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Abstract. We investigate the effect of general time transformations on the
phase synchronization (PS) phenomenon and the mutual information rate
(MIR) between pairs of nodes in dynamical networks. We demonstrate two
important results concerning the invariance of both PS and the MIR. Under
time transformations PS can neither be introduced nor destroyed and the MIR
cannot be raised from zero. On the other hand, for proper time transformations
the timing between the cycles of the coupled oscillators can be largely improved.
Finally, we discuss the relevance of our findings for communication in dynamical
networks.
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1. Introduction

Time and complex dynamics play a major role in biological, social, economical and physical
systems. Cycles of different periods often govern their dynamical behavior and determine their
intrinsic activity. A variety of processes require a precise timing between the oscillator cycles for
a proper functioning, as for example, the respiratory and cardiac systems [1], spike discharges
and information transmission [2, 3] in neuron networks, ecology [4], fireflies blinking after
dark and pacemaker cells of the human heart [5]. Synchronization is an efficient mechanism
to generate such a timing [1]–[11]. Among several types of synchronization recently found in
complex systems [8], chaotic phase synchronization (PS) displays special importance because
of its weak constraints on the dynamics and coupling strength. It has been reported that PS
mediates the process of information transmission and collective behavior in neural and active
networks [2, 11, 12], as well as communication processes in the human brain [2, 13, 14].

In real systems, PS is the most common type of synchronization [1, 2, 4, 5], [8]–[11],
[13, 14]. The main reason for PS to be so common relies on the fact that real oscillators are not
identical, but have some parameter mismatch. When real coupled oscillators undergo a transition
to PS the timing is not precise. In many situations one wishes to improve the timing condition,
but in fact, one cannot systematically control the oscillator parameters to drive them to a higher
level of PS. The question is then how to improve the timing without changing the oscillator
parameters. The natural candidate is a time transformation. Could one enhance a better timing
by changing the time? Or even better, could one introduce PS by time transformations?

Coupled dynamical systems under time transformations are important in physics without
an absolute time as well as in situations where the time cannot be directly obtained, as in the
study of sedimental cores in the field of geophysics. In the latter case, the time at which the
sedimentation took place is usually unknown. Only a proxy for the time can be derived from
the measurements, which does not yield the ‘real’ time but only a monotonic transformation of
it [15]. In the study of synchronization phenomenon in such a system the natural question is
whether not having access to the real time could effect synchronization.
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Such time transformations (typically nonlinear) have attracted a great deal of attention
(see [16, 17] and references therein). They cause no change in the topology of the dynamics,
but the duration of the cycles can be drastically modified. An important problem is to analyze
whether the dynamical properties are invariant under time transformations [16]. Recent results
have shown that dynamical systems under time transformation can present nontrivial and
counterintuitive properties. For example, a nonmixing dynamics can be converted to a mixing
one [17].

In this work, we show that time transformations, satisfying simple conditions of
integrability, can neither introduce nor destroy the phenomenon of PS. We also explore the
natural connection between synchronization and information exchange in coupled oscillators.
We uncover the transformation law for the mutual information rate (MIR), the rate with which
the information about a node can be retrieved in another node. If the MIR is zero in one time
frame it will remain zero for any other. On the other hand, if the MIR is nonzero it can be
drastically modified by a time transformation. Surprisingly, if there is no synchronization (to
any extent) between the nodes forming a network, time transformations containing information
about a particular oscillator (node) of the network cannot be used to carry this information to
another oscillator.

