling connections rewired randomly [5,6].

Now these random links in the network could be static or
dynamic. Static links imply that the connectivity is invariant
throughout the evolution of the system, i.e., the coupling
connections are constant in time. Dynamic links on the other
hand imply that the random links are switched around. So at
any instant of time, both kinds of rewiring have the same
fraction of random links. However, for static connections the
random links are unchanged in time, while for dynamic re-
wiring the random links are time varying. Dynamic rewiring
is relevant, for instance, in a network of neurons or a socio-
economic network, where the connectivity matrix can
change over time.

Here we study effects of rewiring the network with dif-
ferent frequencies, interpolating between fast dynamic rewir-
ing and static rewiring limits. So we investigate spatiotem-
poral effects of random rewiring, where the rewirings are
updated at the time scale of the nodal dynamics, to rewirings
that are much slower than the nodal dynamics and approach
the static limit. We will especially demonstrate how quick
changes in the connections enhances spatiotemporal regular-
ity, as compared with slow network changes.
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The important point is that at any particular instant of
time the connectivity properties of the network with
quenched randomness looks identical to that of the dynami-
cally rewired network. However the crucial feature is the
change in the connections. Namely, while the average num-
ber and type of links remain the same, the dynamically re-
wired network evolves under rapidly changing local connec-
tivity environments. So simply knowing the rewiring fraction
p is not enough to capture the spatiotemporal dynamics of
large interactive systems. It is very crucial in some situations
to know whether the randomness in the coupling connections
of the network is quenched or dynamic. The purpose of this
study is to underscore this important issue that has not been
discussed adequately in the literature [7].

In Sec. I we introduce our model and describe all the
parameters. In Sec. III we present our numerical results dem-
onstrating and characterizing the enhancement of stability
due to fast rewiring. Section IV introduces an approximate
analytical method to understand the basic mechanisms be-
hind the observed phenomena. Finally, we draw our conclu-
sions in Sec. V.

II. MODEL

We consider here a one-dimensional ring of coupled
strongly chaotic logistic maps. The sites are denoted by i
=1,...,N, where N is the linear size of the lattice. On each
site is defined a continuous state variable denoted by x,(i),
which corresponds to the physical variable of interest. The
evolution of this lattice, under standard nearest-neighbor in-
teractions, in discrete time n is given by

Yo (D)= (1= €T, ()] + §{xn<i s +xG-D) (1)

€ is the strength of coupling. The local on-site map is chosen
to be the fully chaotic logistic map f(x)=4x(1—x). This map
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FIG. 1. Bifurcation diagram displaying the dynamics of a rep-
resentative site vs rewiring period r for €=0.85, p=0.65. Here N
=50.

has widespread relevance as a prototype of low-dimensional
chaos.

We study the above system with its coupling connections
rewired randomly in varying degrees. Namely, a fraction p of
randomly chosen sites in the lattice will be connected to 2
other random sites, instead of their nearest neighbors. That
is, a fraction p of nearest-neighbor links are replaced by
random links. The case of p=0 corresponds to the usual
nearest-neighbor interaction, i.e., a regular network, while
p=1, corresponds to a completely random coupling, i.e., a
random network.

In this work, we introduce a time scale for the random
rewiring. We rewire the network after » dynamical updates of
the nodal maps, namely the rewiring time period of the net-
work is 7. Thus a new connectivity matrix is formed, with the
same fraction p of random links, every r time steps. Alter-
nately, we can consider that the random links persist for r
time dynamical updates of the local maps.

We investigate the asymptotic dynamics of this network,
evolving from random initial conditions of x(i), when the
following parameters are varied: (i) fraction of random links
p, (ii) coupling strength €, and (iii) the time period for
switching the random links r which gives all the cases from
very fast rewiring for low r to very slow rewiring for high r.

III. RESULTS

First, we study the stability of the spatiotemporal fixed
point, namely, the state where all elements are steady at x*,
i.e.,, x,({)=x* for all i and n (after transience). Here x*
=3/4 is the fixed point solution of the local map, which is
strongly unstable for the isolated map.

Figure 1 displays the state of a representative site in the
lattice, as the rewiring time period r is varied. It is evident
that there exists a sharp transition, as the rewiring time pe-
riod r increases, from simple spatiotemporal order, a fixed
point, to spatiotemporal chaos.

