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Abstract. Phase synchronization in unidirectionally coupled Ikeda time-delay sys-
tems exhibiting non-phase-coherent hyperchaotic attractors of complex topology
with highly interwoven trajectories is studied. It is shown that in this set of coupled
systems phase synchronization (PS) does exist in a range of the coupling strength
which is preceded by a transition regime (approximate PS) and nonsynchronous
regime. However, exact generalized synchronization does not seem to occur in the
coupled Ikeda systems (for the range of parameters we have studied) even for
large coupling strength, in contrast to our earlier studies in coupled piecewise-
linear and Mackey-Glass systems [27,28]. The above transitions are characterized
in terms of recurrence based indices, namely generalized autocorrelation function
P (t), correlation of probability of recurrence (CPR), joint probability of recurrence
(JPR) and similarity of probability of recurrence (SPR). The existence of phase
synchronization is also further confirmed by typical transitions in the Lyapunov
exponents of the coupled Ikeda time-delay systems and also using the concept of
localized sets.

1 Introduction

Synchronization of chaotic oscillations has been an area of extensive research since the pioneer-
ing works of Fujisaka and Yamada [1] and of Pecora and Carroll [2]. Since the identification of
complete (identical) chaotic synchronization, different kinds of chaotic synchronizations have
been identified and demonstrated both theoretically and experimentally (cf. [3–6]). Among the
basic kinds of synchronization, chaotic phase synchronization (CPS) plays a crucial role in un-
derstanding a large class of weakly interacting nonlinear dynamical systems in diverse natural
systems like cardiac and respiratory systems, biological clocks synchronized by day and night
rhythms, ecological systems entrained by seasonal cycles, etc. [4,5]. The definition of CPS is
a direct extension of the classical definition of synchronization of periodic oscillations and can
be referred to as entrainment between the phases of interacting chaotic oscillators, while their
amplitudes remain chaotic and, in general, uncorrelated [7,8].

The notion of CPS has been investigated so far in oscillators driven by external periodic
forces [8,9], chaotic oscillators with different natural frequencies and/or with parameter mis-
matches [7,11,12], in arrays of coupled chaotic oscillators [13,14] and also in different chaotic
systems [15,16]. In addition CPS has also been demonstrated experimentally in various sys-
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Fig. 1. (a) The non-phase coherent chaotic attractor of the drive, x1(t), for the value of delay time
τ = 2 and (b) the non-phase coherent hyperchaotic attractor of the response, x2(t), for the value of
delay time τ = 3 for the Ikeda system (1).

tems such as electrical circuits [15,17–19], lasers [20,21], fluids [22], biological systems [23,24],
climatology [25], etc.

While the notion of CPS has been well understood in low-dimensional systems as mentioned
above, it has not yet been studied in detail in nonlinear time-delay systems. These are essen-
tially infinite-dimensional systems and correspond to an important class of dynamical systems
representing several physical phenomena in diverse areas of science and technology including
neuroscience, physiology, ecology, lasers, etc., [26]. Studying the nature of onset of CPS and
transition to other synchronized states has received considerable attention recently due to their
importance in understanding the dynamical nature of the underlying physical systems. Recently,
we have reported the existence of phase, CPS and its transition to generalized synchronization
(GS) in coupled time-delay systems such as piece-wise linear and Mackey-Glass time-delay
systems [27,28], which typically exhibit highly non-phase-coherent chaotic and hyperchaotic
attractors. We have introduced a nonlinear transformation to capture the phase of non-phase-
coherent attractors of both the systems. We have also used recurrence based indices such as
P (t), CPR, JPR and SPR directly to the non-phase-coherent attractors and typical transitions
in the Lyapunov exponents of the coupled time-delay systems to characterize the synchroniza-
tion transitions. We have also found that all the three approaches are in good agreement in
indicating the onset of CPS and its transitions.

In this paper, as a natural extension of our above investigations, we try to generalize the non-
linear transformation and to test the validity of the above mentioned recurrence based indices
in identifying the synchronization transitions in general class of time-delay systems exhibiting
highly non-phase-coherent hyperchaotic attractors of more complex topology. As an example, we
have considered one of the prototype time-delay systems, namely Ikeda time-delay system [29],
which exhibits highly non-phase-coherent hyperchaotic attractor with complex topology for
suitable parameter values. Even though, we have not yet succeeded in generalizing the nonlin-
ear transformation to capture the phase of the non-phase-coherent hyperchaotic attractors of
the Ikeda system, we found that the recurrence based indices serve as excellent quantifiers in
identifying the transition from non-synchronized to phase synchronized state both qualitatively
and quantitatively in the coupled Ikeda systems. We have also characterized these transitions
by typical changes in the Lyapunov spectrum of the coupled Ikeda time-delay systems. Further,
we have confirmed the existence of CPS using the concept of localized sets.