2. Two oscillators case: enhancing a precise timing

We first illustrate our approach for the paradigmatic example of two coupled Rössler oscillators:

ẋ1,2 = −α1,2 y1,2 − z1,2 + ε(x2,1 − x1,2), (1)

ẏ1,2 = α1,2x1,2 + 0.15y1,2, (2)

ż1,2 = 0.2 + z1,2(x1,2 − 10) (3)

with α1 = 1 and α2 = α1 + 1α2. We shall denote x j = (x j , y j , z j), where j = 1, 2, and
x = (x1, x2, ẋ1, ẋ2). Since for these oscillators the trajectory revolves around one specific
point (figure 1(a)), we can simply define a phase by tan φ j = y j/x j , which yields [18]

φ j(x, t) =

∫ t

0
(ẏ j x j − ẋ j y j)/(x2

j + y2
j ) dt. (4)

Furthermore, let us denote the time at which the oscillator x j completes its i th cycle by t i
j . That

is, the times at which the phase is increased by 2π (see appendix A for more details). We can
show that there is PS if, and only if, we have

|t i
1 − t i

2|6 κ, (5)

where κ is the minimum finite number that bounds the inequality. For more details concerning
this equivalence see appendix A. The value of κ shows how well paced both oscillators are. The
smaller the value of κ the better the timing between x1 and x2.

For ε = 0.0015 and 1α2 = 0.001, the two oscillators are in PS, which means that the
phase difference 1φ = φ1(t) − φ2(t) is bounded for all times. Consequently, equation (5) holds
(figures 1(b) and (c)). In the PS regime, the oscillators have the same mean frequency, namely

〈φ̇1〉t = 〈φ̇2〉t ≈ 1.035,
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Figure 1. The effect of time transformation in two synchronous Rössler
oscillators. In (a), we show the attractor projection onto the (x, y)-plane, and
in (b) the time series x1 and x2 versus t . In (c), we depict the time difference
|t i

1 − t i
2| for the i th period between both oscillators. One can see that even though

the quantity |t i
1 − t i

2| is bounded, it has large fluctuations. In (d)–(f), we proceed
a time transformation t → ζ given by equation (7). In (d), we show that the
attractor projection in the subspace (x, y), and the time series x1 and x2 versus
ζ in (e), whereas the amount |ζ i

1 − ζ i
2| is shown in (f). One can see that after the

time transformation the timing condition is drastically improved.

where 〈·〉t is the time average with respect to t . The average period is given by

〈T j〉t = 2π/〈φ̇ j〉t ≈ 6.067.

We have that max|t i
1 − t i

2| corresponds approximately to 〈T j〉t/4 (figure 1(c)), which can be
rather problematic for a reliable communication system based on chaos synchronization, since
the two oscillators do not reach the Poincaré section with a precise timing. See [11] for a detailed
discussion.
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The main question is then what could happen when we transform the time. Could we
produce an effective improvement of the timing? If we linearly scale the time introducing
ζ = αt , then the average period transforms as

〈T j〉ζ =
〈T j〉t

α
,

whereas the timing

|ζ i
1 − ζ i

2| =
|t i

1 − t i
2|

α
.

Thus, there is no effective improvement of the timing with respect to the average period, since

|ζ i
1 − ζ i

2|

〈T j〉ζ

=
|t i

1 − t i
2|

〈T j〉t
.

The situation can be altered to improve the timing condition in equation (5) by using a
nonlinear time transformation, namely t → ζ of the form:

dζ = λ(x, t) dt. (6)

Such a transformation may distort directly the synchronization phenomenon acting on the times
t i

j . To improve the timing between the oscillators given γ � 1 and σ < 1, we perform the time
transformation:

λ(x, t) =

{
γ, if x1,2 > 0, x2,1 < 0 and ẏ1 > 0,

σ, otherwise,
(7)

which shrinks the time between t i
1 and t i

2 enhancing a more accurate pacing between the
oscillators. γ may be chosen according to the pacing condition desired. For our purpose, we
fix γ = 100. We can use the parameter σ to control the average period. In the following, we fix
σ = 0.11. The new time is given by ζ j =

∫ t j

0 λ(x, t)dt . The equation of motion now takes the
form

ẋ1,2 = λ−1(x, t)[−α1,2 y1,2 − z1,2 + ε(x2,1 − x1,2)], (8)

ẏ1,2 = λ−1(x, t)[α1,2x1,2 + 0.15y1,2], (9)

ż1,2 = λ−1(x, t)[0.2 + z1,2(x1,2 − 10)]. (10)