We denote as r,. the largest rewiring time period that al-
lows the spatiotemporal fixed point to be stable. For the pa-
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FIG. 2. Bifurcation diagram displaying the dynamics of a rep-
resentative site vs coupling strength €, for the rewiring time periods
r=100 (top) and 1 (bottom). Here the rewiring probability p=0.65.

rameters chosen in Fig. 1, we find that r.=33. For slower
rewiring r>r,, the system becomes essentially chaotic. So
networks rewired at time scales comparable to the nodal dy-
namics yield spatiotemporal order, while slow changing net-
works and static networks are spatiotemporally chaotic.

Next we analyze the state of a representative site in the
lattice, as the coupling strength € is varied, for two different
values of r (fast and slow, respectively) (Fig. 2). It is evident
that the system is stabilized at a fixed point for a much larger
range of coupling strengths for faster network rewiring, com-
pared to slower ones.

Figure 3 displays the state of a representative site in the
lattice, as the fraction of random links p is varied, again for
two different values of r. Again it is clear that the system is
stabilized at a fixed point for a much larger range of p for
faster network rewiring.

Now we study the critical value of r above which there is
no spatiotemporal regularity. Recall that for all r<<r. the
system stabilizes to a spatiotemporal fixed point, while for
r>r,. this simple spatiotemporal order is lost. So 7. indicates
how slowly the connections can be rewired in order to still
achieve spatiotemporal regularity. We analyze r. as a func-
tion of both the fraction of random links p and the coupling
strength € (Fig. 4).
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FIG. 3. Bifurcation diagram displaying the dynamics of a rep-
resentative site vs fraction of random links p, for rewiring time
period (top) r=100 and (bottom) r=1. Here the coupling strength
€=0.85.

From Fig. 4 it is evident, especially, while there is no
spatiotemporal regularity beyond r=4 for €=0.72, we have
spatiotemporal order for rewiring as slow as r=500 when €
=0.92. So r. increases significantly with increasing coupling
strengths. Namely, for strongly coupled systems the network
need not be rewired that frequently, in order to obtain a spa-
tiotemporal steady state. So there is a sharp transition in the
€ space, from a situation where spatiotemporal order is ob-
tained only in networks dynamically rewired at the timescale
of the local dynamics, to a situation where spatiotemporal
order emerges even in (almost) static networks.

IV. ANALYSIS

We now analyze system (1) to account for the much en-
hanced stability of the homogeneous phase under fast chang-
ing random connections. The only possible solution for a
spatiotemporally synchronized state here is the one where all
x,(i)=x* and x*=f(x*) is the fixed point solution of the local
map. For the case of the logistic map x*=4x*(1-x*)=3/4.

To calculate the stability of the lattice with all sites at x*,
we construct an average probabilistic evolution rule for the
sites, which becomes a sort of mean-field version of the dy-
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FIG. 4. (Color online) Density plot of r, in the e-p plane, where
r. is the largest rewiring time period which still yields spatiotem-
poral fixed points. The blue (dark gray) end of the spectrum corre-
sponds to r.=1, namely, the case where very fast rewiring is re-
quired in order to obtain a spatiotemporal fixed point. The red (light
gray) end of the spectrum corresponds to r.=1000, namely, the case
where very slow rewiring is sufficient to obtain a spatiotemporal
fixed point. The intermediate scenarios (namely 1<r.<1000) cor-
respond to the colors (gray shades) in between, with increasingly
static networks approaching the red end (light gray) of the color bar
(grayscale). The white region covers the set of e-p values which do
not yield spatiotemporal order even at the fastest physically signifi-
cant rewiring rate, namely, for no value of r(r=1) does one obtain
a fixed point here. Observe that the transition from small r.. (blue/
dark gray) to very large r. (red/light gray) is sharp.

namics. In our formulation, the average influence of the ran-
dom connections on the evolution of the local maps is given
by pesr, and the influence of the nearest neighbors is given by
(1=peg). SO peg provides the “weight” for the random time-
varying coupling and (1 —p.g) provides the “weight” for the
regular static coupling. Clearly p is determined by the re-
wiring probability p and the rewiring time period r.

