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Generating surrogates from recurrences
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In this paper, we present an approach to recover the dynamics from recurrences of a
system and then generate (multivariate) twin surrogate (TS) trajectories. In contrast to
other approaches, such as the linear-like surrogates, this technique produces surrogates
which correspond to an independent copy of the underlying system, i.e. they induce a
trajectory of the underlying system visiting the attractor in a different way. We show
that these surrogates are well suited to test for complex synchronization, which makes it
possible to systematically assess the reliability of synchronization analyses. We then
apply the TS to study binocular fixational movements and find strong indications that
the fixational movements of the left and right eye are phase synchronized. This result
indicates that there might be only one centre in the brain that produces the fixational
movements in both eyes or a close link between the two centres.
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1. Introduction

The concepts of complex synchronization and especially phase synchronization
(PS) have been intensively studied in recent years (Pikovsky et al. 2001).
Indications of PS have been found in many laboratory and natural systems, e.g.
population dynamics (Blasius et al. 1999), neurological (Tass et al. 1998),
cardiorespiratory systems (Schäfer et al. 1998) and optics (Allaria et al. 2001), or
during epilepsy (Mormann et al. 2003; Sowa et al. 2005). The corresponding
studies are usually based on the computation of a measure which quantifies
dependencies of the instantaneous phases of the time-series. However, even
though these measures may be normalized between 0 and 1, experimental time-
series often yield values which are neither close to 0 nor to 1 and hence are
difficult to interpret. This problem can be overcome if the coupling strength
between the two systems can be varied systematically and a rather large change
in the measure can be observed (‘active experiment’; Pikovsky et al. 2001). PS in
natural systems, e.g. during epilepsy or between the heart beats of a mother with
the ones of her foetus (Van Leeuwen et al. 2003), frequently evades such an
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experimental manipulation (‘passive experiment’). In some cases, this problem
has been tackled by interchanging the pairs of oscillators (Van Leeuwen et al.
2003), e.g. the heart beats of other pregnant women were used as ‘natural
surrogates’. These surrogates are independent and hence not in PS with the
original system. Hence, if the synchronization index obtained for the original
data is not significantly higher than the index obtained for the natural
surrogates, there is no sufficient evidence to claim synchronization. But, even
this approach has some drawbacks. The natural variability and also the
frequency of the heart beats of the surrogate mothers are usually slightly
different from the ones of the biological mother. Furthermore, the data
acquisition can be expensive and at least in some cases, problematic (e.g. in
some states of the pregnancy). Moreover, frequently, e.g. in geophysics or
neuroscience, such natural surrogates are often not available. In these cases, we
propose to test hypotheses on the basis of surrogates generated by a
mathematical algorithm. Several approaches in this direction have been
published (Palus 1997; Palus & Stefanovska 2003). However, the specificity of
these tests is not always satisfactory (Thiel et al. 2006).

In this paper, we show how to reconstruct an attractor from the system’s
recurrences and as a consequence, suggest that they contain the necessary
information about the dynamics of a system to produce ‘alternative’ trajectories.
We then present an algorithm for the generation of surrogates, which is based on
the recurrences of a system. These surrogates mimic the dynamical behaviour of
the system, i.e. not only the linear properties but also the nonlinear ones are
preserved. They correspond to an independent copy of the total system, and
hence they are not in PS with the original one. The main idea is to find points of
the measured trajectory which are not only neighbours, but also share the same
neighbourhood in phase space (twins), i.e. all other points are either neighbours
of both or of neither of them. Once the twins of the trajectory have been
localized, new surrogate trajectories are generated by substituting randomly the
next step in the trajectory by either its own future or the one of its twin.
2. Recurrence plots