The time transformation causes no changes in the state space, compare figures 1(a) and
(b). However, the time series of x1 × t and x1 × ζ are drastically modified (figures 1(b) and (e)).
Although, the time transformation is not able to interfere with the PS phenomenon (figure 1(f)),
it changes the frequency of the oscillators

〈φ̇1〉ζ = 〈φ̇2〉ζ ≈ 0.998,

which implies that 〈T1,2〉ζ ≈ 6.296. On the other hand, now max|ζ i
1 − ζ i

2| ≈ 〈T j〉ζ/420.
Remembering that max|t i

1 − t i
2| ≈ 2〈T j〉t/3, we conclude that this time transformation yields

an improvement of a factor of 280 for the timing. Of course, equation (7) can be altered to have
an even better timing. These ideas can also be applied to a network. Whenever there is a cluster
of oscillators in PS within the network, one can transform the time by equation (6) suitably
choosing λ(x, t) to have a precise timing among all oscillators of the PS cluster.
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3. Phase diffusion and coherence

Time transformation cannot destroy the synchronization. On the other hand, it does alter
important characteristics of the dynamics, for example the coherence of the oscillators and
the phase diffusion. By a time transformation we can transform an oscillator that originally
is endowed with phase diffusion into an oscillator with an arbitrarily small phase diffusion. An
interesting point is that in data analysis the phase diffusion plays a role in order to detect PS [19].
The idea is that one can detect PS by variations in the phase diffusion.

In general the phase depends on the amplitude of the oscillator and the frequency can be
written as: φ̇(t) = ω + ξ(x, t), where ω is the average frequency of the oscillator and ξ(x, t), in
many cases, acts as an effective noise due to the chaotic nature of the oscillator [8]. Therefore,
the phase dynamics is generally diffusive, which means that for large time intervals one expects
〈[φ(t) − ωt]2

〉µ ≈ 0t , where 〈·〉µ denotes the ensemble average, and 0 the diffusion constant.
Having the time of the i th cycle of the oscillator x j , we can write t i

j = i〈T j〉 + νi
j , where 〈T j〉 is

the average period. By calculating the phase diffusion, we have

〈[φ j(t
i
j) − ω j(i〈T j〉 + νi

j)]
2
〉µ = ω2

j〈[ν
i
j ]

2
〉µ ≈ 0 j t.

Hence, t i
` − i〈T`〉 gives the phase diffusion properties.

Let us analyze the distortions in the phase diffusion by a time transformation and its effect
on PS. Supposing that the oscillators x1 and x2 are not in PS, we write t i

1 − t i
2 = α × i + ξ i , where

α, ξ i
∈ R are chosen to hold the equality. By performing a time coordinate change we endow

the oscillator x1 with zero phase diffusion. This means that we have a new time ζ with

1ζ i
1 = ζ i

1 − ζ i−1
1 = 1, (11)

i.e. 1ζ i
1 = 1t i

1/1t i
1, where 1t i

1 = t i
1 − t i−1

1 . The new time coordinate is given by

ζ i
1 =

i∑
n=0

1tn
1 /1tn

1 ,

ζ i
2 =

i∑
n=0

1tn
2 /1tn

1 .

We have

|ζ i
1 − ζ i

2| =

∣∣∣∣∣∑
i

(1t i
1 − 1t i

2)/1t i
1

∣∣∣∣∣ . (12)

Next, consider the maximum 1t i
1, namely

maxi1t i
1 = γ −1.