In terms of p the averaged evolution equation of a site i
then reads

Xy (1) = (1= L, (0] (1= peg) S+ 1) .= 1]

+ pars (60 + x, ()], @

where { and 7 are two random numbers between 1 and N.
Now in order to calculate the stability of the synchronized
spatiotemporal fixed point, we linearize Eq. (2). Replacing
x,(j)=x*+n,(j), and expanding to first order gives

Iyt = (1= OF () + (1 = pe)
XU+ 1)+ = D3+ P 1ha(©) + ().

3)

As a first approximation one can consider the sum over the
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fluctuations of the uncorrelated random neighbors to be
equal to zero. This gives the approximate evolution equation

() = (1= €)f" (), () + (1 = pegy)

xg{hn(j+ 1) +h,(— 1)} (4)

This approximation is clearly more valid for small p.g.

For stability considerations one can diagonalize the above
expression  using a  Fourier  transform  [h,(j)
=2,b,(q)exp(ijg), where g is the wave number and j is the
site index], which finally leads us to the following growth
equation:

Pur1(q)
bu(q)

with ¢ going from 0 to 7. The condition for stability depends
on the nature of the local map f(x) through the term f'(x).
Considering the fully chaotic logistic map with f'(x*)=-2,
one finds that the growth coefficient that appears in this for-
mula is smaller than one in magnitude if and only if

=f"(x*)(1 - €) + €(1 = peg)cos g (5)

<e<l. (6)
L+ pege

This inequality implies that the coupling strength €* after
which the spatiotemporal fixed point is stabilized, is given by

1
= (7)
1+ pege
and the range of the spatiotemporal fixed point R is
R=1-¢ =L (8)

- 1+ pesr’

For small p.g (por<<1) the standard expansion yields

R~ Peft- (9)

Now, since p. is the effective probability that a coupling
link is random, p.y should be directly proportional to the
probability of random rewiring p. In addition, the probability
of having a random connection is an increasing function of
rewiring frequency f, where f=r".

So we can start with the ansatz that p=pg(f), where the
function g, for consistency with the fully dynamic and static
limits, should have value 1 when f=1 and value 0 when f
=0. So g(f) can be assumed to be power law, giving the
ansatz

Pert=Pf". (10)

Figure 5 displays the dependence of the numerically ob-
tained values of the range of the spatiotemporal fixed point R
on f. Fitting this to Eq. (10) yields v~0.42.

In conclusion, our numerics appear to be consistent with
the ansatz that the effective “strength” of the random links is
given by pf”, where p is the fraction of random links in the
system at any instant of time and f is the frequency of ran-
dom rewiring. Some effects due to fluctuations are lost, but
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FIG. 5. R/p vs f, where R is the range of the spatiotemporal
fixed point, p is the rewiring probability, and f=1/r is the rewiring
frequency. Here p=0.05.

as a first approximation we have found this approach quali-
tatively correct, and quantitatively close to the numerical re-
sults as well [5].

V. CONCLUSIONS

We have investigated spatiotemporal properties of a lat-
tice of coupled strongly chaotic maps whose coupling con-
nections are rewired to random sites with probability p.
Keeping p constant, we change the random links at different
frequencies, in order to discern the effect (if any) of the time
dependence of the links.

Our main findings are when the network is rewired
slowly, namely, when the random connections are quite
static, the dynamics of the network is spatiotemporally cha-
otic. However, when these random links are switched around
fast, namely, the network is rewired frequently, one obtains a
spatiotemporal fixed point over a large range of coupling
strengths.

We provide evidence of a sharp transition from a globally
attracting spatiotemporal fixed point to spatiotemporal chaos
as the rewiring frequency is decreased. So the system be-
haves effectively as a static network with quenched random-
ness after a certain critical rewiring time period.

We also analyzed the stability of the spatiotemporal fixed
point of this network of strongly chaotic maps. Our analysis
is consistent with the ansatz that the effective “strength” of
the random coupling is given by pf”, where p is the fraction
of random links in the system at any instant of time and f is
the frequency of random rewiring. In summary, in addition to
geometrical properties such as the fraction of random links in
the network at any instant of time, dynamical information on
the time dependence of these links is crucial in determining
the spatiotemporal properties of complex dynamical net-
works.
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