The algorithm to generate the surrogates is based on the recurrence matrix

Ri;j ZQðdKjjxiKxj jjNÞ; ð2:1Þ

where Qð$Þ denotes the Heaviside function, k$kN the maximum norm and d is a
predefined threshold. The (if necessary reconstructed) vectors xi and xj describe
the state of the system at times i and j. Coding the ‘1’s’ in the matrix as black
dots and the ‘0’s’ as white ones, we obtain the recurrence plot (RP) of the
trajectory (Eckmann et al. 1987). The seemingly easy-to-interpret representation
of the matrix, has led to the definition of many ad hoc measures to quantify
structures in RPs. The resulting recurrence quantification analysis (RQA) has
made it possible to successfully study the measured time-series by means of RPs
(Weber & Zbilut 1994; Marwan et al. 2002a,b).1
1 A rather comprehensive bibliography about recurrence plots can be found at http://www.agnld.
uni-potsdam.de/wmarwan/literature.php or alternatively at http://www.recurrence-plot.tk/
bibliography.php.
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It has also been reported that RPs can be used to estimate dynamical
invariants from time-series in a rather robust way and independent of the
embedding parameters (Thiel et al. 2004a).
3. Information content of recurrence plots

The recurrence matrix as given by equation (2.1) can be considered as a
representation of a specific aspect of a dynamical system. It encodes information
about when the system recurs to formerly visited states in its phase space. An
important question is how much information about a system’s dynamics is
contained in the recurrence matrix. The trajectory from which it is computed
‘lives’ in an m-dimensional space R

m. The matrix Ri, j on the other hand is two-
dimensional and binary. This suggests that much of the information about the
dynamics might be lost in the process of computing the RP.

However, many dynamical invariants such as entropies, fractal dimensions
and the mutual information can be estimated from RPs (Thiel et al. 2004a). A
rather unexpected result is that it is possible to reconstruct the latter and, then
by Taken’s theorem, the attractor from it, if the RP is computed from a
univariate time-series (Thiel et al. 2004b). The possibility to reconstruct the
attractor means, roughly speaking, that one can recover the dynamics of the
system from the RP. Note that the algorithm presented (Thiel et al. 2004b),
cannot be used to reconstruct the attractor if the RP was computed from the
vectors in the phase space, as it involves a rank ordering of the entries of the
time-series—a procedure which is only possible for scalar values.

This result is quite surprising as the RP can be supposed to be more
appropriate if it represents recurrences in the phase space, rather than
recurrences of a projection of the attractor to one dimension. This is why one
would expect that embedding a scalar time-series is a necessary procedure before
computing the RP. Indeed, one can easily see that some information about the
system is lost if one embeds—at least in the RP. Let us suppose that we compute
the RP for the x -component of the Rössler system. Then we obtain

Ru
i;j ZQðdKjxiK xj jÞ; ð3:1Þ

where j$j denotes the absolute value. The superscript ‘u’ indicates that this
matrix is computed from the univariate time-series. If we now want to compute
the RP for the embedded time-series (let us assume that the embedding
parameters are given by the dimension m and the delay t), we can first consider
the embedded vectors X iZðxi; xiCt;.; xiCðmK1ÞtÞT and then use equation (2.1) to
compute the recurrence matrix Ri$j from these vectors. Alternatively, we can use
the formula

Ri;j Z
YmK1

kZ0

Ru
iCkt; jCkt: ð3:2Þ

This equation has a very intuitive interpretation. To compute the Ri, j of an
attractor based on Ru

i;j , one proceeds as follows. First, one takes mK1 copies of
the RP of a univariate time-series. One then shifts the mth copy ðmK1Þ$t steps
along the main diagonal and multiplies the entries of the original and the entire
shifted matrix pointwise. The result is an RP which equals the RP obtained if
Phil. Trans. R. Soc. A (2008)
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one embeds first and then uses equation (2.1). This means that one can either
first embed and then compute the RP, or compute a ‘univariate’ RP and then
apply our shifting scheme to obtain the same result.

Note that it is hence possible to compute the Ri, j from the univariate Ru
i;j , but

not vice versa. A ‘0’ in Ri, j does not tell us which of the m components of the
vector was/were further away than d. Hence, we cannot use the algorithm
presented in Thiel et al. (2004b) to reconstruct the dynamics from Ri, j.