Thus, we have ∣∣∣∣∣∑
i

(1t i
2 − 1t i

1)/1t i
1

∣∣∣∣∣> γ |t i
2 − t i

1|, (13)

which can be written as:

|ζ i
1 − ζ i

2|> γ (α × i + ξ i). (14)

Therefore, as the number of periods tends to infinity, the time event difference |ζ i
1 − ζ i

2| diverges.
Thus, enhancing coherence in the oscillator does not introduce PS.
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4. Breaking down the hypotheses on λ

By violating the conditions (ii) and (iii), which guarantees the boundedness of λ(x, t), PS can
be introduced. Considering our former case where

t i
1 − t i

2 = α × i + ξ i , (15)

we could transform the time by

λ(x, t) =
1

i
, if t i

1 < t 6 t i+1
1 . (16)

The timing condition is given by

|ζ i
1 − ζ i

2| =

∣∣∣∣∣
∫ t i

1−αi−ξ i

t i
1

λ(x, t)

∣∣∣∣∣6 |αi/ i | + |ξ i/ i |. (17)

Thus,

lim
i→∞

|ζ i
1 − ζ i

2|6 α, (18)

the time difference is bounded by α. Hence, this time transformation allows us to introduce PS
between x1 and x2. This does not contradict our results, because this time transformation is not
bounded, violating the assumptions (ii) and (iii). When one uses a non-bounded transformation
λ(x, t), like the latter one, the time is shrunk and becomes meaningless; there is no long term
behavior with respect to ζ , since limi→∞ζ i

` is still bounded. The function λ(x, t) can be made
smooth without changing equation (18). Here, we have considered λ(x, t) to be a step function
without lost of generality.

5. Feigning PS

PS is invariant whenever λ(x, t) fulfills the conditions (i)–(iii). However, it is important to
mention that the phase definition must be defined consistently. This means that one must have
the same phase definition before and after the time transformation, otherwise one could predict
that PS is not invariant, due to the changing of the phase definition. Let us consider two spiking
neurons N1 and N2. We assume that the spike times t i

1 and t i
2 are independent, with neuron N1

having a higher frequency, figure 2(a), in such a way that there is no n : m PS between N1 and
N2. Let tni

2 be the spike time ofN2 that precedes the i + 1th spike ofN1, figure 2(a). Then, given
σi � γi , we perform the following transformation:

λ(t) =

{
σi , if t i

1 < t 6 tni
2 ,

γi , if tni
2 < t 6 t i+1

1 .
(19)

This shrinks the time between t i
1 and tni

2 and stretches between tni
2 and t i+1

1 creating bursts in N2.
In the rescaled time ζ , the bursts of N2 is synchronized with the spikes of N1. However, there is
no synchronization between the spikes, since limi→∞ |ζ i

1 − ζ i
2| → ∞. On the other hand, after

the time coordinate change, it is very tempting to introduce a phase for the bursts that increases
2π between two successive bursts of N2. Changing the phase definition, the phase difference
between N1 and N2 becomes bounded. Therefore, it seems possible to introduce PS between
two asynchronous neurons. However, this is a fake PS once the phase definition is changed.
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Figure 2. The effect of time transformation in two asynchronous neurons. In (a),
the spikes in both neurons are governed by stochastic processes. They present
no synchronization. From (a) to (b) we perform the transformation given by
equation (19), which shrinks the time between t i

1 and tni
2 and stretches the time

between tni
2 and t i+1

1 . As a consequence, it seems that PS between the spikes in
N1 and the bursts of N2 is enhanced.

6. Network information transmission

Let us analyze the effect of time transformations in the information transmission in networks.
For every pair of oscillators x j and xk , we can define a coordinate transformation

x‖

jk = x j + xk, (20)

x⊥

jk = x j − xk, (21)

that produces two positive conditional Lyapunov exponents (in units of bits/unit time) σ ‖(t) and
σ⊥(t). The MIR is bounded from above [12]

IC(t)6 σ ‖(t)−σ⊥(t). (22)

The main goal is to know how the MIR behaves as we implement a time transformation.
By choosing a proper nonlinear λ(x, t) in equation (6), we can introduce different timescales in
the oscillators time series as well as endow the time transformation with as much information
about the dynamics as we want. The main question is whether, under such nonlinear λ(x, t), the
information contained in λ(x, t) could be transmitted to the oscillators.

