Downloaded from rsta.royalsocietypublishing.org on April 8, 2010

PHILOSOPHICAL THE ROYAL
TRANSéETIONS SOCIETY

Preface
Elbert E.N Macau, Celso Grebogi and Jurgen Kurths

Phil. Trans. R. Soc. A 2008 366, 489-491
doi: 10.1098/rsta.2007.2120

References This article cites 3 articles
http://rsta.royalsocietypublishing.org/content/366/1865/489.full.

html#ref-list-1

Rapid r n Respond to this article
ap d esponse http://rsta.royalsocietypublishing.org/letters/submit/roypta; 366/

1865/489

i i i Receive free email alerts when new articles cite this article - sign up
Email alerti ng service in the box at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. A go to:
http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 2008 The Royal Society


http://rsta.royalsocietypublishing.org/content/366/1865/489.full.html#ref-list-1
http://rsta.royalsocietypublishing.org/letters/submit/roypta;366/1865/489
http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;366/1865/489&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/366/1865/489.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org on April 8, 2010

PHILOSOPHICAL
TRANSACTIONS

 oF Phil. Trans. R. Soc. A (2008) 366, 489-491
THE ROYAA d0i:10.1098 /rsta.2007.2120

SOCIETY Published online 13 August 2007

Preface

Mathematical models can provide a powerful description of the real world.
Usually, there is a phenomenon of interest that one wants to describe or
understand. By using fundamental laws and observations, a simplified
representation of the phenomenon can be obtained and consolidated in
mathematical equations. It is expected that these mathematical equations
capture the essential and relevant aspects of the phenomenon in the context of a
specific desired purpose. Furthermore, these equations can be analytically and
computationally explored to lead to predictions for the behaviour of the
phenomenon under a set of changes and operational conditions.

In 1961, Lorenz (1963) was working on a computer model for the atmosphere
dynamics. It was a nonlinear model based on the evolution of the
Rayleigh-Bérnard instability (Saltzman 1962), which results when a fluid
layer subjected to gravity is heated from below. At one time, he repeated a
computation simulation by initializing from a previously obtained value. His
computer operated using six precision digits, but the results were printed out
with just three digits. Lorenz did input these three digits back into the computer
and restarted his program. After some time, the trajectory of the weather
pattern diverged from the original result. This small and tiny truncation error in
the fourth decimal was somehow amplified by his numerically implemented
model so that, after a short time, the new solution was completely uncorrelated
from the previously obtained one. By a careful analysis of this phenomenon,
combined with an innovative way of data analysis, he established that this
phenomenon of ‘sensitive dependence on initial conditions’ was a fundamental
characteristic of his mathematical model and it should be present in nature.
With this computational experiment and ensuing mathematical analysis, he
captured for the first time the essence of the chaotic behaviour in a physically
relevant model.

The pioneering work of Lorenz triggered much research work on deterministic
physically relevant models to properly understand the behaviour he had
uncovered and its consequence in nature. As such, the same deterministic
aperiodic behaviour that presents a sensitive dependence on initial conditions
and whose time evolution is eventually trapped in a specific region of the phase
space, exhibiting a very intricate geometric structure (fractal), was found in a
large class of nonlinear systems. The methods introduced by Lorenz to detect this
deterministic aperiodic behaviour in the context of data time-series were
improved and extended to allow for a proper recognition and characterization of
the phenomenon based on a formal and coherent framework. Chaotic dynamics is
recognized and characterized using quantifiers that are not particular to a
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specific trajectory, but they capture the invariant characteristics of the chaotic
system. The development of these quantifiers for data series analysis continues to
be a very active area of research.

The use of these quantifiers in computational experiments is facilitated
because one has all the available state space variables of the simulated system.
However, this is not the case in real experiments. Typically, the result of an
experiment is a time-series that captures the time variation of one or at most a
few specific variables of the system. It means that, in an experiment, the
complete state space variables of the system are in general not available. Hence,
the main problem is how to reconstruct the system dynamics from a limited
dataset, which is essential to allow for the characterization of a possible
dynamical behaviour. The major breakthrough on this problem was the
introduction of the technique of time-delay embedding (Takens 1981). The
basic idea behind this method is that the evolution of any single variable of
the system has information about the evolution of the other variables. The
dynamics of the system is thus implicitly contained in the time history of any
single variable. Consequently, a topological equivalent state space can be
reconstructed by looking at a single variable and its measurements at given time
delays. The measurement and its delayed values are viewed as new coordinates,
defining a single point in a multidimensional state space. This procedure is
repeated on the available data series and so the system dynamics can be
reconstructed and properly characterized. Over the years, other techniques have
been proposed, but this method continues to be the canonical one.

This second issue of the Phil. Trans. R. Soc. A on Experimental Chaos focuses
on data analysis theory, models and applications of chaotic dynamical systems.
They represent the up-to-date techniques related to the proper handling of data
that comes from real experiments or observation of natural process and were
originally selected from the lectures that were presented at the IX Experimental
Chaos Conference, held at the National Institute for Space Research—INPE in
Sao José dos Campos, Brazil, from 29 May to 1 June 2006. This is the world’s
main conference on experimental chaos and is the proper stage on which
experimental breakthroughs are usually presented. Therefore, we are confident
that the most relevant developments related to the techniques of characterization
of chaotic dynamics in experiments are properly reported here.

As guest editors for this issue, we wish to thank all those who accepted our
invitation to submit manuscripts for consideration. We would also like to thank
the many individuals who served as referees. We hope that these articles can
motivate and even foster the development of techniques for the analysis of
experiments, thus allowing for a continuous and better understanding of the role
of chaotic dynamics in our world.

Phil. Trans. R. Soc. A (2008)


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org on April 8, 2010

Preface 491

Elbert E. N. Macau', Celso Grebogi® and Jiirgen Kurths®
'Laboratory for Computation and Applied Mathematics—LAC,
National Institute for Space Research—INPE, CEP 12245-970,

Sdo José dos Campos, Sido Paulo, Brazil

E-mail address: elbert@lit.inpe.br

2School of Engineering and Physical Sciences, Kings College,
University of Aberdeen, Aberdeen AB2/ 3FX, UK

3 Institute of Physics, University of Potsdam, 14469 Potsdam, Germany

References

Lorenz, E. 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130-141. (doi:10.1175/1520-

0469(1963)020 <0130:DNF >2.0.CO;2)
Saltzman, B. 1962 Finite amplitude free convection as an initial value problem. J. Atmos. Sci. 19,

329-341. (doi:10.1175/1520-0469(1962)019 <0329:FAFCAA >2.0.CO;2)
Takens, F. 1981 Detecting strange attractors in turbulence. Spring. Lect. Notes Math. 898,

366-381.

Phil. Trans. R. Soc. A (2008)


http://dx.doi.org/doi:10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0469(1962)019%3C0329:FAFCAA%3E2.0.CO;2
http://rsta.royalsocietypublishing.org/

	Preface
	References