The plan of the paper is as follows. In Sec. II, we briefly point out the inadequacy of the
conventional methods available in the literature in identifying phase in time-delay systems
and the necessity of specialized tools and techniques to identify phase in such systems, while in
Sec. III we discuss briefly about the Ikdea time-delay systems and its dynamics. We demonstrate
the onset of CPS and its transition to CPS in coupled Ikeda systems using recurrence based
indices and Lyapunov exponents in Sec. IV. Finally in Sec. V, we summarize our results.
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Fig. 2. (a) Spectrum of the first eleven largest Lyapunov exponents for the values of the parameters
a = 1, b = 5 in the range of delay time τ ∈ (2, 25) and (b) Kaplan-Yorke dimension DL in the
corresponding range of delay time for the Ikeda system (1).

2 CPS and Time-delay systems

As noted in the introduction, CPS has been studied extensively during the last decade in
various nonlinear dynamical systems. However, only a few methods are available in the literature
[4,5] to calculate the phase of chaotic attractors. Unfortunately most of these measures are
restricted to phase-coherent chaotic attractors, while a few of them are applicable to non-phase-
coherent chaotic attractors of low-dimensional systems as well. However, all these conventional
methods which are applicable to the phase-coherent and non-phase-coherent attractors cannot
be used in the case of time-delay systems in general, because such systems very often exhibit
more complicated attractors with more than one positive Lyapunov exponents. Correspondingly
methods to calculate the phase of non-phase-coherent hyperchaotic attractors of time-delay
systems are not available. The most promising approach available in the literature to calculate
the phase of non-phase-coherent attractors is based on the concept of curvature [30], but this
is often restricted to low-dimensional systems and it does not work in the case of nonlinear
time-delay systems in general, where very often the attractor is non-phase-coherent and high-
dimensional. This is essentially be due to the multiple intrinsic characteristic time scales of
the nonlinear time-delay systems. Hence defining and estimating phase from the hyperchaotic
attractors of the time-delay systems itself is a challenging task and so specialized techniques
and tools have to be identified to introduce the notion of phase in such systems.

Recently, the present authors have studied in some detail the existence of phase and CPS in
time delay systems admitting non-phase-coherent hyperchoatic attractors and specifically an-
alyzed coupled piecewise linear and couped Mackey-Glass systems. Three different approaches
were introduced to identify and calculate phase and consequently CPS between the interact-
ing time-delay systems: 1) identifying suitable nonlinear transformation which can unfold the
complicated chaotic and hyperchaotic attractors with multiple loops into smeared limit cycle
like attractor, 2) using recurrence based indices such as generalized autocorrelation function
P (t), correlation of probability of recurrence (CPR), joint probability of recurrence (JPR) and
similarity of probability of recurrence (SPR) directly to the non-phase-coherent chaotic and
hyperchaotic attractors, we have demonstrated the existence of CPS both qualitatively and
quantitatively and 3) finally the onset of CPS and their transition is also characterized by
typical transitions in the spectrum of Lyapunov exponents of the coupled time-delay systems.
We now apply these approaches to coupled Ikeda systems which exhibit even more complicated
chaotic and hyperchaotic non-phase-coherent attractors with complex topological properties
having highly interwoven trajectories and identify the nature of CPS. We have also confirmed
the existence of CPS using the framework of localized sets.

3 The Ikeda time-delay system

The Ikeda system was introduced to describe the dynamics of an optical bistable resonator
and it was shown that the transmitted light from a ring cavity containing a nonlinear dielectric
medium undergoes a transition from a stationary state to periodic and nonperiodic states, when
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the intensity of the incident light is increased. It has also been shown that the nonperiodic state
is characterized by a chaotic variation of the light intensity and associated broadband noise in
the power spectrum [29]. Ikeda system is well known for delay induced chaotic behavior [32–34]
and this system has also been receiving focus on synchronization studies recently [35–38]. The
Ikeda model is specified by the state equation

ẋ = −ax(t) − b sinx(t − τ), (1)

where a > 0 and b > 0 are the parameters and τ is the delay time. Physically x(t) is the phase
lag of the electric field across the resonator and thus may clearly assume both positive and
negative values, α is the relaxation coefficient, b is the laser intensity injected into the system
and τ is the round-trip time of the light in the resonator. Typical chaotic and hyperchaotic
chaotic attractors of the Ikeda system are shown in Figs. 1a and b for values of delay times
τ = 2 and τ = 3, respectively, while the other parameter values are fixed as a = 1.0 and
b = 5. The first eleven largest Lyapunov exponents of the Ikeda system for the parameters
a = 1.0, b = 5 in the range of delay time τ ∈ (2, 25) are shown in Fig. 2a and the corresponding
Kaplan-Yorke Lyapunov dimension calculated using the formula

DL = j +

∑j

i=1
λi

|λj+1|
, (2)

where j is the largest integer for which λ1 + ... + λj ≥ 0, is shown in Fig. 2b.