To answer this question we need to uncover the general transformation law for IC. After
some manipulations we can uncover the transformation law of IC(t):

IC(ζ )6
IC(t)

〈λ〉t
, (23)

where, again 〈·〉t stands for the time average. For details see appendix B.
Equation (23) shows an invariant character of IC. If IC(t) = 0, what happens in the absence

of synchronization (correlation) between oscillators, no time transformation that respects
conditions (i)–(iii) can raise IC(t) from zero. Hence, no matter how much information is
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contained in λ(x, t), if there is no synchronization this information cannot be used. If, on the
other hand, IC(t) is positive, then IC(ζ ) can be made arbitrarily large.

To illustrate our findings, we consider a network of four identical Hindmarsh–Rose chaotic
neurons electrically coupled in an all-to-all topology,

ẋ j = y j + 3x2
j − x3

j − z j + I j +
∑

k

C jk(xk − x j), (24)

ẏ j = 1 − 5x2
j − y j , (25)

ż j = −r z j + 4r(x j + 1.6), (26)

where C jk stands for the coupling matrix. We use r = 0.005, Ii = 3.2 and random initial
conditions.

We define the following time transformation

λ(x1, t) =

{
α, if x1 = 0 and y1 > −4.6,

β, if x1 = 0 and y1 6−4.6.
(27)

This shrinks the time between spikes when the y1 > −4.6 and stretches when y1 > −4.6
creating a frequency modulation (FM) between the spikes, which depends on the trajectory
position. Hence, the transformation carries information about x1. In our analysis, we keep fix
α = 0.5 and β = 2. t i

j denotes the time of the i th crossing of the trajectory of x j with the section
x j = 0 (an spike event). The time interval between two crossings is 1t i

j = t i+1
j − t i

j .
We introduce a symbolic dynamics which exhibits rather easily the results for the distinct

synchronization regimes. We can encode the binary information about the transformation
λ(x1, t) by setting α to the symbol ‘0’ and β to ‘1’. Hence, we have for two consecutive λ = α:
‘00’; one λ = α followed by λ = β: ‘01’; one λ = β followed by λ = α: ‘10’; and finally two
consecutive λ = β: ‘11’. Whenever the time transformation is able to transmit the information
about the symbols, we can access the information about x1 in the spike time intervals of the
other neurons.

Figures 3(a) and (b) show return maps 1t i
2 versus 1t i+1

2 of the neuron x2. We split this
map into four return maps, depending on the value of the transformation λ(x1, t). That is,
distinguished by the different symbols ‘00’,‘01’,‘10’ and ‘11’. The information about the values
of λ(x1, t) should be considered to be unknown, but here we make use of it to illustrate our ideas.

By measuring 1t i
2 we should be able to infer the time interval 1t i

1, if the time
transformation can transmit information. Figure 3(a) shows that return maps 1t i

2 versus 1t i+1
2

for the different values of λ(x1, t) superimpose, and as a consequence it is impossible to discern
whether the region that encodes for 00 is mapped to either 01 or 00 and so on. That leads to
a complete uncertainty about λ(x1, t) by measuring 1t i

2. Therefore, there is no exchange of
information between x1 and x2.

The timescale of x2 is being rescaled according to a function that contains information
about the position of x2. From the way the function λ is constructed, whenever y1 > −4.6 and
x1 = 0, the oscillation frequency of the oscillator x2 in the time-ζ frame is increased. Whenever
y1 6−4.6 and x1 = 0, the oscillation frequency of the oscillator x2 in the time-ζ frame is
decreased. So, the oscillation frequency of x2 is being modulated. FM is a typical procedure
to transmit information, a protocol in which the information signal is carried by the frequency
of a wave. It would be natural to imagine that by modulating the oscillator x2 using a time
transformation based on the position of x1 one could realize at least partially information about
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Figure 3. Encoded time intervals between two spikes in neuron x2 for C jk = 0
(a), and for C jk = 0.3 (b). In (c), the MIR between neurons x1 and x2,
for the time-t (filled squares), and for the time-ζ (filled diamonds). BPS
(burst PS) is found for C jk = [0.1, 0.23]. In this regime, only the burst are
phase synchronized. PS is found for C jk = [0.23, 0.25], and CS (complete
synchronization) is found for C jk = [0.25, 0.3]. For C jk ∈ [0.05,0.23] λ(x, t) is
smaller than 1, which provides an increase in IC up to 60%. For CS 〈λ〉t = 1.29
provides a decrease in IC.

x1 by making measures in x2. However, surprisingly, that is not the case in dynamical networks.
Therefore, if elements in a dynamical network do not exchange information among themselves,
there is no time transformation that can change this scenario.