Instead, we attempt to reconstruct the attractor based on an algorithm which
has been proposed for the reconstruction of protein structures from distance
inequalities by Bohr et al. (1993) from the RP alone. This means, based only on the
recurrence matrix, we reconstruct the attractor. This algorithm has allowed Bohr
et al. to reconstruct the structure of proteins containing several hundreds of amino
acids from their distance inequalities, i.e. the information if two amino acids are
close in space or not. If we reinterpret the amino acids as ‘points in phase space’
and the protein as the ‘attractor’, it becomes clear that a slight modification of the
algorithm might allow us to reconstruct the attractor from an RP.

We give the same argument here as Bohr et al. (1993) but adapt the
nomenclature to our problem. From now on, we use the Euclidean distance in
equation (2.1). Let us first suppose that instead of the recurrence matrix (2.1), we
have the distance matrix

DMi;j Z jxiKxj j; ð3:3Þ

where j$j denotes the Euclidean distance. We now write out the components
of the position vector of the ith point in the phase space xiZðxi; yi; ziÞT assuming
first a three-dimensional space. One can then find suitable coordinates for each
point by minimization of the cost function

H Z
XN
i;jZ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiK xjÞ2 CðyiK yjÞ2CðziK zjÞ2

q
KDMi;j

� �2
: ð3:4Þ

If all coordinates xi; yi; zi are suitably chosen, H vanishes. If only distance
inequalities are known, i.e. we have got information only about whether two
points are closer than a given d or not, we have got to modify the cost function.
Bohr et al. have proposed the following modification. They have introduced

E Z
XN
i;jZ1

S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiK xjÞ2 CðyiK yjÞ2CðziK zjÞ2

q� �
Kð1KRi;jÞ

� �2
; ð3:5Þ

where Ri, j is the recurrence matrix and the function Sð$Þ is given by

SðxÞZ 1

1CexpKsðxKd0Þ : ð3:6Þ

Here s is a free parameter, which has to be suitably tuned. d0 would optimally be
the threshold d from the RP, which usually is unknown when one attempts to
reconstruct the attractor from the RP.2 However, choosing d0sd, one only
stretches the reconstructed structure by the factor d0=d. Note that Sð$Þ is a
smoothed step function, which allows us to minimize the cost function.

2 Note that Bohr et al. use futher normalization factors in their algorithm.

Phil. Trans. R. Soc. A (2008)

http://rsta.royalsocietypublishing.org/


(a)

1.0

0.5

0

–0.5

–1.0
0.6

0.4
0.2 0

–0.2
–0.4

–0.6–1.0 –0.5 0 0.5 1.0

(b)

1.5

1.0

0.5

0

–0.5

–1.5

–1.0

1.5
1.0

0.5 0
–0.5

–1.0–1.5 –1.0 –0.5 0 0.5 1.0

(e)
50

40

30

10

20

0
30

20 10 0
–10–20

–30–20 –10 0 10 20

( f )
30

20

10

0

–20

–10

–30
15 10 5 0 –5

–10–40 –20 0 20 40

(c)

6

4

2

0

–4

–2

4 2 0
–2

–4
–6 –5 0 5 10 15

(d )

30

20

10

0

–20

–10

–30
1510 5 0

–5
–10

–15–40 –20 0 20 40
–6

6

Figure 1. (a) Graph of a sine function embedded in R
3. (b) Trajectory reconstructed from the RP of

the sine function. (c) A plane in R
3. (d ) Plane reconstructed from the RP of the set given in (c). (e)

The chaotic Lorenz attractor computed for standard parameters. ( f ) Reconstruction of the Lorenz
attractor from its RP. In all cases, the reconstruction is ‘topologically correct’, i.e. there exists a
continuous function, which maps the original set of points onto the reconstructed set. The units of
the axes are arbitrary.
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The procedure of theminimization is computationally rather expensive. Suppose,
for the sake of the argument that we want to reconstruct an RP of a structure in the
phase space that consists of 10 000 points, then we have in a three-dimensional space
30 000 parameters with respect to which we have to minimize the cost function. We
can expect to find a local minimum rather than a global minimum. This leads to a
faulty reconstruction. One could, in a next step, compute the RP from the
reconstructed (multivariate) time-series and would find the points that are not
correctly reconstructed. An iterative procedure might help to improve the results.