4 CPS in coupled Ikeda time-delay systems

We consider the following unidirectionally coupled drive x1(t) and response x2(t) systems

ẋ1(t) = −ax1(t) + b1 sinx1(t − τ1), (3)

ẋ2(t) = −ax2(t) + b2 sinx2(t − τ2) + b3 sinx1(t − τ1), (4)

where the parameters are fixed as a = 1.0, b1 = b2 = 5.0. The delay times τ1 = 2 and τ2 = 3
provide parameter mismatch between the drive, x1(t), and the response, x2(t), systems and b3

is the coupling strength. In the absence of the coupling both systems evolve independently and
the attractor of the drive system shown in Fig. 1a is chaotic for the value of delay time τ = 2
and that of the response system shown in Fig. 1b is hyperchaotic with two positive Lyapunov
exponents for the value of delay time τ = 3 as evidenced from the spectrum of Lyapunov
exponents shown in Fig. 2a. Hence both systems are qualitatively different and their attractors
shown in Figs. 1 are highly non-phase-coherent with interwoven trajectories exhibiting complex
topological properties. When the coupling strength b3 is increased from zero, the degree of
chaotic phase synchronization between the drive and the response systems increases after certain
threshold value of the coupling strength and finally they become phase synchronized fully.
However, further increase in the coupling strength does not lead to a transition to generalized
synchronization even for appreciably larger value of b3 unlike the case of coupled piecewise
linear delay systems or coupled Mackey-Glass systems [27,28]. Now these results are depicted
using recurrence based indices, namely, P (t), CPR, JPR and SPR.

4.1 Recurrence based indices

Synchronization transition in coupled Ikeda systems (3) and (4), that is from desynchronized
state to phase synchronized state and then possibly to generalized synchronized state, can
be analyzed by means of recurrence based indices even when the corresponding attractors
have complex topological properties. The generalized autocorrelation function P (t) has been
introduced in Refs. [31,39] as

P (t) =
1

N − t

N−t∑

i=1

Θ(ǫ − ||Xi − Xi+t||), (5)
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Fig. 3. (Color online) Generalized autocorrelation functions of both the drive P1(t) and the response
P2(t) systems. (a) Non-synchronization for b3 = 4, (b) Approximate phase synchronization for b3 = 10
and (c) Phase synchronization for b3 = 20.

where Θ is the Heaviside function, Xi is the ith data corresponding to either the drive variable,
x1, or the response variable, x2, and ǫ is a predefined threshold. ||.|| is the Euclidean norm and
N is the number of data points. P (t) can be considered as a statistical measure about how
often the phase φ has increased by 2π or multiples of 2π within the time t in the original space.
If two systems are in CPS, their phases increase on average by K · 2π, where K is a natural
number, within the same time interval t. The value of K corresponds to the number of cycles
when ||X(t + T ) − X(t)|| ∼ 0, or equivalently when ||X(t + T ) − X(t)|| < ǫ, where T is the
period of the system. Hence, looking at the coincidence of the positions of the maxima of P (t)
for both the systems (3) and (4), one can qualitatively identify CPS.

A criterion to quantify CPS is the cross correlation coefficient between the drive, P1(t), and
the response, P2(t), which can be defined as Correlation of Probability of Recurrence (CPR),

CPR = 〈P̄1(t)P̄2(t)〉/σ1σ2, (6)

where P̄1,2 means that the mean value has been subtracted and σ1,2 are the standard deviations
of P1(t) and P2(t), respectively. If the two systems (3) and (4) are in CPS, the probability of
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Fig. 4. (Color online) Indices CPR, SPR as a function of coupling strength b3 ∈ (0, 50).

recurrence is maximal at the same time t and CPR ≈ 1. If they are not in CPS, the maxima
do not occur simultaneously and hence one can expect a drift in the probability of recurrences
which results in low values of CPR.