When the neurons are completely synchronized (for C jk = 0.3), we see in figure 3(b)
that except for one point, the return maps 1t i

2 versus 1t i+1
2 for different values of λ(x1, t)

are disjointed, which means that by measuring 1t i
2 we have complete knowledge about the

trajectory of the neuron x1.

6.1. Effect of λ(x1, t) on IC(t)

We keep λ(x1, t) fixed and vary the coupling strength C jk . Equation (23) states that whenever
〈λ(x1, t)〉t < 1 the time transformation increases the MIR. In figure 3(c), we show the MIR
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between 1t i
1 and 1t i

2 using the Shannon mutual information6, for the two time frames. IC(t)
denotes the MIR in the time-t frame and IC(ζ ) the MIR in the time-ζ frame. For Ci j ∈ [0.5, 0.23]
〈λ(x1, t)〉t < 1 which provides an effective increase in the MIR.

In equation (27), λ is defined to contain information about x1. However, λ could be defined
to contain information about an arbitrary information signal to be transmitted. In such a case,
each disjoint region (such as the ones shown in figure 3(b)) would encode information about
this signal, which can be retrieved somewhere else in the network.

λ(x, t) can be constructed using information about some particular node of the network, a
group of nodes. Whenever the oscillators are phase synchronized, we can improve the MIR by
using λ(x, t) that contains information about the dynamics of the phase synchronized oscillators.

7. Conclusions

In summary, we have shown that for general dynamical oscillators it is neither possible
to introduce nor to destroy PS by a time transformation. Furthermore, we have discussed
the possible application of these ideas to relevant technological problems such as nonlinear
digital communication [11]. Moreover, we have illustrated these results for nonsynchronized
oscillators, showing that the enhancement of zero phase diffusion does not enhance PS. We have
also discussed that by breaking the boundedness condition imposed on λ, PS can be enhanced.
However, such a transformation is physically meaningless. Finally, we have shown that the
time transformation can introduce the presence of distinct timescales, which can feign PS. Our
findings might be relevant to several areas of natural science for the study of synchronization
where the exact time the phenomenon took place is unknown and only a proxy for the time can
be derived from the measurements. Examples can be found in geophysics when sediment cores
are studied. Such situations may arise in dendrochronology, ice cores and tree rings.
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Appendix A. PS invariance under time transformations

We consider two general oscillators ẋ j = F j(x j), where x j ∈ Rn and Fj : Rn
→ Rn, and analyze

a general coupling scheme:

ẋ1,2 = F1,2(x1,2) + C1,2(x, t)[H2,1(x) − H1,2(x)], (A.1)

where H j(x) is the coupling vector function, and C j(x, t) is the coupling matrix. Note that
this scheme also takes unidirectional couplings (master–slave configuration) into account. We

6 We encode the spikes using the following rule. The i th symbol of the encoding is ‘1’ if a spike is found in
the time interval [iδ, (i + 1)δ], and ‘0’ otherwise. A symbolic sequence is split into words of length L = 4. The
Shannon entropy is H = −

∑
m Pm log2 Pm , where Pm is the probability of finding one of the 2L words. The MIR

is estimated by IC = [H(x1) + H(x2) − H(x1; x2)]/(δ × L). We choose δ ∈ [min(1t i
j ), max(1t i

j )] to maximize IC.