Figure 1a shows a sine function embedded in R
3. The reconstructed trajectory

(figure 1b) is a closed curve and at least topologically equivalent to a circle in the
phase space. Figure 1c,d show the same for a plane in R

3 and figure 1e,f for the
Phil. Trans. R. Soc. A (2008)
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chaotic Lorenz attractor (for equations see Lorenz (1963)). In all the three cases,
the corresponding correlation entropies and dimensions are the same. Further-
more, after rank ordering the respective x -, y- and z -components of the original
and reconstructed attractors, the rank-ordered components can be mapped onto
each other by a continuous function (after a suitable rotation of the reconstructed
trajectory in the phase space). This indicates a topological equivalence between
the original and the reconstructed trajectory.

The algorithm performs reasonably well, given the large number of variables
with respect to which the cost function has to be minimized. This shows that the
distance inequalities, i.e. the RP, contain enough information to reconstruct the
attractor. If one computes the RP from the reconstructed set, one finds rather
strong deviations from the original RP. This indicates that we find only a local
minimum of the cost function. The iterative procedure described above might
yield better results. Note that the only crucial parameter for the reconstruction is
the threshold d used for the computation of the recurrence matrix (equation
(2.1)). Our simulations show that there exists a broad interval, from which d can
be chosen. As expected, the performance of the algorithm improves with
increasing length of the time-series.

These simulations raise the question as to whether distance inequalities or
recurrences are, in general, enough to reconstruct an attractor. Is the RP in some
sense equivalent to the ‘knowledge of the dynamics’? Alternatively, we can ask
what two structures have in common if they have the same recurrence matrix.
Obviously, two structures or set of points that are equivalent up to translation,
rotation and reflection have the same recurrence matrix. Isometric transfor-
mations do not change the recurrence matrix. However, even non-isometric
transformations can leave the recurrence matrix unchanged.3 A hypothesis would
be that two point sets (i.e. points on an attractor) with the same recurrence matrix
have to be at least topologically equivalent; i.e. there is a homeomorphism
between the two. This would mean that the dynamics is, in some sense, the same in
both systems. However, in one dimension this can be shown to be wrong.

Even though this problem is still not solved, the results obtained so far suggest
that the RP contains a very large amount of (if not all the relevant) information
of the dynamical system. In §4 we will make use of this fact to construct
surrogates to test for synchronization.
4. Generation of surrogates

A first idea for the generation of surrogates is to change the structures in an RP
consistently with the ones produced by the underlying dynamical system. One
could then reconstruct a new realization of the trajectory from the modified RP.
However, the structures in RPs are not fully understood and one cannot
arbitrarily interchange columns in an RP because such a modification changes
the distribution of diagonal lines and hence the entropy and predictability of the
system (Thiel et al. 2004a).

Therefore, we propose a modified approach. In general, in an RP, there are
identical columns, i.e. Rk;iZRk;j ck (Thiel et al. 2004b). Thus, there are points
which are not only neighbours (i.e. jjxiKxj jjN!d) but also share the same

3 Take a straight line, stretch it suitably and bend it into a half of a circle.
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neighbourhood. Reconstructing the attractor from an RP, the respective
neighbourhoods of these points cannot help to distinguish them, i.e. from this
point of view they are identical. This is why we will call them twins.

Twins are special points of the time-series as they are indistinguishable
considering their neighbourhoods but in general different and, hence, have
different pasts and—more important—different futures. The key idea of how to
introduce the randomness needed for the generation of surrogates of a
deterministic system is that one can jump randomly to one of the possible
futures of the existing twins.

A surrogate trajectory xsðiÞ of xðiÞ with iZ1;.;N is then generated in the
following way: (i) identify all pairs of twins, (ii) choose an arbitrary starting
point, say xsð1ÞZxðkÞ, (iii) if xðkÞ has no twin, the next point of the surrogate
trajectory is xsð2ÞZxðkC1Þ, and (iv) if xðkÞ has a twin, say xðmÞ, then one can
go to either xðkC1Þ or to xðmC1Þ, i.e. xsð2ÞZxðkC1Þ or xsð2ÞZxðmC1Þ
with equal probability.4 Steps (iii) and (iv) are then iterated until the surrogate
time-series has the same length as the original one.