When the coupled Ikeda systems (3) and (4) are in generalized synchronization, two close
states in the phase space of the drive variable correspond to that of the response. Hence the
neighborhood identity is preserved in phase space. Since the recurrence plots are nothing but
a record of the neighborhood of each point in the phase space, one can expect that their
respective recurrence plots are almost identical. Based on these facts the following two indices
can be calculated as proposed in [39] to quantify GS for the Ikeda systems similar to the
coupled piecewise linear and Mackey-Glass systems analyzed by us recently [27,28].

First, the authors of [39] proposed the Joint Probability of Recurrences (JPR),

JPR =
1

N2

∑N

i,j Θ(ǫx − ||Xi − Xj ||)Θ(ǫy − ||Yi − Yj ||) − RR

1 − RR
(7)

where RR is rate of recurrence, ǫx and ǫy are thresholds corresponding to the drive and response
systems, respectively such that RRX = RRY = RR and Xi is the ith data corresponding to the
drive variable x1 and Yi is the ith data corresponding to the response variable x2. RR measures
the density of recurrence points and it is fixed as 0.02 [39]. JPR is close to 1 for systems in
GS and is small when they are not in GS. The second index depends on the coincidence of the
probability of recurrence, which is defined as Similarity of Probability of Recurrence (SPR),

SPR = 1 − 〈(P̄1(t) − P̄2(t))
2〉/σ1σ2. (8)

SPR is again of order 1 if the two systems are in GS and approximately zero or negative if they
evolve independently.

Now, we will apply these concepts to the original non-phase-coherent attractors shown in
Figs. 1, when coupling is introduced as in Eqs. (3) and (4). We estimate these recurrence based
measures from 5000 data points after barring out sufficient transients with the integration step
h = 0.01 and sampling rate ∆t = 100. The generalized autocorrelation functions P1(t) of the
drive x1(t) system and P2(t) of the response x2(t) systems are depicted in Figs. 3 for different
values of the coupling strength. The maxima of the generalized autocorrelation functions P1(t)
and P2(t) do not occur simultaneously (Fig. 3a) and there exists a drift between them for the
value of the coupling strength b3 = 4 and hence both the systems evolve independently. This fact
is also reflected in the rather low values of the indices CPR, JPR and SPR as shown in Fig. 4.
Looking into the details of the generalized autocorrelation functions in Fig. 3b for the value of
the coupling strength b3 = 10, we find that the main oscillatory dynamics becomes locked and
hence the large amplitude peaks (maxima) of P1(t) and P2(t) coincide while small amplitude
peaks do not. This behavior is observed in the range of b3 ∈ (4.2, 20), which corresponds to
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Fig. 5. The plot of response variable x2(t) Vs auxiliary variable x3(t) for the values of the coupling
strengths (a) b3 = 30, (b) b3 = 40 and (c) b3 = 50.

the transition regime (approximate CPS) and this is also indicated by a smooth increase in the
value of CPR (Fig. 4) towards the value 1.

Further increase in the value of the coupling strength beyond b3 = 20 results in an almost
perfect locking of all the oscillatory dynamics of the coupled system. Consequently, a majority
of the positions of the peaks in the generalized autocorrelation functions P1(t) and P2(t) agree
with each other as illustrated in Fig. 3c for the value of b3 = 20. However, it is observed that
the magnitude of peaks are generally of different values and this difference in the heights of
peaks indicates that there is no correlation in the amplitudes of both the systems. This is in
accordance with strongly bounded nature of phase difference and further increase in the value
of the coupling strength results in a saturation in the value of CPR ≈ 1 as seen from the Fig. 4,
which is a strong indication for the existence of CPS.

Even for a very large value of the coupling strength, say b3 = 50, the amplitudes of the
maxima in the generalized autocorrelation function do not coincide and hence one does not
find an indication towards the exact GS. This is further confirmed from the rather lower values
of JPR and SPR depicted in Fig. 4. This scenario is in contrast to our earlier studies [27,
28] where there exists transition from phase to generalized synchronization within reasonable
range of values of the coupling strength in the case of piece-wise linear and Mackey-Glass time-
delay systems. This is further confirmed from the auxiliary system approach by augmenting the
coupled Ikeda systems ((3) and (4)) with an additional auxiliary system for the variable x3(t)
identical to the response system, satisfying the equation

ẋ3(t) = −ax3(t) + b2 sinx3(t − τ2) + b3 sinx1(t − τ1). (9)

We have analyzed numerically the combined system of equations (3), (4) and (9). The plot
of the response variable x2(t) Vs the auxiliary variable x3(t) for the values of the coupling
strengths b3 = 30, 40 and 50 are depicted in Figs. 5a, 5b and 5c, respectively. As may be noted
that for none of these values one obtains a sharp diagonal line, indicating only the existence
of approximate GS. A possible reason for this is that the largest Lyapunov exponents of the
response system do not attain negative saturation even for larger values of the coupling strength
as shown in Fig. 6. Hence there does not seem to exist exact generalized synchronization between
the coupled Ikeda systems in the explored range of parameters by us, even though CPS does
exist in this range.