New Journal of Physics 10 (2008) 083003 (http://www.njp.org/)

http://www.njp.org/


12

suppose that each x j has a stable attractor and a frequency φ̇ j = � j(x, t), where � j(x, t) is a
continuous function (or Riemann integrable). Furthermore, we assume that there is a number
M such that � j(x, t)6 M . From now on, slightly abusing the notation we shall omit the
dependence of the functions on the coordinates and on time, whenever there are no problems
with the notation. Given a finite real number c, the condition for PS between x1 and x2 can then
be written as:

|φ1(t) − φ2(t)| < c. (A.2)

First, we formalize the relation between PS and the timing condition given by equation (5). We
have

|φ1(t) − φ2(t)| =

∣∣∣∣∣
∫ t i

1

0
�1 dt −

∫ t i
2

0
�2 dt −

∫ t i
1

t i
2

�2 dt + β i(t)

∣∣∣∣∣ ,
where

β i(t) =

∫ t

t i
1

�1 dt −

∫ t

t i
1

�2dt.

Next, since φ j(t i
j) is equal to i × 2π ,7 it yields

|φ1(t) − φ2(t)|6 M |t i
1 − t i

2| + maxi |β
i(t)|. (A.3)

The term maxi |β
i
| is always bounded. By hypothesis we have

|t i
j − t i−1

j |63,

we have

|β i
| =

∣∣∣∣∣
∫ t

t i
1

�1 dt −

∫ t

t i
1

�2 dt

∣∣∣∣∣ , (A.4)

6

∣∣∣∣∣
∫ t

t i
1

�1 dt

∣∣∣∣∣ +

∣∣∣∣∣
∫ t

t i
1

�2 dt

∣∣∣∣∣ . (A.5)

But now remembering that max j,t{� j(t)} = M , then

|β i
|6 2M3. (A.6)

Therefore, a bounded time event difference |t i
1 − t i

2| implies the boundedness of the phase
difference. A similar argument shows that the boundedness of the phase difference implies the
boundedness of the time event difference. Therefore, equation (5) is equivalent to PS.

We analyze the effect of time transformation PS. We assume λ(x, t) to be (i) at least
Riemann integrable (ii) finite, and (iii) bounded away from zero. The two latter conditions are
equivalent to the existence of two numbers δ−1, η ∈ R+ such that δ−1 6 λ(x, t)6 η. Under the
assumptions (i)–(iii) we can demonstrate that PS is invariant under time transformations. First,
we show that

|t i
1 − t i

2|6 κ ⇒ |ζ i
1 − ζ i

2|6 κ̃ .

7 Note that this is also true for t1
j . This means that φ j (t) =

∫ t1
j

0 = 2π . Thus, in this construction, there is no
contribution of the initial phase φ j (0).

New Journal of Physics 10 (2008) 083003 (http://www.njp.org/)

http://www.njp.org/


13

Noting that ζ i
1 =

∫ t i
1

0 λ(x, t) dt and ζ i
2 =

∫ t i
2

0 λ(x, t)dt , we find

|ζ i
1 − ζ i

2| =

∣∣∣∣∣
∫ t i

1

0
λ(x, t) dt −

∫ t i
2

0
λ(x, t) dt

∣∣∣∣∣ .
This may be written as |ζ i

1 − ζ i
2| = |

∫ t i
1

t i
2

λ(x, t)dt |. However, since λ(x, t)6 η we have

|ζ i
1 − ζ i

2|6 η|t i
1 − t i

2|.

Thus, the boundedness of |t i
1 − t i

2| implies the boundedness of |ζ i
1 − ζ i

2|. Now, we show that

|ζ i
1 − ζ i

2|6 κ̃ ⇒ |t i
1 − t i

2|6 κ.

We have

|t i
1 − t i

2| =

∣∣∣∣∣
∫ ζ i

1

0
λ−1(x, t)dt −

∫ ζ i
2

0
λ−1(x, t)dt

∣∣∣∣∣ ,
which equals |

∫ ζ i
1

ζ i
2

λ(x, t)−1dt |. As δ−1 < λ(x, t), we get

|t1
j − t i

2|6 δ|ζ i
1 − ζ i

2|.

Therefore, we conclude that there is PS in the ‘new’ time frame ζ if and only if there is PS
in the original time t .