This algorithm creates twin surrogates (TS) which shadow a (typical)
trajectory of the system (Ott 1993; Katok & Hasselblatt 1995). In the limit
of an infinitely long trajectory, its surrogates are characterized by the same
dynamical invariants and the same attractor. If the measure of the attractor
can be estimated from the observed finite trajectory reasonably well, its
surrogates share the same statistics. Also their power spectra and
correlation functions are consistent with the ones of the original system
(Thiel et al. 2006). TS give reasonable results for deterministic and also for
stochastic systems; the TS of, for example, an ARMA process also show the
typical behaviour of a linear Gaussian process if a suitable ‘embedding’ is
used. Even the parameters of the process can be estimated correctly from
the surrogates. A more detailed analysis of the TS can be found in Thiel
et al. (2006).
5. Test for synchronization

Next, we use the TS to test for PS. The idea behind this approach is similar to
the one by means of ‘natural surrogates’ in the mother–foetus heartbeat
synchronization (Van Leeuwen et al. 2003). Suppose that we have two coupled
self-sustained oscillators x1ðtÞ and x2ðtÞ. Then, we generate M TS of the
total system, i.e. xsi

1 ðtÞ and xsi
2 ðtÞ, with iZ1;.;M . These surrogates are

independent copies of the total system, i.e. trajectories of the whole system
beginning at different initial conditions. Note that the coupling between x1ðtÞ
and x2ðtÞ is also mimicked by the surrogates. Next, we compute the differences
between the phases of the original system DFðtÞZF1ðtÞKF2ðtÞ applying for
example the analytical signal approach (Pikovsky et al. 2001) and compare them
with DFsiðtÞZF1ðtÞKF

si
2 ðtÞ (one can also consider F

si
1 ðtÞKF2ðtÞ). Then, if DF

ðtÞ does not differ significantly from DFsiðtÞ with respect to some index for PS,
the null hypothesis cannot be rejected, and hence we do not have enough
evidence to state PS.

4 If triplets occur one proceeds analogously.
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Figure 2. (a) RL (equation (5.1)) of the original data (bold line) and significance level of 1% (solid
line) computed based on the TS. (b) Difference between the R of the original data and significance
level of 1% (solid line), 2% (dashed line) and 5% (dashed–dotted) computed based on the TS. For
3Z0 to approximately 0.025, the values for RL for the original system are below the significance
levels, indicating absence of PS. For higher values of 3, the difference becomes positive, indicating
the rejection of the null hypothesis. The zero line is plotted (dotted) to guide the eye. (c) Four
largest Lyapunov exponents for the six-dimensional system considered. l4 is highlighted and the
arrow indicates the transition to PS.
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As a test case, we consider two non-identical, mutually coupled Rössler

oscillators with a frequency mismatch of nZ0.015.5 In this ‘active experiment’,
we vary the coupling strength 3 from 0 to 0.08 and compute a PS index for the
original trajectory for each value of 3. Next, we generate 200 TS and compute the
PS index between the measured first oscillator and the surrogates of the second
one. As PS index, we use the mean resultant length RL of complex phase vectors

RLZ
1

N

XN
tZ1

expðiDFðtÞÞ
�����

�����: ð5:1Þ

It takes on values in the interval from 0 (non PS) to 1 (perfect PS; Rodriguez et al.
1999; Allefeld & Kurths 2004). If RL!ð1KaÞmaxifRLsig, where RLsi represents
the PS index between the first oscillator and the surrogate i of the second one, we
state that at a specified a-level the null hypothesis cannot be rejected, and hence
we do not have enough evidence to claim PS between both oscillators.