4.2 Spectrum of Lyapunov exponents

The transition from non-synchronization to CPS is also characterized by changes in the spec-
trum of Lyapunov exponents of the coupled time-delay systems (3) and (4). The spectrum of
the first five largest Lyapunov exponents of the coupled Ikeda systems is shown in Fig. 6. The
null Lyapunov exponent of the response system x2(t) becomes negative at the value of the cou-
pling strength b3 = 4.2 while the other two largest Lyapunov exponents remain positive, which
is a typical characteristic feature for the onset of CPS in the coupled systems. The second least
positive Lyapunov exponent becomes negative at the value of the coupling strength b3 = 13.5,
an indication of onset of correlation in amplitudes of both the interacting dynamical systems,
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Fig. 6. Spectrum of first five largest Lyapunov exponents of the coupled Ikeda systems (3) as a
function of coupling strength b3 ∈ (0, 50).

while the largest positive Lyapunov exponent of the response system becomes negative at the
value of b3 = 20. This is a strong indication that in this rather complex attractor the ampli-
tudes become somewhat interrelated already at the transition to PS in the range b3 ∈ (4.2, 20)
in agreement with our earlier results in coupled Mackey-Glass systems and (as in the funnel
attractor [30]). However, it is observed that there does not exist generalized synchronization
between the coupled Ikeda systems even for larger values of the coupling strength in contrast
to our earlier studies [27,28] and this is evident from the value of the Lyapunov exponents of
the response system becoming increasingly negative without attaining saturation.

4.3 Concept of Localized Sets

Recently, an interesting framework for identifying phase synchronization without having explic-
itly the measure of the phase, namely the concept of localized sets, has been introduced [40].
The basic idea of this concept is that one has to define a typical event in one of the coupled
oscillators and then observe the other oscillator whenever this event occurs. These observations
give rise to a set D. Depending upon the property of this set D one can state whether there
exists PS or not. The coupled oscillators evolve independently if the sets obtained by observing
the corresponding events in both the oscillators spread over the attractors of the oscillators. On
the other hand, if the sets are localized on the attractors then PS exist between the interacting
oscillators.

We have confirmed the existence of CPS in the coupled Ikeda time-delay systems also by
using the concept of localized set. We have defined the event in the attractor of the drive system
as a segment characterized by x1(t + τ) = 0 and x1(t) > 2.0 and another event in the response
system as a segment characterized by x2(t + τ) = 0 and x2(t) < −3.0, which are shown as
black lines in Fig. 7. The sets obtained by observing the response Ikeda system whenever the
defined event occurs in the drive system and vice versa are shown as dots in Figs. 7a and 7b,
respectively, for the value of the coupling strength b3 = 4.0, for which there is no CPS as
discussed earlier and hence the sets are spread over the attractors. On the other hand for the
value of the coupling strength b3 = 20 for which CPS exists as seen from Figs. 3-6, the sets
are localized as shown in Figs. 7c and 7d confirming the existence of CPS in the coupled Ikeda
systems.

5 Summary and Conclusion

We have identified the existence of CPS in coupled Ikeda time-delay systems which possess
highly non-phase-coherent chaotic and hyperchaotic attractors with complex topology. In par-
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Fig. 7. (Color online) (a) and (c) attractor of the drive system, (b) and (d) attractor of the response
system. The bars indicate the events in the corresponding attractors. In (a) and (b) the sets spread
over the attractor and hence there is no CPS for the value of the coupling strength b3 = 4.0 and, in (c)
and (d) the sets are localized confirming the existence of CPS for b3 = 20.0.

ticular, we have shown that there is a typical transition from a nonsynchronized state to CPS as
a function of the coupling strength. We have characterized this transition in terms of recurrence
based indices such as P (t), CPR, JPR and SPR, and quantified the different synchronization
regimes in terms of them. The transition is also confirmed by the typical transition in the Lya-
punov exponents of the coupled Ikeda time-delay systems. Further, we have also confirmed the
existence of CPS using the concept of localized sets. We have found that the recurrence based
techniques are more efficient than the other conventional techniques available in the literature
to identify CPS in higher dimensional systems, in particular in time-delay systems. It is also of
interest to find out a suitable general transformation to include the attractors of large class of
time-delay systems, including coupled Ikeda systems, which transforms the non-phase-coherent
attractors into smeared limit cycle like attractors. Work is in progress on this aspect.
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