The results stated in this section are general and do not depend on the attractor topology or
coherent properties, as long as a phase can be introduced. Note that we do not have to know the
phase equation, but only assume that it exists.

The onset of PS, and even the phase equation, depends on the attractor topology and
coherence [8]. If the attractor has a simple topology, that is, it has proper rotation, then the
onset of PS is given by a transition of the zero Lyapunov exponent to negative values. For such
a case, the results of [16], concerning the invariance of the sign of the Lyapunov exponents, can
be used to state the invariance of PS under time transformations.

Appendix B. Transformation law for MIR

Representing one node dynamics of the network by

dx
dt

= F(x), (B.1)

the Lyapunov exponents of an invariant set of the phase space are defined as

hi
t = lim

t→∞
ln

|yi
t |

|yi
t0|

(B.2)

with

ẏi
t = DFyi

t . (B.3)
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x(0) is a typical initial condition and yi
t0 = yi

t(0)σ⊥

t are the tangent vector at x(0). In [16],
the transformation law for the Lyapunov spectrum is shown. Under a time transformation λ

fulfilling the hypotheses (i)–(iii) we have

hi
ζ =

hi
t

〈λ〉t
. (B.4)

Here, we show that the conditional Lyapunov exponents σ‖ and σ⊥ follow the same
transformation law, since the conditional Lyapunov exponents are the Lyapunov exponents of
the network considering that all the initial conditions are equal, and therefore, the same results
from [16] apply.

Expanding equation (B.1) linearly around the synchronous state s, and using the parallel
coordinate defined in (20), we arrive at

ẋ‖
= 2[F(s) − DF(s)s] + DF(s)x‖ (B.5)

= G(s, x‖). (B.6)

Proceeding in the same way for the perpendicular coordinate in (21), we arrive at

ẋ⊥
= DF(s)x⊥ (B.7)

= M(s, x⊥). (B.8)

Now by means of G and M one can obtain the variational equations of (B.6)
and (B.8), which provide the way small perturbations propagate along the parallel and
perpendicular directions. From them, we obtain the Lyapunov conditional exponent σ

‖

t along
the parallel direction and the Lyapunov conditional exponent σ⊥

t along the transversal direction,
respectively.

Then, by applying the results of [16], we conclude that

σ
‖

ζ =
σ

‖

t

〈λ〉t
, (B.9)

σ⊥

ζ =
σ⊥

t

〈λ〉t
. (B.10)

While the parallel conditional exponents are the Lyapunov exponents of the
synchronization manifold, whose positive exponents measure the rate of information produced
by the nodes if they were completely synchronous, the transversal conditional exponents are
the Lyapunov exponents along the directions transversal (orthogonal) to the synchronization
manifold, whose positive exponents measure the rate of information that can be erroneously
transmitted between nodes.

For a matter of simplicity in the notation, we denote the sum of all the positive parallel
exponents by σ

‖

t and the sum of all positive transversal exponents by σ⊥

t .
Then, by using the results of [12], we can write

IC(t)6 σ ‖

t − σ⊥

t , (B.11)

which in other words means that the MIR, i.e. the rate with which information is exchanged
between two nodes of the network, is given by the rate of information produced by the
synchronous trajectories minus the rate of information produced by the desynchronous
trajectories, the error in the transmission of information.
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To intuitively understand equation (B.11), one can compare the right-hand side of it with
the usual definition of MIR between a source of information, denoted by S, and the receiver of
information, denoted by R, given by H(S) − H(S|R). The term H(S), which can be compared
with σ

‖

t , represents the rate with which information is produced in the source and the term
H(S|R), which can be compared with σ⊥

t , represents the rate of uncertainty remaining about
the transmitted information after observing the received information, i.e. the rate with which
information is erroneously transmitted.

Then, taking into account equations (B.9) and (B.10) we have

IC(ζ )6
1

〈λ〉t
(σ ‖

t − σ⊥

t ), (B.12)

concluding

IC(ζ )6
IC(t)

〈λ〉t
. (B.13)
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