Figure 2a shows the results for RL of the original system (bold line) and the
1%(solid) significance level. Figure 2b displays the difference between RL of the
5 The equations are _x1;2ZKð1GnÞy1;2Kz1;2C3ðx2;1Kx1;2Þ, _y1;2Zð1GnÞx1C0:15y1;2; _z1;2Z0:2C
z1;2Cz1;2ðx1;2K10Þ.
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original system and the 1, 2 and 5% significance level. For 3!0.025, RL of
the original system is, as expected, below the significance levels and hence the
difference is negative, and for higher values of 3 the curves cross (the difference
becomes positive). This is in agreement with the criterion for PS via Lyapunov
exponents li (Pikovsky et al. 2001), i.e. l4 becomes negative at 3w0.028
(figure 2b), which approximately coincides with the intersection of the curve of RL
for the original system and the significance level (zero-crossing of the curves in
figure 2b). Therefore, we recognize successfully the PS region by means of the TS.

Also note that the significance limit increases when the transition to PS occurs
(figure 2a). As the TS mimic both the linear and nonlinear characteristics of the
system, the surrogates of the second oscillator have in the PS region the same mean
frequency as the first original oscillator. Hence Rsi is rather high. However, F1ðtÞ
and F

si
2 ðtÞ do not adapt to each other, as they are independent. Hence, the value of

RL for the original system is significantly higher than theRsi .We state in conclusion
that even though the obtained value for a normalized PS index is higher than 0.97
(right side of figure 2a), this does not offer conclusive evidence for PS. Hence, the
knowledge of the PS index alone does not provide sufficient evidence for PS.6

Next, we perform an analysis of the power of the test for 3Z0 and nZ0. For 100
random initial conditions of the Rössler system and a significance level of aZ1%,
the null hypothesis was erroneously rejected only in 1 out of the 100 cases. This is a
rather auspicious result as, due to the identical frequencies, it is extremely difficult
to detect PS in this case. In the case of 3Z0.02 (e.g. no PS) and a frequency
mismatch nZ0.015, there were no erroneous rejections of the null hypothesis.
Finally, for PS (3Z0.045 and nZ0.015), in all 100 test runs, the null hypothesis was
correctly rejected. These results indicate that the power of the test is rather good.
A more detailed analysis of this test can be found in Thiel et al. (2006).
6. Application to eye movements

Next we apply our algorithm to check fixational movements of the two eyes for
PS. During fixation of a stationary target, our eyes perform small involuntary
and allegedly erratic movements to counteract retinal adaptation. If these eye
movements are experimentally suppressed, retinal adaptation to the constant
input induces very rapid perceptual fading (Riggs et al. 1953; Coppola & Purves
1996). Moreover, statistical correlations show a time-scale separation from
persistence to antipersistence (Engbert & Kliegl 2004). Persistence on the short
time-scale counteracts retinal fading, whereas antipersistence on the long time-
scale contributes to stability of ocular disparity. According to current textbook
knowledge, the fixational movements of the left and right eye are correlated very
poorly at best (Ciuffreda & Tannen 1995). Therefore, it is highly desirable to
examine these processes from a perspective of PS. We analyse the data of two
subjects. Each performed three trials, in which they fixated a small stimulus
(black square on a white background, 3! pixels on a computer display) with a
spatial extent of 0.128, or 7.2 arc min. Eye movements were recorded using an

6Note that the more phase coherent the oscillators are, the more difficult it is to decide whether
they are in PS or not. A certain phase diffusion, which allows one to measure the adaptation of the
phases of the interacting oscillators is necessary to detect PS. However, the test based on the TS
reveals whether there is enough evidence for PS.
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EyeLink-II system (SR Research, Osgoode, Ontario, Canada) with a sampling
rate of 500 Hz and an instrument spatial resolution less than 0.0058. Figure 3a,b
shows a segment of the horizontal and vertical component of the eye movements,
respectively, for one person.

The data were first high-pass filtered applying a difference filter ~xðtÞZ
xðtÞKxðtKtÞ with tZ40 ms in order to eliminate the slow drift of the data.
After this filtering, we find an oscillatory trajectory (figure 4), which has
maximum spectral power in the frequency range between 6 and 8 Hz. However,
Phil. Trans. R. Soc. A (2008)
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Table 1. Results of the test for PS between the trajectories of the left and right fixational eye
movements performed for three trials for the two participants. (Two hundred surrogates were used
for the test. The null hypothesis was rejected in all cases at a 2% level.)

participant CPR of the original data null hypothesis

M.R. 0.9493 rejected
0.9658 rejected
0.9702 rejected

M.T. 0.6219 rejected
0.5773 rejected
0.6568 rejected
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the trajectories of the eyes are rather noisy and non-phase coherent. Therefore, it
is cumbersome to estimate the phase of these data. Hence, we apply another
measure of PS which is based on the probability of recurrence of a trajectory in
the phase space PðtÞZ1=N

PN
iZ1 Ri;iCt, where Ri;iCt is the recurrence matrix

(equation (2.1)). The correlation between the probabilities of recurrence of two
interacting oscillators

CPRZ
�P1ðtÞ �P2ðtÞ

� �
ðs1s2Þ

ð6:1Þ

(where �P1;2 means that the mean value has been subtracted and s1 and s2 are the
standard deviations of P1(t), respectively, P2(t)), has been proposed to detect PS
in non-phase coherent and noisy oscillators, where the phase cannot be estimated
directly (Romano et al. 2005). Now, we compute 200 surrogates (figure 4b) of the
left eye’s trajectory and compute the recurrence-based synchronization index
CPRsi between them and the measured right eye’s trajectory. In figure 4c, the
results of the test of one trial are visualized. Table 1 summarizes the results for
both subjects and all trials. In all cases, the PS index of the original data is
significantly different from the ones of the surrogates, which strongly indicates
that the concept of PS can be successfully applied to study the interaction between
the trajectories of the left and right eye during fixation. This result also suggests
that the physiological mechanism in the brain that produces the fixational eye
movements controls both eyes simultaneously; i.e. there might be only one centre
in the brain that produces the fixational movements in both eyes or a close link
between two centres. Our finding of PS between the left and right eye is in good
agreement with current knowledge of the physiology of the oculomotor circuitry.
In a single-cell study, 66% of abducens motor neurons fired in relation to the
movements of either eye, while premotor neurons in the brainstem encode
monocular movements (Zhou & King 1998). Thus, motor neurons—as the final
common pathway of neural control of eye movements—are candidates for the
synchronization of left and right fixational movements. Furthermore, we are
interested in whether the fixational movements in the horizontal and vertical
direction of one eye are synchronized. Horizontal and vertical saccadic eye
movements are controlled in two spatially distinct brainstem nuclei (Sparks 2002).
Therefore, we can expect that, on the level of fixational eye movements, horizontal
and vertical components are independent. Applying the method of TS to this case,
we find that the synchronization index CPR between the x - and y-component is
Phil. Trans. R. Soc. A (2008)
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not significantly different from the one computed for the surrogates. Hence, we do
not have sufficient evidence to claim synchronization between the horizontal and
vertical components of eye movements.
7. Conclusions

In conclusion, we propose a new method for generating surrogates based on the
concept of recurrence after presenting results that suggest that recurrences
contain a vast amount of information about a dynamical system. These TS
correspond to an independent copy of the underlying system; i.e. to a trajectory
of the system starting at different initial conditions. We have shown that the TS
can be used to test for PS in the well-studied system of two mutually coupled
Rössler oscillators; and by means of the TS, we have detected PS in dependence
on the coupling strength at several significance levels. Furthermore, we have
tested for PS in experiments of binocular fixational movements and found that
the left and right eye are in PS, in agreement with physiological results about the
functional role of motor neurons in the final common pathway for the control of
eye movements. Contrary to popular belief, fixational eye movements are a
necessary condition for vision. Thus, an understanding of their dynamics is
fundamental for perception and the associated control of spatial attention
(Engbert & Kliegl 2003; Laubrock et al. 2005; Rolfs et al. 2005). First results
indicate that the concept of TS can also be used for testing other complex kinds
of synchronization, especially generalized synchronization.

We want to thank Bohr et al. for providing the code of their reconstruction algorithm. This work
has been supported by the DFG priority programme 1114, DFG-KL 955, and the ‘Internationales
Promotionskolleg–Helmholtz Center for the Study of Mind and Brain Dynamics’ at the University
of Potsdam.
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